Use Module::members -> Dsymbol::codegen to define symbols.

This commit fundamentally changes the way symbol emission in
LDC works: Previously, whenever a declaration was used in some
way, the compiler would check whether it actually needs to be
defined in the currently processed module, based only on the
symbol itself. This lack of contextual information proved to
be a major problem in correctly handling emission of templates
(see e.g. #454).

Now, the DtoResolve…() family of functions and similar only
ever declare the symbols, and definition is handled by doing
a single pass over Module::members for the root module. This
is the same strategy that DMD uses as well, which should
also reduce the maintainance burden down the road (which is
important as during the last few releases, there was pretty
much always a symbol emission related problem slowing us
down).

Our old approach might have been a bit better tuned w.r.t.
avoiding emission of unneeded template instances, but 2.064
will bring improvements here (DMD: FuncDeclaration::toObjFile).
Barring such issues, the change shoud also marginally improve
compile times because of declarations no longer being emitted
when they are not needed.

In the future, we should also consider refactoring the code
so that it no longer directly accesses Dsymbol::ir but uses
wrapper functions that ensure that the appropriate
DtoResolve…() function has been called.

GitHub: Fixes #454.
This commit is contained in:
David Nadlinger
2013-10-13 04:31:41 +02:00
parent b556ad9996
commit 787c147986
22 changed files with 439 additions and 517 deletions

View File

@@ -282,40 +282,8 @@ int TypeClass::builtinTypeInfo()
// (wut?)
//////////////////////////////////////////////////////////////////////////////
void DtoResolveTypeInfo(TypeInfoDeclaration* tid);
void DtoDeclareTypeInfo(TypeInfoDeclaration* tid);
void TypeInfoDeclaration::codegen(Ir*)
static void emitTypeMetadata(TypeInfoDeclaration *tid)
{
DtoResolveTypeInfo(this);
}
void DtoResolveTypeInfo(TypeInfoDeclaration* tid)
{
if (tid->ir.resolved) return;
tid->ir.resolved = true;
Logger::println("DtoResolveTypeInfo(%s)", tid->toChars());
LOG_SCOPE;
std::string mangle(tid->mangle());
IrGlobal* irg = new IrGlobal(tid);
irg->value = gIR->module->getGlobalVariable(mangle);
if (!irg->value) {
if (tid->tinfo->builtinTypeInfo()) // this is a declaration of a builtin __initZ var
irg->type = Type::typeinfo->type->irtype->isClass()->getMemoryLLType();
else
irg->type = LLStructType::create(gIR->context(), tid->toPrettyChars());
irg->value = new llvm::GlobalVariable(*gIR->module, irg->type, true,
TYPEINFO_LINKAGE_TYPE, NULL, mangle);
} else {
irg->type = irg->value->getType()->getContainedType(0);
}
tid->ir.irGlobal = irg;
// We don't want to generate metadata for non-concrete types (such as tuple
// types, slice types, typeof(expr), etc.), void and function types (without
// an indirection), as there must be a valid LLVM undef value of that type.
@@ -324,13 +292,14 @@ void DtoResolveTypeInfo(TypeInfoDeclaration* tid)
Type* t = tid->tinfo->toBasetype();
if (t->ty < Terror && t->ty != Tvoid && t->ty != Tfunction && t->ty != Tident) {
// Add some metadata for use by optimization passes.
std::string metaname = std::string(TD_PREFIX) + mangle;
std::string metaname(TD_PREFIX);
metaname += tid->mangle();
llvm::NamedMDNode* meta = gIR->module->getNamedMetadata(metaname);
if (!meta) {
// Construct the fields
MDNodeField* mdVals[TD_NumFields];
mdVals[TD_TypeInfo] = llvm::cast<MDNodeField>(irg->value);
mdVals[TD_TypeInfo] = llvm::cast<MDNodeField>(tid->ir.irGlobal->value);
mdVals[TD_Type] = llvm::UndefValue::get(DtoType(tid->tinfo));
// Construct the metadata and insert it into the module.
@@ -339,39 +308,59 @@ void DtoResolveTypeInfo(TypeInfoDeclaration* tid)
llvm::makeArrayRef(mdVals, TD_NumFields)));
}
}
DtoDeclareTypeInfo(tid);
}
void DtoDeclareTypeInfo(TypeInfoDeclaration* tid)
void DtoResolveTypeInfo(TypeInfoDeclaration* tid)
{
DtoResolveTypeInfo(tid);
if (tid->ir.resolved) return;
tid->ir.resolved = true;
if (tid->ir.declared) return;
tid->ir.declared = true;
// TypeInfo instances (except ClassInfo ones) are always emitted as weak
// symbols when they are used.
tid->codegen(Type::sir);
}
Logger::println("DtoDeclareTypeInfo(%s)", tid->toChars());
void TypeInfoDeclaration::codegen(Ir*)
{
Logger::println("TypeInfoDeclaration::codegen(%s)", toPrettyChars());
LOG_SCOPE;
if (ir.defined) return;
ir.defined = true;
std::string mangled(mangle());
if (Logger::enabled())
{
std::string mangled(tid->mangle());
Logger::println("type = '%s'", tid->tinfo->toChars());
Logger::println("type = '%s'", tinfo->toChars());
Logger::println("typeinfo mangle: %s", mangled.c_str());
}
IrGlobal* irg = tid->ir.irGlobal;
assert(irg->value != NULL);
IrGlobal* irg = new IrGlobal(this);
ir.irGlobal = irg;
irg->value = gIR->module->getGlobalVariable(mangled);
if (irg->value) {
irg->type = irg->value->getType()->getContainedType(0);
assert(irg->type->isStructTy());
} else {
if (tinfo->builtinTypeInfo()) // this is a declaration of a builtin __initZ var
irg->type = Type::typeinfo->type->irtype->isClass()->getMemoryLLType();
else
irg->type = LLStructType::create(gIR->context(), toPrettyChars());
irg->value = new llvm::GlobalVariable(*gIR->module, irg->type, true,
llvm::GlobalValue::ExternalLinkage, NULL, mangled);
}
emitTypeMetadata(this);
// this is a declaration of a builtin __initZ var
if (tid->tinfo->builtinTypeInfo()) {
if (tinfo->builtinTypeInfo()) {
LLGlobalVariable* g = isaGlobalVar(irg->value);
g->setLinkage(llvm::GlobalValue::ExternalLinkage);
return;
}
// define custom typedef
tid->llvmDefine();
llvmDefine();
}
/* ========================================================================= */
@@ -613,7 +602,7 @@ void TypeInfoStructDeclaration::llvmDefine()
fatal();
}
sd->codegen(Type::sir);
DtoResolveStruct(sd);
IrAggr* iraggr = sd->ir.irAggr;
RTTIBuilder b(Type::typeinfostruct);
@@ -739,20 +728,31 @@ void TypeInfoStructDeclaration::llvmDefine()
/* ========================================================================= */
void TypeInfoClassDeclaration::codegen(Ir*i)
void TypeInfoClassDeclaration::codegen(Ir* p)
{
IrGlobal* irg = new IrGlobal(this);
// For classes, the TypeInfo is in fact a ClassInfo instance and emitted
// as a __ClassZ symbol. For interfaces, the __InterfaceZ symbol is
// referenced as "info" member in a (normal) TypeInfo_Interface instance.
IrGlobal *irg = new IrGlobal(this);
ir.irGlobal = irg;
assert(tinfo->ty == Tclass);
TypeClass *tc = static_cast<TypeClass *>(tinfo);
tc->sym->codegen(Type::sir); // make sure class is resolved
DtoResolveClass(tc->sym);
irg->value = tc->sym->ir.irAggr->getClassInfoSymbol();
irg->type = irg->value->getType()->getContainedType(0);
if (!tc->sym->isInterfaceDeclaration())
{
emitTypeMetadata(this);
}
}
void TypeInfoClassDeclaration::llvmDefine()
{
llvm_unreachable("TypeInfoClassDeclaration should not be called for D2");
llvm_unreachable("TypeInfoClassDeclaration::llvmDefine() should not be called, "
"as a custom Dsymbol::codegen() override is used");
}
/* ========================================================================= */
@@ -765,7 +765,7 @@ void TypeInfoInterfaceDeclaration::llvmDefine()
// make sure interface is resolved
assert(tinfo->ty == Tclass);
TypeClass *tc = static_cast<TypeClass *>(tinfo);
tc->sym->codegen(Type::sir);
DtoResolveClass(tc->sym);
RTTIBuilder b(Type::typeinfointerface);