// Compiler implementation of the D programming language // Copyright (c) 1999-2012 by Digital Mars // All Rights Reserved // written by Walter Bright // http://www.digitalmars.com // License for redistribution is by either the Artistic License // in artistic.txt, or the GNU General Public License in gnu.txt. // See the included readme.txt for details. #include #include #include "init.h" #include "declaration.h" #include "attrib.h" #include "mtype.h" #include "template.h" #include "scope.h" #include "aggregate.h" #include "module.h" #include "id.h" #include "expression.h" #include "hdrgen.h" /********************************* Declaration ****************************/ Declaration::Declaration(Identifier *id) : Dsymbol(id) { type = NULL; originalType = NULL; storage_class = STCundefined; protection = PROTundefined; linkage = LINKdefault; inuse = 0; } void Declaration::semantic(Scope *sc) { } const char *Declaration::kind() { return "declaration"; } unsigned Declaration::size(Loc loc) { assert(type); return type->size(); } int Declaration::isStaticConstructor() { return FALSE; } int Declaration::isStaticDestructor() { return FALSE; } int Declaration::isDelete() { return FALSE; } int Declaration::isDataseg() { return FALSE; } int Declaration::isThreadlocal() { return FALSE; } int Declaration::isCodeseg() { return FALSE; } enum PROT Declaration::prot() { return protection; } /************************************* * Check to see if declaration can be modified in this context (sc). * Issue error if not. */ #if DMDV2 void Declaration::checkModify(Loc loc, Scope *sc, Type *t) { if (sc->incontract && isParameter()) error(loc, "cannot modify parameter '%s' in contract", toChars()); if (sc->incontract && isResult()) error(loc, "cannot modify result '%s' in contract", toChars()); if (isCtorinit() && !t->isMutable() || (storage_class & STCnodefaultctor)) { // It's only modifiable if inside the right constructor modifyFieldVar(loc, sc, isVarDeclaration(), NULL); } else { VarDeclaration *v = isVarDeclaration(); if (v && v->canassign == 0) { const char *p = NULL; if (isConst()) p = "const"; else if (isImmutable()) p = "immutable"; else if (isWild()) p = "inout"; else if (storage_class & STCmanifest) p = "enum"; else if (!t->isAssignable()) p = "struct with immutable members"; if (p) { error(loc, "cannot modify %s", p); } } } } #endif /********************************* TupleDeclaration ****************************/ TupleDeclaration::TupleDeclaration(Loc loc, Identifier *id, Objects *objects) : Declaration(id) { this->loc = loc; this->type = NULL; this->objects = objects; this->isexp = 0; this->tupletype = NULL; } Dsymbol *TupleDeclaration::syntaxCopy(Dsymbol *s) { assert(0); return NULL; } const char *TupleDeclaration::kind() { return "tuple"; } Type *TupleDeclaration::getType() { /* If this tuple represents a type, return that type */ //printf("TupleDeclaration::getType() %s\n", toChars()); if (isexp) return NULL; if (!tupletype) { /* It's only a type tuple if all the Object's are types */ for (size_t i = 0; i < objects->dim; i++) { Object *o = (*objects)[i]; if (o->dyncast() != DYNCAST_TYPE) { //printf("\tnot[%d], %p, %d\n", i, o, o->dyncast()); return NULL; } } /* We know it's a type tuple, so build the TypeTuple */ Types *types = (Types *)objects; Parameters *args = new Parameters(); args->setDim(objects->dim); OutBuffer buf; int hasdeco = 1; for (size_t i = 0; i < types->dim; i++) { Type *t = (*types)[i]; //printf("type = %s\n", t->toChars()); #if 0 buf.printf("_%s_%d", ident->toChars(), i); char *name = (char *)buf.extractData(); Identifier *id = new Identifier(name, TOKidentifier); Parameter *arg = new Parameter(STCin, t, id, NULL); #else Parameter *arg = new Parameter(STCin, t, NULL, NULL); #endif (*args)[i] = arg; if (!t->deco) hasdeco = 0; } tupletype = new TypeTuple(args); if (hasdeco) return tupletype->semantic(0, NULL); } return tupletype; } int TupleDeclaration::needThis() { //printf("TupleDeclaration::needThis(%s)\n", toChars()); for (size_t i = 0; i < objects->dim; i++) { Object *o = (*objects)[i]; if (o->dyncast() == DYNCAST_EXPRESSION) { Expression *e = (Expression *)o; if (e->op == TOKdsymbol) { DsymbolExp *ve = (DsymbolExp *)e; Declaration *d = ve->s->isDeclaration(); if (d && d->needThis()) { return 1; } } } } return 0; } /********************************* TypedefDeclaration ****************************/ TypedefDeclaration::TypedefDeclaration(Loc loc, Identifier *id, Type *basetype, Initializer *init) : Declaration(id) { this->type = new TypeTypedef(this); this->basetype = basetype->toBasetype(); this->init = init; this->htype = NULL; this->hbasetype = NULL; this->sem = 0; this->loc = loc; #if IN_DMD this->sinit = NULL; #endif } Dsymbol *TypedefDeclaration::syntaxCopy(Dsymbol *s) { Type *basetype = this->basetype->syntaxCopy(); Initializer *init = NULL; if (this->init) init = this->init->syntaxCopy(); assert(!s); TypedefDeclaration *st; st = new TypedefDeclaration(loc, ident, basetype, init); // Syntax copy for header file if (!htype) // Don't overwrite original { if (type) // Make copy for both old and new instances { htype = type->syntaxCopy(); st->htype = type->syntaxCopy(); } } else // Make copy of original for new instance st->htype = htype->syntaxCopy(); if (!hbasetype) { if (basetype) { hbasetype = basetype->syntaxCopy(); st->hbasetype = basetype->syntaxCopy(); } } else st->hbasetype = hbasetype->syntaxCopy(); return st; } void TypedefDeclaration::semantic(Scope *sc) { //printf("TypedefDeclaration::semantic(%s) sem = %d\n", toChars(), sem); if (sem == SemanticStart) { sem = SemanticIn; parent = sc->parent; int errors = global.errors; Type *savedbasetype = basetype; basetype = basetype->semantic(loc, sc); if (errors != global.errors) { basetype = savedbasetype; sem = SemanticStart; return; } sem = SemanticDone; #if DMDV2 type = type->addStorageClass(storage_class); #endif Type *savedtype = type; type = type->semantic(loc, sc); if (sc->parent->isFuncDeclaration() && init) semantic2(sc); if (errors != global.errors) { basetype = savedbasetype; type = savedtype; sem = SemanticStart; return; } storage_class |= sc->stc & STCdeprecated; } else if (sem == SemanticIn) { error("circular definition"); } } void TypedefDeclaration::semantic2(Scope *sc) { //printf("TypedefDeclaration::semantic2(%s) sem = %d\n", toChars(), sem); if (sem == SemanticDone) { sem = Semantic2Done; if (init) { Initializer *savedinit = init; int errors = global.errors; init = init->semantic(sc, basetype, INITinterpret); if (errors != global.errors) { init = savedinit; return; } ExpInitializer *ie = init->isExpInitializer(); if (ie) { if (ie->exp->type == basetype) ie->exp->type = type; } } } } const char *TypedefDeclaration::kind() { return "typedef"; } Type *TypedefDeclaration::getType() { return type; } void TypedefDeclaration::toCBuffer(OutBuffer *buf, HdrGenState *hgs) { buf->writestring("typedef "); basetype->toCBuffer(buf, ident, hgs); if (init) { buf->writestring(" = "); init->toCBuffer(buf, hgs); } buf->writeByte(';'); buf->writenl(); } /********************************* AliasDeclaration ****************************/ AliasDeclaration::AliasDeclaration(Loc loc, Identifier *id, Type *type) : Declaration(id) { //printf("AliasDeclaration(id = '%s', type = %p)\n", id->toChars(), type); //printf("type = '%s'\n", type->toChars()); this->loc = loc; this->type = type; this->aliassym = NULL; this->htype = NULL; this->haliassym = NULL; this->overnext = NULL; this->inSemantic = 0; this->importprot = PROTundefined; assert(type); } AliasDeclaration::AliasDeclaration(Loc loc, Identifier *id, Dsymbol *s) : Declaration(id) { //printf("AliasDeclaration(id = '%s', s = %p)\n", id->toChars(), s); assert(s != this); this->loc = loc; this->type = NULL; this->aliassym = s; this->htype = NULL; this->haliassym = NULL; this->overnext = NULL; this->inSemantic = 0; assert(s); } Dsymbol *AliasDeclaration::syntaxCopy(Dsymbol *s) { //printf("AliasDeclaration::syntaxCopy()\n"); assert(!s); AliasDeclaration *sa; if (type) sa = new AliasDeclaration(loc, ident, type->syntaxCopy()); else sa = new AliasDeclaration(loc, ident, aliassym->syntaxCopy(NULL)); // Syntax copy for header file if (!htype) // Don't overwrite original { if (type) // Make copy for both old and new instances { htype = type->syntaxCopy(); sa->htype = type->syntaxCopy(); } } else // Make copy of original for new instance sa->htype = htype->syntaxCopy(); if (!haliassym) { if (aliassym) { haliassym = aliassym->syntaxCopy(s); sa->haliassym = aliassym->syntaxCopy(s); } } else sa->haliassym = haliassym->syntaxCopy(s); return sa; } void AliasDeclaration::semantic(Scope *sc) { //printf("AliasDeclaration::semantic() %s\n", toChars()); if (aliassym) { if (aliassym->isTemplateInstance()) aliassym->semantic(sc); return; } this->inSemantic = 1; #if DMDV1 // don't really know why this is here if (storage_class & STCconst) error("cannot be const"); #endif storage_class |= sc->stc & STCdeprecated; protection = sc->protection; // Given: // alias foo.bar.abc def; // it is not knowable from the syntax whether this is an alias // for a type or an alias for a symbol. It is up to the semantic() // pass to distinguish. // If it is a type, then type is set and getType() will return that // type. If it is a symbol, then aliassym is set and type is NULL - // toAlias() will return aliasssym. int errors = global.errors; Type *savedtype = type; Dsymbol *s; Type *t; Expression *e; /* This section is needed because resolve() will: * const x = 3; * alias x y; * try to alias y to 3. */ s = type->toDsymbol(sc); if (s #if DMDV2 && ((s->getType() && type->equals(s->getType())) || s->isEnumMember()) #endif ) goto L2; // it's a symbolic alias #if DMDV2 type = type->addStorageClass(storage_class); if (storage_class & (STCref | STCnothrow | STCpure | STCdisable)) { // For 'ref' to be attached to function types, and picked // up by Type::resolve(), it has to go into sc. sc = sc->push(); sc->stc |= storage_class & (STCref | STCnothrow | STCpure | STCshared | STCdisable); type->resolve(loc, sc, &e, &t, &s); sc = sc->pop(); } else #endif type->resolve(loc, sc, &e, &t, &s); if (s) { goto L2; } else if (e) { // Try to convert Expression to Dsymbol if (e->op == TOKvar) { s = ((VarExp *)e)->var; goto L2; } else if (e->op == TOKfunction) { s = ((FuncExp *)e)->fd; goto L2; } else { if (e->op != TOKerror) error("cannot alias an expression %s", e->toChars()); t = e->type; } } else if (t) { type = t->semantic(loc, sc); /* If type is class or struct, convert to symbol. * See bugzilla 6475. */ s = type->toDsymbol(sc); if (s #if DMDV2 && ((s->getType() && type->equals(s->getType())) || s->isEnumMember()) #endif ) goto L2; //printf("\talias resolved to type %s\n", type->toChars()); } if (overnext) ScopeDsymbol::multiplyDefined(0, this, overnext); this->inSemantic = 0; if (global.gag && errors != global.errors) type = savedtype; return; L2: //printf("alias is a symbol %s %s\n", s->kind(), s->toChars()); type = NULL; VarDeclaration *v = s->isVarDeclaration(); if (0 && v && v->linkage == LINKdefault) { error("forward reference of %s", v->toChars()); s = NULL; } else { Dsymbol *savedovernext = overnext; FuncDeclaration *f = s->toAlias()->isFuncDeclaration(); if (f) { if (overnext) { FuncAliasDeclaration *fa = new FuncAliasDeclaration(f); fa->importprot = importprot; if (!fa->overloadInsert(overnext)) ScopeDsymbol::multiplyDefined(0, f, overnext); overnext = NULL; s = fa; s->parent = sc->parent; } } if (overnext) ScopeDsymbol::multiplyDefined(0, this, overnext); if (s == this) { assert(global.errors); s = NULL; } if (global.gag && errors != global.errors) { type = savedtype; overnext = savedovernext; aliassym = NULL; inSemantic = 0; return; } } if (!type || type->ty != Terror) { //printf("setting aliassym %s to %s %s\n", toChars(), s->kind(), s->toChars()); aliassym = s; } this->inSemantic = 0; } int AliasDeclaration::overloadInsert(Dsymbol *s) { /* Don't know yet what the aliased symbol is, so assume it can * be overloaded and check later for correctness. */ //printf("AliasDeclaration::overloadInsert('%s')\n", s->toChars()); if (aliassym) // see test/test56.d { Dsymbol *a = aliassym->toAlias(); FuncDeclaration *f = a->isFuncDeclaration(); if (f) // BUG: what if it's a template? { FuncAliasDeclaration *fa = new FuncAliasDeclaration(f); aliassym = fa; return fa->overloadInsert(s); } } if (overnext == NULL) { if (s == this) { return TRUE; } overnext = s; return TRUE; } else { return overnext->overloadInsert(s); } } const char *AliasDeclaration::kind() { return "alias"; } Type *AliasDeclaration::getType() { //printf("AliasDeclaration::getType() %s\n", type->toChars()); #if 0 if (!type->deco && scope) semantic(scope); if (type && !type->deco) error("forward reference to alias %s\n", toChars()); #endif return type; } Dsymbol *AliasDeclaration::toAlias() { //printf("AliasDeclaration::toAlias('%s', this = %p, aliassym = %p, kind = '%s')\n", toChars(), this, aliassym, aliassym ? aliassym->kind() : ""); assert(this != aliassym); //static int count; if (++count == 75) exit(0); //*(char*)0=0; if (inSemantic) { error("recursive alias declaration"); aliassym = new AliasDeclaration(loc, ident, Type::terror); type = Type::terror; } else if (aliassym || type->deco) ; // semantic is already done. else if (scope) semantic(scope); Dsymbol *s = aliassym ? aliassym->toAlias() : this; return s; } void AliasDeclaration::toCBuffer(OutBuffer *buf, HdrGenState *hgs) { buf->writestring("alias "); #if 0 if (hgs->hdrgen) { if (haliassym) { #if !IN_LLVM haliassym->toCBuffer(buf, hgs); #else buf->writestring(haliassym->toChars()); #endif buf->writeByte(' '); buf->writestring(ident->toChars()); } else htype->toCBuffer(buf, ident, hgs); } else #endif { if (aliassym) { #if !IN_LLVM aliassym->toCBuffer(buf, hgs); #else buf->writestring(aliassym->toChars()); #endif buf->writeByte(' '); buf->writestring(ident->toChars()); } else type->toCBuffer(buf, ident, hgs); } buf->writeByte(';'); buf->writenl(); } /********************************* VarDeclaration ****************************/ VarDeclaration::VarDeclaration(Loc loc, Type *type, Identifier *id, Initializer *init) : Declaration(id) { //printf("VarDeclaration('%s')\n", id->toChars()); #ifdef DEBUG if (!type && !init) { printf("VarDeclaration('%s')\n", id->toChars()); //*(char*)0=0; } #endif assert(type || init); this->type = type; this->init = init; this->htype = NULL; this->hinit = NULL; this->loc = loc; offset = 0; noscope = 0; #if DMDV2 isargptr = FALSE; #endif #if DMDV1 nestedref = 0; #endif alignment = 0; ctorinit = 0; aliassym = NULL; onstack = 0; canassign = 0; ctfeAdrOnStack = (size_t)(-1); #if DMDV2 rundtor = NULL; edtor = NULL; #endif #if IN_LLVM aggrIndex = 0; nakedUse = false; availableExternally = true; // assume this unless proven otherwise #endif } Dsymbol *VarDeclaration::syntaxCopy(Dsymbol *s) { //printf("VarDeclaration::syntaxCopy(%s)\n", toChars()); VarDeclaration *sv; if (s) { sv = (VarDeclaration *)s; } else { Initializer *init = NULL; if (this->init) { init = this->init->syntaxCopy(); //init->isExpInitializer()->exp->print(); //init->isExpInitializer()->exp->dump(0); } sv = new VarDeclaration(loc, type ? type->syntaxCopy() : NULL, ident, init); sv->storage_class = storage_class; } // Syntax copy for header file if (!htype) // Don't overwrite original { if (type) // Make copy for both old and new instances { htype = type->syntaxCopy(); sv->htype = type->syntaxCopy(); } } else // Make copy of original for new instance sv->htype = htype->syntaxCopy(); if (!hinit) { if (init) { hinit = init->syntaxCopy(); sv->hinit = init->syntaxCopy(); } } else sv->hinit = hinit->syntaxCopy(); return sv; } void VarDeclaration::semantic(Scope *sc) { #if 0 printf("VarDeclaration::semantic('%s', parent = '%s')\n", toChars(), sc->parent->toChars()); printf(" type = %s\n", type ? type->toChars() : "null"); printf(" stc = x%x\n", sc->stc); printf(" storage_class = x%x\n", storage_class); printf("linkage = %d\n", sc->linkage); //if (strcmp(toChars(), "mul") == 0) halt(); #endif if (scope) { sc = scope; scope = NULL; } storage_class |= sc->stc; if (storage_class & STCextern && init) error("extern symbols cannot have initializers"); AggregateDeclaration *ad = isThis(); if (ad) storage_class |= ad->storage_class & STC_TYPECTOR; /* If auto type inference, do the inference */ int inferred = 0; if (!type) { inuse++; type = init->inferType(sc); type = type->semantic(loc, sc); inuse--; inferred = 1; /* This is a kludge to support the existing syntax for RAII * declarations. */ storage_class &= ~STCauto; originalType = type; } else { if (!originalType) originalType = type; type = type->semantic(loc, sc); } //printf(" semantic type = %s\n", type ? type->toChars() : "null"); type->checkDeprecated(loc, sc); linkage = sc->linkage; this->parent = sc->parent; //printf("this = %p, parent = %p, '%s'\n", this, parent, parent->toChars()); protection = sc->protection; //printf("sc->stc = %x\n", sc->stc); //printf("storage_class = x%x\n", storage_class); #if DMDV2 // Safety checks if (sc->func && !sc->intypeof) { if (storage_class & STCgshared) { if (sc->func->setUnsafe()) error("__gshared not allowed in safe functions; use shared"); } if (init && init->isVoidInitializer() && type->hasPointers()) { if (sc->func->setUnsafe()) error("void initializers for pointers not allowed in safe functions"); } if (type->hasPointers() && type->toDsymbol(sc)) { Dsymbol *s = type->toDsymbol(sc); if (s) { AggregateDeclaration *ad2 = s->isAggregateDeclaration(); if (ad2 && ad2->hasUnions) { if (sc->func->setUnsafe()) error("unions containing pointers are not allowed in @safe functions"); } } } } #endif Dsymbol *parent = toParent(); FuncDeclaration *fd = parent->isFuncDeclaration(); Type *tb = type->toBasetype(); if (tb->ty == Tvoid && !(storage_class & STClazy)) { error("voids have no value"); type = Type::terror; tb = type; } if (tb->ty == Tfunction) { error("cannot be declared to be a function"); type = Type::terror; tb = type; } if (tb->ty == Tstruct) { TypeStruct *ts = (TypeStruct *)tb; if (!ts->sym->members) { error("no definition of struct %s", ts->toChars()); } } if ((storage_class & STCauto) && !inferred) error("storage class 'auto' has no effect if type is not inferred, did you mean 'scope'?"); if (tb->ty == Ttuple) { /* Instead, declare variables for each of the tuple elements * and add those. */ TypeTuple *tt = (TypeTuple *)tb; size_t nelems = Parameter::dim(tt->arguments); Objects *exps = new Objects(); exps->setDim(nelems); Expression *ie = init ? init->toExpression() : NULL; for (size_t i = 0; i < nelems; i++) { Parameter *arg = Parameter::getNth(tt->arguments, i); OutBuffer buf; buf.printf("_%s_field_%zu", ident->toChars(), i); buf.writeByte(0); const char *name = (const char *)buf.extractData(); Identifier *id = Lexer::idPool(name); Expression *einit = ie; if (ie && ie->op == TOKtuple) { einit = (Expression *)((TupleExp *)ie)->exps->data[i]; } Initializer *ti = init; if (einit) { ti = new ExpInitializer(einit->loc, einit); } VarDeclaration *v = new VarDeclaration(loc, arg->type, id, ti); //printf("declaring field %s of type %s\n", v->toChars(), v->type->toChars()); v->semantic(sc); #if !IN_LLVM // removed for LDC since TupleDeclaration::toObj already creates the fields; // adding them to the scope again leads to duplicates if (sc->scopesym) { //printf("adding %s to %s\n", v->toChars(), sc->scopesym->toChars()); if (sc->scopesym->members) sc->scopesym->members->push(v); } #endif Expression *e = new DsymbolExp(loc, v); exps->data[i] = e; } TupleDeclaration *v2 = new TupleDeclaration(loc, ident, exps); v2->isexp = 1; aliassym = v2; return; } if (storage_class & STCconst && !init && !fd) // Initialize by constructor only storage_class = (storage_class & ~STCconst) | STCctorinit; if (isConst()) { } else if (isStatic()) { } else if (isSynchronized()) { error("variable %s cannot be synchronized", toChars()); } else if (isOverride()) { error("override cannot be applied to variable"); } else if (isAbstract()) { error("abstract cannot be applied to variable"); } else if (storage_class & STCtemplateparameter) { } else if (storage_class & STCctfe) { } else { AggregateDeclaration *aad = parent->isAggregateDeclaration(); if (aad) { #if DMDV2 assert(!(storage_class & (STCextern | STCstatic | STCtls | STCgshared))); if (storage_class & (STCconst | STCimmutable) && init) { if (!type->toBasetype()->isTypeBasic()) storage_class |= STCstatic; } else #endif { storage_class |= STCfield; alignment = sc->structalign; #if DMDV2 if (tb->ty == Tstruct && ((TypeStruct *)tb)->sym->noDefaultCtor || tb->ty == Tclass && ((TypeClass *)tb)->sym->noDefaultCtor) aad->noDefaultCtor = TRUE; #endif } } InterfaceDeclaration *id = parent->isInterfaceDeclaration(); if (id) { error("field not allowed in interface"); } /* Templates cannot add fields to aggregates */ TemplateInstance *ti = parent->isTemplateInstance(); if (ti) { // Take care of nested templates while (1) { TemplateInstance *ti2 = ti->tempdecl->parent->isTemplateInstance(); if (!ti2) break; ti = ti2; } // If it's a member template AggregateDeclaration *ad2 = ti->tempdecl->isMember(); if (ad2 && storage_class != STCundefined) { error("cannot use template to add field to aggregate '%s'", ad2->toChars()); } } } #if DMDV2 if ((storage_class & (STCref | STCparameter | STCforeach)) == STCref && ident != Id::This) { error("only parameters or foreach declarations can be ref"); } #endif if (type->isscope() && !noscope) { if (storage_class & (STCfield | STCout | STCref | STCstatic) || !fd) { error("globals, statics, fields, ref and out parameters cannot be auto"); } if (!(storage_class & STCscope)) { if (!(storage_class & STCparameter) && ident != Id::withSym) error("reference to scope class must be scope"); } } enum TOK op = TOKconstruct; if (!init && !sc->inunion && !isStatic() && !isConst() && fd && !(storage_class & (STCfield | STCin | STCforeach)) && type->size() != 0) { // Provide a default initializer //printf("Providing default initializer for '%s'\n", toChars()); if (type->ty == Tstruct && ((TypeStruct *)type)->sym->zeroInit == 1) { /* If a struct is all zeros, as a special case * set it's initializer to the integer 0. * In AssignExp::toElem(), we check for this and issue * a memset() to initialize the struct. * Must do same check in interpreter. */ Expression *e = new IntegerExp(loc, 0, Type::tint32); Expression *e1; e1 = new VarExp(loc, this); e = new AssignExp(loc, e1, e); e->op = TOKconstruct; e->type = e1->type; // don't type check this, it would fail init = new ExpInitializer(loc, e); return; } else if (type->ty == Ttypedef) { TypeTypedef *td = (TypeTypedef *)type; if (td->sym->init) { init = td->sym->init; ExpInitializer *ie = init->isExpInitializer(); if (ie) // Make copy so we can modify it init = new ExpInitializer(ie->loc, ie->exp); } else init = getExpInitializer(); } else { init = getExpInitializer(); } // Default initializer is always a blit op = TOKblit; } if (init) { sc = sc->push(); sc->stc &= ~(STC_TYPECTOR | STCpure | STCnothrow | STCref); ArrayInitializer *ai = init->isArrayInitializer(); if (ai && tb->ty == Taarray) { init = ai->toAssocArrayInitializer(); } StructInitializer *si = init->isStructInitializer(); ExpInitializer *ei = init->isExpInitializer(); // See if initializer is a NewExp that can be allocated on the stack if (ei && isScope() && ei->exp->op == TOKnew) { NewExp *ne = (NewExp *)ei->exp; if (!(ne->newargs && ne->newargs->dim)) { ne->onstack = 1; onstack = 1; if (type->isBaseOf(ne->newtype->semantic(loc, sc), NULL)) onstack = 2; } } // If inside function, there is no semantic3() call if (sc->func) { // If local variable, use AssignExp to handle all the various // possibilities. if (fd && !isStatic() && !isConst() && !init->isVoidInitializer()) { //printf("fd = '%s', var = '%s'\n", fd->toChars(), toChars()); if (!ei) { Expression *e = init->toExpression(); if (!e) { init = init->semantic(sc, type, INITnointerpret); e = init->toExpression(); if (!e) { error("is not a static and cannot have static initializer"); return; } } ei = new ExpInitializer(init->loc, e); init = ei; } Expression *e1 = new VarExp(loc, this); Type *t = type->toBasetype(); if (t->ty == Tsarray && !(storage_class & (STCref | STCout))) { ei->exp = ei->exp->semantic(sc); if (!ei->exp->implicitConvTo(type)) { dinteger_t dim = ((TypeSArray *)t)->dim->toInteger(); // If multidimensional static array, treat as one large array while (1) { t = t->nextOf()->toBasetype(); if (t->ty != Tsarray) break; dim *= ((TypeSArray *)t)->dim->toInteger(); e1->type = new TypeSArray(t->nextOf(), new IntegerExp(0, dim, Type::tindex)); } } e1 = new SliceExp(loc, e1, NULL, NULL); } else if (t->ty == Tstruct) { ei->exp = ei->exp->semantic(sc); ei->exp = resolveProperties(sc, ei->exp); StructDeclaration *sd = ((TypeStruct *)t)->sym; #if DMDV2 /* Look to see if initializer is a call to the constructor */ if (sd->ctor && // there are constructors ei->exp->type->ty == Tstruct && // rvalue is the same struct ((TypeStruct *)ei->exp->type)->sym == sd && ei->exp->op == TOKstar) { /* Look for form of constructor call which is: * *__ctmp.ctor(arguments...) */ PtrExp *pe = (PtrExp *)ei->exp; if (pe->e1->op == TOKcall) { CallExp *ce = (CallExp *)pe->e1; if (ce->e1->op == TOKdotvar) { DotVarExp *dve = (DotVarExp *)ce->e1; if (dve->var->isCtorDeclaration()) { /* It's a constructor call, currently constructing * a temporary __ctmp. */ /* Before calling the constructor, initialize * variable with a bit copy of the default * initializer */ Expression *e = new AssignExp(loc, new VarExp(loc, this), t->defaultInit(loc)); e->op = TOKblit; e->type = t; ei->exp = new CommaExp(loc, e, ei->exp); /* Replace __ctmp being constructed with e1 */ dve->e1 = e1; return; } } } } #endif if (!ei->exp->implicitConvTo(type)) { /* Look for opCall * See bugzilla 2702 for more discussion */ Type *ti = ei->exp->type->toBasetype(); // Don't cast away invariant or mutability in initializer if (search_function(sd, Id::call) && /* Initializing with the same type is done differently */ !(ti->ty == Tstruct && t->toDsymbol(sc) == ti->toDsymbol(sc))) { // Rewrite as e1.call(arguments) Expression * eCall = new DotIdExp(loc, e1, Id::call); ei->exp = new CallExp(loc, eCall, ei->exp); } } } ei->exp = new AssignExp(loc, e1, ei->exp); ei->exp->op = TOKconstruct; canassign++; ei->exp = ei->exp->semantic(sc); canassign--; ei->exp->optimize(WANTvalue); } else { init = init->semantic(sc, type, INITinterpret); if (fd && isConst() && !isStatic()) { // Make it static storage_class |= STCstatic; } } } else if (isConst() || isFinal() || parent->isAggregateDeclaration()) { /* Because we may need the results of a const declaration in a * subsequent type, such as an array dimension, before semantic2() * gets ordinarily run, try to run semantic2() now. * Ignore failure. */ if (!global.errors && !inferred) { unsigned errors = global.startGagging(); Expression *e; Initializer *i2 = init; inuse++; if (ei) { e = ei->exp->syntaxCopy(); e = e->semantic(sc); e = e->implicitCastTo(sc, type); } else if (si || ai) { i2 = init->syntaxCopy(); i2 = i2->semantic(sc, type, INITinterpret); } inuse--; if (global.endGagging(errors)) // if errors happened { #if DMDV2 /* Save scope for later use, to try again */ scope = new Scope(*sc); scope->setNoFree(); #endif } else if (ei) { if (isDataseg() || (storage_class & STCmanifest)) e = e->ctfeInterpret(); else e = e->optimize(WANTvalue); switch (e->op) { case TOKint64: case TOKfloat64: case TOKstring: case TOKarrayliteral: case TOKassocarrayliteral: case TOKstructliteral: case TOKnull: ei->exp = e; // no errors, keep result break; default: #if DMDV2 /* Save scope for later use, to try again */ scope = new Scope(*sc); scope->setNoFree(); #endif break; } } else init = i2; // no errors, keep result } } sc = sc->pop(); } } ExpInitializer *VarDeclaration::getExpInitializer() { ExpInitializer *ei; if (init) ei = init->isExpInitializer(); else { Expression *e = type->defaultInit(loc); if (e) ei = new ExpInitializer(loc, e); else ei = NULL; } return ei; } void VarDeclaration::semantic2(Scope *sc) { //printf("VarDeclaration::semantic2('%s')\n", toChars()); // Inside unions, default to void initializers if (!init && sc->inunion && !toParent()->isFuncDeclaration()) { AggregateDeclaration *aad = parent->isAggregateDeclaration(); if (aad) { if (aad->fields[0] == this) { int hasinit = 0; for (size_t i = 1; i < aad->fields.dim; i++) { if (aad->fields[i]->init && !aad->fields[i]->init->isVoidInitializer()) { hasinit = 1; break; } } if (!hasinit) init = new ExpInitializer(loc, type->defaultInitLiteral(loc)); } else init = new VoidInitializer(loc); } } if (init && !toParent()->isFuncDeclaration()) { inuse++; #if 0 ExpInitializer *ei = init->isExpInitializer(); if (ei) { ei->exp->dump(0); printf("type = %p\n", ei->exp->type); } #endif init = init->semantic(sc, type, INITinterpret); inuse--; } } void VarDeclaration::semantic3(Scope *sc) { // LDC if (!global.params.useAvailableExternally) availableExternally = false; // Preserve call chain Declaration::semantic3(sc); } void VarDeclaration::setFieldOffset(AggregateDeclaration *ad, unsigned *poffset, bool isunion) { //printf("VarDeclaration::setFieldOffset(ad = %s) %s\n", ad->toChars(), toChars()); if (aliassym) { // If this variable was really a tuple, set the offsets for the tuple fields TupleDeclaration *v2 = aliassym->isTupleDeclaration(); assert(v2); for (size_t i = 0; i < v2->objects->dim; i++) { Object *o = (*v2->objects)[i]; assert(o->dyncast() == DYNCAST_EXPRESSION); Expression *e = (Expression *)o; assert(e->op == TOKdsymbol); DsymbolExp *se = (DsymbolExp *)e; se->s->setFieldOffset(ad, poffset, isunion); } return; } if (!(storage_class & STCfield)) return; assert(!(storage_class & (STCstatic | STCextern | STCparameter | STCtls))); /* Fields that are tuples appear both as part of TupleDeclarations and * as members. That means ignore them if they are already a field. */ if (offset) return; // already a field for (size_t i = 0; i < ad->fields.dim; i++) { if (ad->fields[i] == this) return; // already a field } // Check for forward referenced types which will fail the size() call Type *t = type->toBasetype(); if (storage_class & STCref) { // References are the size of a pointer t = Type::tvoidptr; } if (t->ty == Tstruct) { TypeStruct *ts = (TypeStruct *)t; #if DMDV2 if (ts->sym == ad) { ad->error("cannot have field %s with same struct type", toChars()); } #endif if (ts->sym->sizeok != SIZEOKdone && ts->sym->scope) ts->sym->semantic(NULL); if (ts->sym->sizeok != SIZEOKdone) { ad->sizeok = SIZEOKfwd; // cannot finish; flag as forward referenced return; } } if (t->ty == Tident) { ad->sizeok = SIZEOKfwd; // cannot finish; flag as forward referenced return; } unsigned memsize = t->size(loc); // size of member unsigned memalignsize = t->alignsize(); // size of member for alignment purposes structalign_t memalign = t->memalign(alignment); // alignment boundaries offset = AggregateDeclaration::placeField(poffset, memsize, memalignsize, memalign, &ad->structsize, &ad->alignsize, isunion); //printf("\t%s: alignsize = %d\n", toChars(), alignsize); //printf(" addField '%s' to '%s' at offset %d, size = %d\n", toChars(), ad->toChars(), offset, memsize); ad->fields.push(this); } const char *VarDeclaration::kind() { return "variable"; } Dsymbol *VarDeclaration::toAlias() { //printf("VarDeclaration::toAlias('%s', this = %p, aliassym = %p)\n", toChars(), this, aliassym); assert(this != aliassym); Dsymbol *s = aliassym ? aliassym->toAlias() : this; return s; } void VarDeclaration::toCBuffer(OutBuffer *buf, HdrGenState *hgs) { StorageClassDeclaration::stcToCBuffer(buf, storage_class); /* If changing, be sure and fix CompoundDeclarationStatement::toCBuffer() * too. */ if (type) type->toCBuffer(buf, ident, hgs); else buf->writestring(ident->toChars()); if (init) { buf->writestring(" = "); #if DMDV2 ExpInitializer *ie = init->isExpInitializer(); if (ie && (ie->exp->op == TOKconstruct || ie->exp->op == TOKblit)) ((AssignExp *)ie->exp)->e2->toCBuffer(buf, hgs); else #endif init->toCBuffer(buf, hgs); } buf->writeByte(';'); buf->writenl(); } AggregateDeclaration *VarDeclaration::isThis() { AggregateDeclaration *ad = NULL; if (!(storage_class & (STCstatic | STCextern | STCmanifest | STCtemplateparameter | STCtls | STCgshared | STCctfe))) { if ((storage_class & (STCconst | STCimmutable)) && init) return NULL; for (Dsymbol *s = this; s; s = s->parent) { ad = s->isMember(); if (ad) break; if (!s->parent || !s->parent->isTemplateMixin()) break; } } return ad; } int VarDeclaration::needThis() { //printf("VarDeclaration::needThis(%s, x%x)\n", toChars(), storage_class); return storage_class & STCfield; } int VarDeclaration::isImportedSymbol() { if (protection == PROTexport && !init && (isStatic() || isConst() || parent->isModule())) return TRUE; return FALSE; } void VarDeclaration::checkCtorConstInit() { if (ctorinit == 0 && isCtorinit() && !(storage_class & STCfield)) error("missing initializer in static constructor for const variable"); } /************************************ * Check to see if this variable is actually in an enclosing function * rather than the current one. */ void VarDeclaration::checkNestedReference(Scope *sc, Loc loc) { //printf("VarDeclaration::checkNestedReference() %s\n", toChars()); if (parent && !isDataseg() && parent != sc->parent) { // The function that this variable is in FuncDeclaration *fdv = toParent()->isFuncDeclaration(); // The current function FuncDeclaration *fdthis = sc->parent->isFuncDeclaration(); if (fdv && fdthis && fdv != fdthis) { nestedref = 1; #if !IN_LLVM // In LDC (D1), __ensure is actually just treated like a normal // nested function, we don't use the magic stack layout hack like // DMD (see DMD Bugzilla 7932 for why this was added). if (fdthis->ident != Id::ensure) #endif { /* __ensure is always called directly, * so it never becomes closure. */ if (loc.filename) fdthis->getLevel(loc, fdv); fdv->nestedFrameRef = 1; #if IN_LLVM #if DMDV1 fdv->nestedVars.insert(this); #endif #endif //printf("var %s in function %s is nested ref\n", toChars(), fdv->toChars()); // __dollar creates problems because it isn't a real variable Bugzilla 3326 if (ident == Id::dollar) ::error(loc, "cannnot use $ inside a function literal"); } } } } /******************************* * Does symbol go into data segment? * Includes extern variables. */ int VarDeclaration::isDataseg() { #if 0 printf("VarDeclaration::isDataseg(%p, '%s')\n", this, toChars()); printf("%llx, %p, %p\n", storage_class & (STCstatic | STCconst), parent->isModule(), parent->isTemplateInstance()); printf("parent = '%s'\n", parent->toChars()); #endif Dsymbol *parent = this->toParent(); if (!parent && !(storage_class & (STCstatic | STCconst))) { error("forward referenced"); type = Type::terror; return 0; } return (storage_class & (STCstatic | STCconst) || parent->isModule() || parent->isTemplateInstance()); } /************************************ * Does symbol go into thread local storage? */ int VarDeclaration::isThreadlocal() { return 0; } /******************************************** * Can variable be read and written by CTFE? */ int VarDeclaration::isCTFE() { //printf("VarDeclaration::isCTFE(%p, '%s')\n", this, toChars()); //printf("%llx\n", storage_class); return (storage_class & STCctfe) != 0; // || !isDataseg(); } int VarDeclaration::hasPointers() { //printf("VarDeclaration::hasPointers() %s, ty = %d\n", toChars(), type->ty); return (!isDataseg() && type->hasPointers()); } int VarDeclaration::isSameAsInitializer() { if (init && init->isExpInitializer() && init->isExpInitializer()->exp->op == TOKstructliteral) return 0; return isConst(); } /****************************************** * If a variable has a scope destructor call, return call for it. * Otherwise, return NULL. */ Expression *VarDeclaration::callScopeDtor(Scope *sc) { Expression *e = NULL; //printf("VarDeclaration::callScopeDtor() %s\n", toChars()); if (storage_class & (STCauto | STCscope) && !noscope) { for (ClassDeclaration *cd = type->isClassHandle(); cd; cd = cd->baseClass) { /* We can do better if there's a way with onstack * classes to determine if there's no way the monitor * could be set. */ //if (cd->isInterfaceDeclaration()) //error("interface %s cannot be scope", cd->toChars()); if (1 || onstack || cd->dtors.dim) // if any destructors { // delete this; Expression *ec; ec = new VarExp(loc, this); e = new DeleteExp(loc, ec); e->type = Type::tvoid; break; } } } return e; } /****************************************** */ void ObjectNotFound(Identifier *id) { Type::error(0, "%s not found. object.d may be incorrectly installed or corrupt.", id->toChars()); fatal(); } /********************************* ClassInfoDeclaration ****************************/ ClassInfoDeclaration::ClassInfoDeclaration(ClassDeclaration *cd) : VarDeclaration(0, ClassDeclaration::classinfo->type, cd->ident, NULL) { this->cd = cd; storage_class = STCstatic; } Dsymbol *ClassInfoDeclaration::syntaxCopy(Dsymbol *s) { assert(0); // should never be produced by syntax return NULL; } void ClassInfoDeclaration::semantic(Scope *sc) { } /********************************* ModuleInfoDeclaration ****************************/ ModuleInfoDeclaration::ModuleInfoDeclaration(Module *mod) : VarDeclaration(0, Module::moduleinfo->type, mod->ident, NULL) { this->mod = mod; storage_class = STCstatic; } Dsymbol *ModuleInfoDeclaration::syntaxCopy(Dsymbol *s) { assert(0); // should never be produced by syntax return NULL; } void ModuleInfoDeclaration::semantic(Scope *sc) { } /********************************* TypeInfoDeclaration ****************************/ TypeInfoDeclaration::TypeInfoDeclaration(Type *tinfo, int internal) : VarDeclaration(0, Type::typeinfo->type, tinfo->getTypeInfoIdent(internal), NULL) { this->tinfo = tinfo; storage_class = STCstatic; protection = PROTpublic; linkage = LINKc; } Dsymbol *TypeInfoDeclaration::syntaxCopy(Dsymbol *s) { assert(0); // should never be produced by syntax return NULL; } void TypeInfoDeclaration::semantic(Scope *sc) { assert(linkage == LINKc); #if IN_LLVM if (!global.params.useAvailableExternally) availableExternally = false; #endif } /***************************** TypeInfoConstDeclaration **********************/ #if DMDV2 TypeInfoConstDeclaration::TypeInfoConstDeclaration(Type *tinfo) : TypeInfoDeclaration(tinfo, 0) { } #endif /***************************** TypeInfoInvariantDeclaration **********************/ #if DMDV2 TypeInfoInvariantDeclaration::TypeInfoInvariantDeclaration(Type *tinfo) : TypeInfoDeclaration(tinfo, 0) { } #endif /***************************** TypeInfoSharedDeclaration **********************/ #if DMDV2 TypeInfoSharedDeclaration::TypeInfoSharedDeclaration(Type *tinfo) : TypeInfoDeclaration(tinfo, 0) { } #endif /***************************** TypeInfoStructDeclaration **********************/ TypeInfoStructDeclaration::TypeInfoStructDeclaration(Type *tinfo) : TypeInfoDeclaration(tinfo, 0) { } /***************************** TypeInfoClassDeclaration ***********************/ TypeInfoClassDeclaration::TypeInfoClassDeclaration(Type *tinfo) : TypeInfoDeclaration(tinfo, 0) { } /***************************** TypeInfoInterfaceDeclaration *******************/ TypeInfoInterfaceDeclaration::TypeInfoInterfaceDeclaration(Type *tinfo) : TypeInfoDeclaration(tinfo, 0) { } /***************************** TypeInfoTypedefDeclaration *********************/ TypeInfoTypedefDeclaration::TypeInfoTypedefDeclaration(Type *tinfo) : TypeInfoDeclaration(tinfo, 0) { } /***************************** TypeInfoPointerDeclaration *********************/ TypeInfoPointerDeclaration::TypeInfoPointerDeclaration(Type *tinfo) : TypeInfoDeclaration(tinfo, 0) { } /***************************** TypeInfoArrayDeclaration ***********************/ TypeInfoArrayDeclaration::TypeInfoArrayDeclaration(Type *tinfo) : TypeInfoDeclaration(tinfo, 0) { } /***************************** TypeInfoStaticArrayDeclaration *****************/ TypeInfoStaticArrayDeclaration::TypeInfoStaticArrayDeclaration(Type *tinfo) : TypeInfoDeclaration(tinfo, 0) { } /***************************** TypeInfoAssociativeArrayDeclaration ************/ TypeInfoAssociativeArrayDeclaration::TypeInfoAssociativeArrayDeclaration(Type *tinfo) : TypeInfoDeclaration(tinfo, 0) { } /***************************** TypeInfoEnumDeclaration ***********************/ TypeInfoEnumDeclaration::TypeInfoEnumDeclaration(Type *tinfo) : TypeInfoDeclaration(tinfo, 0) { } /***************************** TypeInfoFunctionDeclaration ********************/ TypeInfoFunctionDeclaration::TypeInfoFunctionDeclaration(Type *tinfo) : TypeInfoDeclaration(tinfo, 0) { } /***************************** TypeInfoDelegateDeclaration ********************/ TypeInfoDelegateDeclaration::TypeInfoDelegateDeclaration(Type *tinfo) : TypeInfoDeclaration(tinfo, 0) { } /***************************** TypeInfoTupleDeclaration **********************/ TypeInfoTupleDeclaration::TypeInfoTupleDeclaration(Type *tinfo) : TypeInfoDeclaration(tinfo, 0) { } /********************************* ThisDeclaration ****************************/ // For the "this" parameter to member functions ThisDeclaration::ThisDeclaration(Loc loc, Type *t) : VarDeclaration(loc, t, Id::This, NULL) { noscope = 1; } Dsymbol *ThisDeclaration::syntaxCopy(Dsymbol *s) { assert(0); // should never be produced by syntax return NULL; } /********************** StaticStructInitDeclaration ***************************/ StaticStructInitDeclaration::StaticStructInitDeclaration(Loc loc, StructDeclaration *dsym) : Declaration(new Identifier("", TOKidentifier)) { this->loc = loc; this->dsym = dsym; storage_class |= STCconst; }