// Compiler implementation of the D programming language // Copyright (c) 1999-2011 by Digital Mars // All Rights Reserved // written by Walter Bright // http://www.digitalmars.com // License for redistribution is by either the Artistic License // in artistic.txt, or the GNU General Public License in gnu.txt. // See the included readme.txt for details. #include #include #include "root.h" #include "aggregate.h" #include "scope.h" #include "mtype.h" #include "declaration.h" #include "module.h" #include "id.h" #include "expression.h" #include "statement.h" #include "init.h" #include "template.h" /******************************************* * We need an opAssign for the struct if * it has a destructor or a postblit. * We need to generate one if a user-specified one does not exist. */ int StructDeclaration::needOpAssign() { #define X 0 if (X) printf("StructDeclaration::needOpAssign() %s\n", toChars()); if (hasIdentityAssign) goto Lneed; // because has identity==elaborate opAssign if (dtor || postblit) goto Lneed; /* If any of the fields need an opAssign, then we * need it too. */ for (size_t i = 0; i < fields.dim; i++) { Dsymbol *s = fields[i]; VarDeclaration *v = s->isVarDeclaration(); assert(v && v->storage_class & STCfield); if (v->storage_class & STCref) continue; Type *tv = v->type->toBasetype(); while (tv->ty == Tsarray) { TypeSArray *ta = (TypeSArray *)tv; tv = tv->nextOf()->toBasetype(); } if (tv->ty == Tstruct) { TypeStruct *ts = (TypeStruct *)tv; StructDeclaration *sd = ts->sym; if (sd->needOpAssign()) goto Lneed; } } Ldontneed: if (X) printf("\tdontneed\n"); return 0; Lneed: if (X) printf("\tneed\n"); return 1; #undef X } /****************************************** * Build opAssign for struct. * ref S opAssign(S s) { ... } * * Note that s will be constructed onto the stack, probably copy-constructed. * Then, the body is: * S tmp = this; // bit copy * this = s; // bit copy * tmp.dtor(); * Instead of running the destructor on s, run it on tmp instead. */ FuncDeclaration *StructDeclaration::buildOpAssign(Scope *sc) { Dsymbol *assign = search_function(this, Id::assign); if (assign) { /* check identity opAssign exists */ Expression *er = new NullExp(loc, type); // dummy rvalue Expression *el = new IdentifierExp(loc, Id::p); // dummy lvalue el->type = type; Expressions ar; ar.push(er); Expressions al; al.push(el); if (FuncDeclaration *fd = assign->isFuncDeclaration()) { FuncDeclaration *f = fd->overloadResolve(loc, er, &ar, 1); if (f == NULL) f = fd->overloadResolve(loc, er, &al, 1); if (f) return (f->storage_class & STCdisable) ? NULL : f; } if (TemplateDeclaration *td = assign->isTemplateDeclaration()) { FuncDeclaration *f = td->deduceFunctionTemplate(sc, loc, NULL, er, &ar, 1); if (f == NULL) f = td->deduceFunctionTemplate(sc, loc, NULL, er, &al, 1); if (f) return (f->storage_class & STCdisable) ? NULL : f; } // Even if non-identity opAssign is defined, built-in identity opAssign // will be defined. (Is this an exception of operator overloading rule?) } if (!needOpAssign()) return NULL; //printf("StructDeclaration::buildOpAssign() %s\n", toChars()); Parameters *fparams = new Parameters; fparams->push(new Parameter(STCnodtor, type, Id::p, NULL)); Type *ftype = new TypeFunction(fparams, handle, FALSE, LINKd); #if STRUCTTHISREF ((TypeFunction *)ftype)->isref = 1; #endif FuncDeclaration *fop = new FuncDeclaration(loc, 0, Id::assign, STCundefined, ftype); Expression *e = NULL; if (postblit) { /* Swap: * tmp = *this; *this = s; tmp.dtor(); */ //printf("\tswap copy\n"); Identifier *idtmp = Lexer::uniqueId("__tmp"); VarDeclaration *tmp; AssignExp *ec = NULL; if (dtor) { tmp = new VarDeclaration(0, type, idtmp, new VoidInitializer(0)); tmp->noscope = 1; tmp->storage_class |= STCctfe; e = new DeclarationExp(0, tmp); ec = new AssignExp(0, new VarExp(0, tmp), #if STRUCTTHISREF new ThisExp(0) #else new PtrExp(0, new ThisExp(0)) #endif ); ec->op = TOKblit; e = Expression::combine(e, ec); } ec = new AssignExp(0, #if STRUCTTHISREF new ThisExp(0), #else new PtrExp(0, new ThisExp(0)), #endif new IdentifierExp(0, Id::p)); ec->op = TOKblit; e = Expression::combine(e, ec); if (dtor) { /* Instead of running the destructor on s, run it * on tmp. This avoids needing to copy tmp back in to s. */ Expression *ec2 = new DotVarExp(0, new VarExp(0, tmp), dtor, 0); ec2 = new CallExp(0, ec2); e = Expression::combine(e, ec2); } } else { /* Do memberwise copy */ //printf("\tmemberwise copy\n"); for (size_t i = 0; i < fields.dim; i++) { Dsymbol *s = fields[i]; VarDeclaration *v = s->isVarDeclaration(); assert(v && v->storage_class & STCfield); // this.v = s.v; AssignExp *ec = new AssignExp(0, new DotVarExp(0, new ThisExp(0), v, 0), new DotVarExp(0, new IdentifierExp(0, Id::p), v, 0)); e = Expression::combine(e, ec); } } Statement *s1 = new ExpStatement(0, e); /* Add: * return this; */ e = new ThisExp(0); Statement *s2 = new ReturnStatement(0, e); fop->fbody = new CompoundStatement(0, s1, s2); Dsymbol *s = fop; if (assign && assign->isTemplateDeclaration()) { // Wrap a template around the function declaration TemplateParameters *tpl = new TemplateParameters(); Dsymbols *decldefs = new Dsymbols(); decldefs->push(s); TemplateDeclaration *tempdecl = new TemplateDeclaration(assign->loc, fop->ident, tpl, NULL, decldefs, 0); s = tempdecl; } members->push(s); s->addMember(sc, this, 1); sc = sc->push(); sc->stc = 0; sc->linkage = LINKd; s->semantic(sc); sc->pop(); //printf("-StructDeclaration::buildOpAssign() %s\n", toChars()); return fop; } /******************************************* * We need an opEquals for the struct if * any fields has an opEquals. * Generate one if a user-specified one does not exist. */ int StructDeclaration::needOpEquals() { #define X 0 if (X) printf("StructDeclaration::needOpEquals() %s\n", toChars()); if (hasIdentityEquals) goto Lneed; #if 0 if (isUnionDeclaration()) goto Ldontneed; #endif /* If any of the fields has an opEquals, then we * need it too. */ for (size_t i = 0; i < fields.dim; i++) { Dsymbol *s = fields[i]; VarDeclaration *v = s->isVarDeclaration(); assert(v && v->storage_class & STCfield); if (v->storage_class & STCref) continue; Type *tv = v->type->toBasetype(); #if 0 if (tv->isfloating()) goto Lneed; if (tv->ty == Tarray) goto Lneed; if (tv->ty == Tclass) goto Lneed; #endif while (tv->ty == Tsarray) { TypeSArray *ta = (TypeSArray *)tv; tv = tv->nextOf()->toBasetype(); } if (tv->ty == Tstruct) { TypeStruct *ts = (TypeStruct *)tv; StructDeclaration *sd = ts->sym; if (sd->needOpEquals()) goto Lneed; } } Ldontneed: if (X) printf("\tdontneed\n"); return 0; Lneed: if (X) printf("\tneed\n"); return 1; #undef X } /****************************************** * Build opEquals for struct. * const bool opEquals(const S s) { ... } */ FuncDeclaration *StructDeclaration::buildOpEquals(Scope *sc) { Dsymbol *eq = search_function(this, Id::eq); if (eq) { for (size_t i = 0; i <= 1; i++) { Expression *e = i == 0 ? new NullExp(loc, type->constOf()) // dummy rvalue : type->constOf()->defaultInit(); // dummy lvalue Expressions *arguments = new Expressions(); arguments->push(e); // check identity opEquals exists FuncDeclaration *fd = eq->isFuncDeclaration(); if (fd) { fd = fd->overloadResolve(loc, e, arguments, 1); if (fd && !(fd->storage_class & STCdisable)) return fd; } TemplateDeclaration *td = eq->isTemplateDeclaration(); if (td) { fd = td->deduceFunctionTemplate(sc, loc, NULL, e, arguments, 1); if (fd && !(fd->storage_class & STCdisable)) return fd; } } return NULL; } if (!needOpEquals()) return NULL; //printf("StructDeclaration::buildOpEquals() %s\n", toChars()); Parameters *parameters = new Parameters; parameters->push(new Parameter(STCin, type, Id::p, NULL)); TypeFunction *tf = new TypeFunction(parameters, Type::tbool, 0, LINKd); tf->mod = MODconst; tf = (TypeFunction *)tf->semantic(loc, sc); FuncDeclaration *fop = new FuncDeclaration(loc, 0, Id::eq, STCundefined, tf); Expression *e = NULL; /* Do memberwise compare */ //printf("\tmemberwise compare\n"); for (size_t i = 0; i < fields.dim; i++) { Dsymbol *s = fields[i]; VarDeclaration *v = s->isVarDeclaration(); assert(v && v->storage_class & STCfield); if (v->storage_class & STCref) assert(0); // what should we do with this? // this.v == s.v; EqualExp *ec = new EqualExp(TOKequal, loc, new DotVarExp(loc, new ThisExp(loc), v, 0), new DotVarExp(loc, new IdentifierExp(loc, Id::p), v, 0)); if (e) e = new AndAndExp(loc, e, ec); else e = ec; } if (!e) e = new IntegerExp(loc, 1, Type::tbool); fop->fbody = new ReturnStatement(loc, e); members->push(fop); fop->addMember(sc, this, 1); sc = sc->push(); sc->stc = 0; sc->linkage = LINKd; fop->semantic(sc); sc->pop(); //printf("-StructDeclaration::buildOpEquals() %s\n", toChars()); return fop; } /****************************************** * Build __xopEquals for TypeInfo_Struct * bool __xopEquals(in void* p, in void* q) { ... } */ FuncDeclaration *StructDeclaration::buildXopEquals(Scope *sc) { if (!search_function(this, Id::eq)) return NULL; /* static bool__xopEquals(in void* p, in void* q) { * return ( *cast(const S*)(p) ).opEquals( *cast(const S*)(q) ); * } */ Parameters *parameters = new Parameters; parameters->push(new Parameter(STCin, Type::tvoidptr, Id::p, NULL)); parameters->push(new Parameter(STCin, Type::tvoidptr, Id::q, NULL)); TypeFunction *tf = new TypeFunction(parameters, Type::tbool, 0, LINKd); tf = (TypeFunction *)tf->semantic(0, sc); Identifier *id = Lexer::idPool("__xopEquals"); FuncDeclaration *fop = new FuncDeclaration(0, 0, id, STCstatic, tf); Expression *e = new CallExp(0, new DotIdExp(0, new PtrExp(0, new CastExp(0, new IdentifierExp(0, Id::p), type->pointerTo()->constOf())), Id::eq), new PtrExp(0, new CastExp(0, new IdentifierExp(0, Id::q), type->pointerTo()->constOf()))); fop->fbody = new ReturnStatement(0, e); size_t index = members->dim; members->push(fop); sc = sc->push(); sc->stc = 0; sc->linkage = LINKd; unsigned errors = global.startGagging(); fop->semantic(sc); if (errors == global.gaggedErrors) { fop->semantic2(sc); if (errors == global.gaggedErrors) { fop->semantic3(sc); if (errors == global.gaggedErrors) fop->addMember(sc, this, 1); } } if (global.endGagging(errors)) // if errors happened { members->remove(index); if (!xerreq) { Expression *e = new IdentifierExp(0, Id::empty); e = new DotIdExp(0, e, Id::object); e = new DotIdExp(0, e, Lexer::idPool("_xopEquals")); e = e->semantic(sc); Dsymbol *s = getDsymbol(e); FuncDeclaration *fd = s->isFuncDeclaration(); xerreq = fd; } fop = xerreq; } sc->pop(); return fop; } /******************************************* * Build copy constructor for struct. * Copy constructors are compiler generated only, and are only * callable from the compiler. They are not user accessible. * A copy constructor is: * void cpctpr(ref const S s) const * { * (*cast(S*)&this) = *cast(S*)s; * (*cast(S*)&this).postBlit(); * } * This is done so: * - postBlit() never sees uninitialized data * - memcpy can be much more efficient than memberwise copy * - no fields are overlooked */ FuncDeclaration *StructDeclaration::buildCpCtor(Scope *sc) { //printf("StructDeclaration::buildCpCtor() %s\n", toChars()); FuncDeclaration *fcp = NULL; /* Copy constructor is only necessary if there is a postblit function, * otherwise the code generator will just do a bit copy. */ if (postblit) { //printf("generating cpctor\n"); StorageClass stc = postblit->storage_class & (STCdisable | STCsafe | STCtrusted | STCsystem | STCpure | STCnothrow); if (stc & (STCsafe | STCtrusted)) stc = stc & ~STCsafe | STCtrusted; Parameters *fparams = new Parameters; fparams->push(new Parameter(STCref, type->constOf(), Id::p, NULL)); Type *ftype = new TypeFunction(fparams, Type::tvoid, FALSE, LINKd, stc); ftype->mod = MODconst; fcp = new FuncDeclaration(loc, 0, Id::cpctor, stc, ftype); if (!(fcp->storage_class & STCdisable)) { // Build *this = p; Expression *e = new ThisExp(0); #if !STRUCTTHISREF e = new PtrExp(0, e); #endif AssignExp *ea = new AssignExp(0, new PtrExp(0, new CastExp(0, new AddrExp(0, e), type->mutableOf()->pointerTo())), new PtrExp(0, new CastExp(0, new AddrExp(0, new IdentifierExp(0, Id::p)), type->mutableOf()->pointerTo())) ); ea->op = TOKblit; Statement *s = new ExpStatement(0, ea); // Build postBlit(); e = new ThisExp(0); #if !STRUCTTHISREF e = new PtrExp(0, e); #endif e = new PtrExp(0, new CastExp(0, new AddrExp(0, e), type->mutableOf()->pointerTo())); e = new DotVarExp(0, e, postblit, 0); e = new CallExp(0, e); s = new CompoundStatement(0, s, new ExpStatement(0, e)); fcp->fbody = s; } else fcp->fbody = new ExpStatement(0, (Expression *)NULL); members->push(fcp); sc = sc->push(); sc->stc = 0; sc->linkage = LINKd; fcp->semantic(sc); sc->pop(); } return fcp; } /***************************************** * Create inclusive postblit for struct by aggregating * all the postblits in postblits[] with the postblits for * all the members. * Note the close similarity with AggregateDeclaration::buildDtor(), * and the ordering changes (runs forward instead of backwards). */ #if DMDV2 FuncDeclaration *StructDeclaration::buildPostBlit(Scope *sc) { //printf("StructDeclaration::buildPostBlit() %s\n", toChars()); Expression *e = NULL; StorageClass stc = 0; for (size_t i = 0; i < fields.dim; i++) { Dsymbol *s = fields[i]; VarDeclaration *v = s->isVarDeclaration(); assert(v && v->storage_class & STCfield); if (v->storage_class & STCref) continue; Type *tv = v->type->toBasetype(); dinteger_t dim = 1; while (tv->ty == Tsarray) { TypeSArray *ta = (TypeSArray *)tv; dim *= ((TypeSArray *)tv)->dim->toInteger(); tv = tv->nextOf()->toBasetype(); } if (tv->ty == Tstruct) { TypeStruct *ts = (TypeStruct *)tv; StructDeclaration *sd = ts->sym; if (sd->postblit && dim) { stc |= sd->postblit->storage_class & STCdisable; if (stc & STCdisable) { e = NULL; break; } // this.v Expression *ex = new ThisExp(0); ex = new DotVarExp(0, ex, v, 0); if (v->type->toBasetype()->ty == Tstruct) { // this.v.postblit() ex = new DotVarExp(0, ex, sd->postblit, 0); ex = new CallExp(0, ex); } else { // Typeinfo.postblit(cast(void*)&this.v); Expression *ea = new AddrExp(0, ex); ea = new CastExp(0, ea, Type::tvoid->pointerTo()); Expression *et = v->type->getTypeInfo(sc); et = new DotIdExp(0, et, Id::postblit); ex = new CallExp(0, et, ea); } e = Expression::combine(e, ex); // combine in forward order } } } /* Build our own "postblit" which executes e */ if (e || (stc & STCdisable)) { //printf("Building __fieldPostBlit()\n"); PostBlitDeclaration *dd = new PostBlitDeclaration(loc, 0, stc, Lexer::idPool("__fieldPostBlit")); dd->fbody = new ExpStatement(0, e); postblits.shift(dd); members->push(dd); dd->semantic(sc); } switch (postblits.dim) { case 0: return NULL; case 1: return postblits[0]; default: e = NULL; for (size_t i = 0; i < postblits.dim; i++) { FuncDeclaration *fd = postblits[i]; stc |= fd->storage_class & STCdisable; if (stc & STCdisable) { e = NULL; break; } Expression *ex = new ThisExp(0); ex = new DotVarExp(0, ex, fd, 0); ex = new CallExp(0, ex); e = Expression::combine(e, ex); } PostBlitDeclaration *dd = new PostBlitDeclaration(loc, 0, stc, Lexer::idPool("__aggrPostBlit")); dd->fbody = new ExpStatement(0, e); members->push(dd); dd->semantic(sc); return dd; } } #endif /***************************************** * Create inclusive destructor for struct/class by aggregating * all the destructors in dtors[] with the destructors for * all the members. * Note the close similarity with StructDeclaration::buildPostBlit(), * and the ordering changes (runs backward instead of forwards). */ FuncDeclaration *AggregateDeclaration::buildDtor(Scope *sc) { //printf("AggregateDeclaration::buildDtor() %s\n", toChars()); Expression *e = NULL; #if DMDV2 for (size_t i = 0; i < fields.dim; i++) { Dsymbol *s = fields[i]; VarDeclaration *v = s->isVarDeclaration(); assert(v && v->storage_class & STCfield); if (v->storage_class & STCref) continue; Type *tv = v->type->toBasetype(); dinteger_t dim = 1; while (tv->ty == Tsarray) { TypeSArray *ta = (TypeSArray *)tv; dim *= ((TypeSArray *)tv)->dim->toInteger(); tv = tv->nextOf()->toBasetype(); } if (tv->ty == Tstruct) { TypeStruct *ts = (TypeStruct *)tv; StructDeclaration *sd = ts->sym; if (sd->dtor && dim) { Expression *ex; // this.v ex = new ThisExp(0); ex = new DotVarExp(0, ex, v, 0); if (v->type->toBasetype()->ty == Tstruct) { // this.v.dtor() ex = new DotVarExp(0, ex, sd->dtor, 0); ex = new CallExp(0, ex); } else { // Typeinfo.destroy(cast(void*)&this.v); Expression *ea = new AddrExp(0, ex); ea = new CastExp(0, ea, Type::tvoid->pointerTo()); Expression *et = v->type->getTypeInfo(sc); et = new DotIdExp(0, et, Id::destroy); ex = new CallExp(0, et, ea); } e = Expression::combine(ex, e); // combine in reverse order } } } /* Build our own "destructor" which executes e */ if (e) { //printf("Building __fieldDtor()\n"); DtorDeclaration *dd = new DtorDeclaration(loc, 0, Lexer::idPool("__fieldDtor")); dd->fbody = new ExpStatement(0, e); dtors.shift(dd); members->push(dd); dd->semantic(sc); } #endif switch (dtors.dim) { case 0: return NULL; case 1: return dtors[0]; default: e = NULL; for (size_t i = 0; i < dtors.dim; i++) { FuncDeclaration *fd = dtors[i]; Expression *ex = new ThisExp(0); ex = new DotVarExp(0, ex, fd, 0); ex = new CallExp(0, ex); e = Expression::combine(ex, e); } DtorDeclaration *dd = new DtorDeclaration(loc, 0, Lexer::idPool("__aggrDtor")); dd->fbody = new ExpStatement(0, e); members->push(dd); dd->semantic(sc); return dd; } }