// Compiler implementation of the D programming language // Copyright (c) 1999-2013 by Digital Mars // All Rights Reserved // written by Walter Bright // http://www.digitalmars.com // License for redistribution is by either the Artistic License // in artistic.txt, or the GNU General Public License in gnu.txt. // See the included readme.txt for details. #include #include #include #include #include #if _MSC_VER #include #else #if IN_DMD #include #endif #endif #if _WIN32 && __DMC__ extern "C" const char * __cdecl __locale_decpoint; #endif #include "rmem.h" #include "port.h" #include "root.h" #include "target.h" #include "mtype.h" #include "init.h" #include "expression.h" #include "template.h" #include "utf.h" #include "enum.h" #include "scope.h" #include "statement.h" #include "declaration.h" #include "aggregate.h" #include "import.h" #include "id.h" #include "dsymbol.h" #include "module.h" #include "attrib.h" #include "hdrgen.h" #include "parse.h" #include "doc.h" #if IN_DMD Expression *createTypeInfoArray(Scope *sc, Expression *args[], size_t dim); #endif Expression *expandVar(int result, VarDeclaration *v); void functionToCBuffer2(TypeFunction *t, OutBuffer *buf, HdrGenState *hgs, int mod, const char *kind); #define LOGSEMANTIC 0 /************************************************************* * Given var, we need to get the * right 'this' pointer if var is in an outer class, but our * existing 'this' pointer is in an inner class. * Input: * e1 existing 'this' * ad struct or class we need the correct 'this' for * var the specific member of ad we're accessing */ Expression *getRightThis(Loc loc, Scope *sc, AggregateDeclaration *ad, Expression *e1, Declaration *var) { //printf("\ngetRightThis(e1 = %s, ad = %s, var = %s)\n", e1->toChars(), ad->toChars(), var->toChars()); L1: Type *t = e1->type->toBasetype(); //printf("e1->type = %s, var->type = %s\n", e1->type->toChars(), var->type->toChars()); /* If e1 is not the 'this' pointer for ad */ if (ad && !(t->ty == Tpointer && t->nextOf()->ty == Tstruct && ((TypeStruct *)t->nextOf())->sym == ad) && !(t->ty == Tstruct && ((TypeStruct *)t)->sym == ad) ) { ClassDeclaration *cd = ad->isClassDeclaration(); ClassDeclaration *tcd = t->isClassHandle(); /* e1 is the right this if ad is a base class of e1 */ if (!cd || !tcd || !(tcd == cd || cd->isBaseOf(tcd, NULL)) ) { /* Only classes can be inner classes with an 'outer' * member pointing to the enclosing class instance */ if (tcd && tcd->isNested()) { /* e1 is the 'this' pointer for an inner class: tcd. * Rewrite it as the 'this' pointer for the outer class. */ e1 = new DotVarExp(loc, e1, tcd->vthis); e1->type = tcd->vthis->type; e1->type = e1->type->addMod(t->mod); // Do not call checkNestedRef() //e1 = e1->semantic(sc); // Skip up over nested functions, and get the enclosing // class type. int n = 0; Dsymbol *s; for (s = tcd->toParent(); s && s->isFuncDeclaration(); s = s->toParent()) { FuncDeclaration *f = s->isFuncDeclaration(); if (f->vthis) { //printf("rewriting e1 to %s's this\n", f->toChars()); n++; // LDC seems dmd misses it sometimes here :/ if (f->isMember2()) { f->vthis->nestedrefs.push(sc->parent->isFuncDeclaration()); f->closureVars.push(f->vthis); } e1 = new VarExp(loc, f->vthis); } else { e1->error("need 'this' of type %s to access member %s" " from static function %s", ad->toChars(), var->toChars(), f->toChars()); e1 = new ErrorExp(); return e1; } } if (s && s->isClassDeclaration()) { e1->type = s->isClassDeclaration()->type; e1->type = e1->type->addMod(t->mod); if (n > 1) e1 = e1->semantic(sc); } else e1 = e1->semantic(sc); goto L1; } /* Can't find a path from e1 to ad */ e1->error("this for %s needs to be type %s not type %s", var->toChars(), ad->toChars(), t->toChars()); e1 = new ErrorExp(); } } return e1; } /***************************************** * Determine if 'this' is available. * If it is, return the FuncDeclaration that has it. */ FuncDeclaration *hasThis(Scope *sc) { //printf("hasThis()\n"); Dsymbol *p = sc->parent; while (p && p->isTemplateMixin()) p = p->parent; FuncDeclaration *fdthis = p ? p->isFuncDeclaration() : NULL; //printf("fdthis = %p, '%s'\n", fdthis, fdthis ? fdthis->toChars() : ""); /* Special case for inside template constraint */ if (fdthis && (sc->flags & SCOPEstaticif) && fdthis->parent->isTemplateDeclaration()) { //TemplateDeclaration *td = fdthis->parent->isTemplateDeclaration(); //printf("[%s] td = %s, fdthis->vthis = %p\n", td->loc.toChars(), td->toChars(), fdthis->vthis); return fdthis->vthis ? fdthis : NULL; } // Go upwards until we find the enclosing member function FuncDeclaration *fd = fdthis; while (1) { if (!fd) { goto Lno; } if (!fd->isNested()) break; Dsymbol *parent = fd->parent; while (1) { if (!parent) goto Lno; TemplateInstance *ti = parent->isTemplateInstance(); if (ti) parent = ti->parent; else break; } fd = parent->isFuncDeclaration(); } if (!fd->isThis()) { //printf("test '%s'\n", fd->toChars()); goto Lno; } assert(fd->vthis); return fd; Lno: return NULL; // don't have 'this' available } bool isNeedThisScope(Scope *sc, Declaration *d) { if (sc->intypeof == 1) return false; AggregateDeclaration *ad = d->isThis(); if (!ad) return false; //printf("d = %s, ad = %s\n", d->toChars(), ad->toChars()); for (Dsymbol *s = sc->parent; s; s = s->toParent2()) { //printf("\ts = %s %s, toParent2() = %p\n", s->kind(), s->toChars(), s->toParent2()); if (AggregateDeclaration *ad2 = s->isAggregateDeclaration()) { //printf("\t ad2 = %s\n", ad2->toChars()); if (ad2 == ad) return false; else if (ad2->isNested()) continue; else return true; } if (FuncDeclaration *f = s->isFuncDeclaration()) { if (f->isFuncLiteralDeclaration()) continue; if (f->isMember2()) break; if (TemplateDeclaration *td = f->parent->isTemplateDeclaration()) { if ((td->scope->stc & STCstatic) && td->isMember()) break; // no valid 'this' } } } return true; } Expression *checkRightThis(Scope *sc, Expression *e) { if (e->op == TOKvar && e->type->ty != Terror) { VarExp *ve = (VarExp *)e; if (isNeedThisScope(sc, ve->var)) { //printf("checkRightThis sc->intypeof = %d, ad = %p, func = %p, fdthis = %p\n", // sc->intypeof, sc->getStructClassScope(), func, fdthis); e->error("need 'this' for '%s' of type '%s'", ve->var->toChars(), ve->var->type->toChars()); e = new ErrorExp(); } } return e; } /*************************************** * Pull out any properties. */ Expression *resolvePropertiesX(Scope *sc, Expression *e) { TemplateDeclaration *td; Objects *tiargs; Type *tthis; if (e->op == TOKdotti) { DotTemplateInstanceExp* dti = (DotTemplateInstanceExp *)e; td = dti->getTempdecl(sc); dti->ti->semanticTiargs(sc); tiargs = dti->ti->tiargs; tthis = dti->e1->type; goto L1; } else if (e->op == TOKdottd) { DotTemplateExp *dte = (DotTemplateExp *)e; td = dte->td; tiargs = NULL; tthis = dte->e1->type; goto L1; } else if (e->op == TOKimport) { Dsymbol *s = ((ScopeExp *)e)->sds; td = s->isTemplateDeclaration(); if (td) { tiargs = NULL; tthis = NULL; goto L1; } TemplateInstance *ti = s->isTemplateInstance(); if (ti && !ti->semanticRun) { //assert(ti->needsTypeInference(sc)); td = ti->tempdecl; ti->semanticTiargs(sc); tiargs = ti->tiargs; tthis = NULL; goto L1; } } else if (e->op == TOKtemplate) { td = ((TemplateExp *)e)->td; tiargs = NULL; tthis = NULL; L1: assert(td); unsigned errors = global.startGagging(); FuncDeclaration *fd = resolveFuncCall(e->loc, sc, td, tiargs, tthis, NULL, 1); if (global.endGagging(errors)) fd = NULL; // eat "is not a function template" error if (fd && fd->type) { assert(fd->type->ty == Tfunction); TypeFunction *tf = (TypeFunction *)fd->type; if (!tf->isproperty && global.params.enforcePropertySyntax) { error(e->loc, "not a property %s", e->toChars()); return new ErrorExp(); } e = new CallExp(e->loc, e); e = e->semantic(sc); } goto return_expr; } if (e->type && e->op != TOKtype) // function type is not a property { Type *t = e->type->toBasetype(); if (t->ty == Tfunction || e->op == TOKoverloadset) { if (t->ty == Tfunction && !((TypeFunction *)t)->isproperty && global.params.enforcePropertySyntax) { error(e->loc, "not a property %s", e->toChars()); return new ErrorExp(); } e = new CallExp(e->loc, e); e = e->semantic(sc); } /* Look for e being a lazy parameter; rewrite as delegate call */ else if (e->op == TOKvar) { VarExp *ve = (VarExp *)e; if (ve->var->storage_class & STClazy) { e = new CallExp(e->loc, e); e = e->semantic(sc); } } else if (e->op == TOKdotexp) { e->error("expression has no value"); return new ErrorExp(); } } return_expr: if (!e->type) { error(e->loc, "cannot resolve type for %s", e->toChars()); e->type = new TypeError(); } return e; } Expression *resolveProperties(Scope *sc, Expression *e) { //printf("resolveProperties(%s)\n", e->toChars()); e = resolvePropertiesX(sc, e); e = checkRightThis(sc, e); return e; } /****************************** * Check the tail CallExp is really property function call. */ void checkPropertyCall(Expression *e, Expression *emsg) { while (e->op == TOKcomma) e = ((CommaExp *)e)->e2; if (e->op == TOKcall) { CallExp *ce = (CallExp *)e; TypeFunction *tf; if (ce->f) { tf = (TypeFunction *)ce->f->type; /* If a forward reference to ce->f, try to resolve it */ if (!tf->deco && ce->f->scope) { ce->f->semantic(ce->f->scope); tf = (TypeFunction *)ce->f->type; } } else if (ce->e1->type->ty == Tfunction) tf = (TypeFunction *)ce->e1->type; else if (ce->e1->type->ty == Tdelegate) tf = (TypeFunction *)ce->e1->type->nextOf(); else if (ce->e1->type->ty == Tpointer && ce->e1->type->nextOf()->ty == Tfunction) tf = (TypeFunction *)ce->e1->type->nextOf(); else assert(0); if (!tf->isproperty && global.params.enforcePropertySyntax) ce->e1->error("not a property %s", emsg->toChars()); } } /****************************** * Find symbol in accordance with the UFCS name look up rule */ Expression *searchUFCS(Scope *sc, UnaExp *ue, Identifier *ident) { Loc loc = ue->loc; Dsymbol *s = NULL; for (Scope *scx = sc; scx; scx = scx->enclosing) { if (!scx->scopesym) continue; s = scx->scopesym->search(loc, ident, 0); if (s) { // overload set contains only module scope symbols. if (s->isOverloadSet()) break; // selective/renamed imports also be picked up if (AliasDeclaration *ad = s->isAliasDeclaration()) { if (ad->import) break; } // See only module scope symbols for UFCS target. Dsymbol *p = s->toParent2(); if (p && p->isModule()) break; } s = NULL; } if (!s) return ue->e1->type->Type::getProperty(loc, ident, 0); FuncDeclaration *f = s->isFuncDeclaration(); if (f) { TemplateDeclaration *tempdecl = getFuncTemplateDecl(f); if (tempdecl) { if (tempdecl->overroot) tempdecl = tempdecl->overroot; s = tempdecl; } } if (ue->op == TOKdotti) { DotTemplateInstanceExp *dti = (DotTemplateInstanceExp *)ue; TemplateDeclaration *td = s->toAlias()->isTemplateDeclaration(); if (!td) { s->error(loc, "is not a template"); return new ErrorExp(); } if (!dti->ti->semanticTiargs(sc)) return new ErrorExp(); return new ScopeExp(loc, new TemplateInstance(loc, td, dti->ti->tiargs)); } else { return new DsymbolExp(loc, s, 1); } } /****************************** * Pull out callable entity with UFCS. */ Expression *resolveUFCS(Scope *sc, CallExp *ce) { Loc loc = ce->loc; Expression *eleft; Expression *e; if (ce->e1->op == TOKdot) { DotIdExp *die = (DotIdExp *)ce->e1; Identifier *ident = die->ident; Expression *ex = die->semanticX(sc); if (ex != die) { ce->e1 = ex; return NULL; } eleft = die->e1; Type *t = eleft->type->toBasetype(); if (t->ty == Tarray || t->ty == Tsarray || t->ty == Tnull || (t->isTypeBasic() && t->ty != Tvoid)) { /* Built-in types and arrays have no callable properties, so do shortcut. * It is necessary in: e.init() */ } #if 1 else if (t->ty == Taarray) { if (ident == Id::remove) { /* Transform: * aa.remove(arg) into delete aa[arg] */ if (!ce->arguments || ce->arguments->dim != 1) { ce->error("expected key as argument to aa.remove()"); return new ErrorExp(); } if (!eleft->type->isMutable()) { ce->error("cannot remove key from %s associative array %s", MODtoChars(t->mod), eleft->toChars()); return new ErrorExp(); } Expression *key = (*ce->arguments)[0]; key = key->semantic(sc); key = resolveProperties(sc, key); TypeAArray *taa = (TypeAArray *)t; key = key->implicitCastTo(sc, taa->index); if (!key->rvalue()) return new ErrorExp(); return new RemoveExp(loc, eleft, key); } else if (ident == Id::apply || ident == Id::applyReverse) { return NULL; } else { TypeAArray *taa = (TypeAArray *)t; assert(taa->ty == Taarray); StructDeclaration *sd = taa->getImpl(); Dsymbol *s = sd->search(Loc(), ident, 2); if (s) return NULL; } } #endif else { if (Expression *ey = die->semanticY(sc, 1)) { ce->e1 = ey; return NULL; } } e = searchUFCS(sc, die, ident); } else if (ce->e1->op == TOKdotti) { DotTemplateInstanceExp *dti = (DotTemplateInstanceExp *)ce->e1; if (Expression *ey = dti->semanticY(sc, 1)) { ce->e1 = ey; return NULL; } eleft = dti->e1; e = searchUFCS(sc, dti, dti->ti->name); } else return NULL; // Rewrite ce->e1 = e; if (!ce->arguments) ce->arguments = new Expressions(); ce->arguments->shift(eleft); return NULL; } /****************************** * Pull out property with UFCS. */ Expression *resolveUFCSProperties(Scope *sc, Expression *e1, Expression *e2 = NULL) { Loc loc = e1->loc; Expression *eleft; Expression *e; if (e1->op == TOKdot) { DotIdExp *die = (DotIdExp *)e1; eleft = die->e1; e = searchUFCS(sc, die, die->ident); } else if (e1->op == TOKdotti) { DotTemplateInstanceExp *dti; dti = (DotTemplateInstanceExp *)e1; eleft = dti->e1; e = searchUFCS(sc, dti, dti->ti->name); } else return NULL; // Rewrite if (e2) { // run semantic without gagging e2 = e2->semantic(sc); /* f(e1) = e2 */ Expression *ex = e->copy(); Expressions *a1 = new Expressions(); a1->setDim(1); (*a1)[0] = eleft; ex = new CallExp(loc, ex, a1); ex = ex->trySemantic(sc); /* f(e1, e2) */ Expressions *a2 = new Expressions(); a2->setDim(2); (*a2)[0] = eleft; (*a2)[1] = e2; e = new CallExp(loc, e, a2); if (ex) { // if fallback setter exists, gag errors e = e->trySemantic(sc); if (!e) { checkPropertyCall(ex, e1); ex = new AssignExp(loc, ex, e2); return ex->semantic(sc); } } else { // strict setter prints errors if fails e = e->semantic(sc); } checkPropertyCall(e, e1); return e; } else { /* f(e1) */ Expressions *arguments = new Expressions(); arguments->setDim(1); (*arguments)[0] = eleft; e = new CallExp(loc, e, arguments); e = e->semantic(sc); checkPropertyCall(e, e1); return e->semantic(sc); } } /****************************** * Perform semantic() on an array of Expressions. */ Expressions *arrayExpressionSemantic(Expressions *exps, Scope *sc) { if (exps) { for (size_t i = 0; i < exps->dim; i++) { Expression *e = (*exps)[i]; if (e) { e = e->semantic(sc); (*exps)[i] = e; } } } return exps; } /****************************** * Perform canThrow() on an array of Expressions. */ #if DMDV2 int arrayExpressionCanThrow(Expressions *exps, bool mustNotThrow) { if (exps) { for (size_t i = 0; i < exps->dim; i++) { Expression *e = (*exps)[i]; if (e && e->canThrow(mustNotThrow)) return 1; } } return 0; } #endif /**************************************** * Expand tuples. */ void expandTuples(Expressions *exps) { //printf("expandTuples()\n"); if (exps) { for (size_t i = 0; i < exps->dim; i++) { Expression *arg = (*exps)[i]; if (!arg) continue; // Look for tuple with 0 members if (arg->op == TOKtype) { TypeExp *e = (TypeExp *)arg; if (e->type->toBasetype()->ty == Ttuple) { TypeTuple *tt = (TypeTuple *)e->type->toBasetype(); if (!tt->arguments || tt->arguments->dim == 0) { exps->remove(i); if (i == exps->dim) return; i--; continue; } } } // Inline expand all the tuples while (arg->op == TOKtuple) { TupleExp *te = (TupleExp *)arg; exps->remove(i); // remove arg exps->insert(i, te->exps); // replace with tuple contents if (i == exps->dim) return; // empty tuple, no more arguments (*exps)[i] = Expression::combine(te->e0, (*exps)[i]); arg = (*exps)[i]; } } } } /**************************************** * Expand alias this tuples. */ TupleDeclaration *isAliasThisTuple(Expression *e) { if (e->type) { Type *t = e->type->toBasetype(); AggregateDeclaration *ad; if (t->ty == Tstruct) { ad = ((TypeStruct *)t)->sym; goto L1; } else if (t->ty == Tclass) { ad = ((TypeClass *)t)->sym; L1: Dsymbol *s = ad->aliasthis; if (s && s->isVarDeclaration()) { TupleDeclaration *td = s->isVarDeclaration()->toAlias()->isTupleDeclaration(); if (td && td->isexp) return td; } } } return NULL; } int expandAliasThisTuples(Expressions *exps, size_t starti) { if (!exps || exps->dim == 0) return -1; for (size_t u = starti; u < exps->dim; u++) { Expression *exp = (*exps)[u]; TupleDeclaration *td = isAliasThisTuple(exp); if (td) { exps->remove(u); for (size_t i = 0; iobjects->dim; ++i) { Expression *e = isExpression((*td->objects)[i]); assert(e); assert(e->op == TOKdsymbol); DsymbolExp *se = (DsymbolExp *)e; Declaration *d = se->s->isDeclaration(); assert(d); e = new DotVarExp(exp->loc, exp, d); assert(d->type); e->type = d->type; exps->insert(u + i, e); } #if 0 printf("expansion ->\n"); for (size_t i = 0; idim; ++i) { Expression *e = (*exps)[i]; printf("\texps[%d] e = %s %s\n", i, Token::tochars[e->op], e->toChars()); } #endif return (int)u; } } return -1; } Expressions *arrayExpressionToCommonType(Scope *sc, Expressions *exps, Type **pt) { #if DMDV1 /* The first element sets the type */ Type *t0 = NULL; for (size_t i = 0; i < exps->dim; i++) { Expression *e = (*exps)[i]; if (!e->type) { error("%s has no value", e->toChars()); e = new ErrorExp(); } e = resolveProperties(sc, e); if (!t0) t0 = e->type; else e = e->implicitCastTo(sc, t0); (*exps)[i] = e; } if (!t0) t0 = Type::tvoid; if (pt) *pt = t0; // Eventually, we want to make this copy-on-write return exps; #endif #if DMDV2 /* The type is determined by applying ?: to each pair. */ /* Still have a problem with: * ubyte[][] = [ cast(ubyte[])"hello", [1]]; * which works if the array literal is initialized top down with the ubyte[][] * type, but fails with this function doing bottom up typing. */ //printf("arrayExpressionToCommonType()\n"); IntegerExp integerexp(0); CondExp condexp(Loc(), &integerexp, NULL, NULL); Type *t0 = NULL; Expression *e0; size_t j0; for (size_t i = 0; i < exps->dim; i++) { Expression *e = (*exps)[i]; e = resolveProperties(sc, e); if (!e->type) { e->error("%s has no value", e->toChars()); e = new ErrorExp(); } if (Expression *ex = e->isTemp()) e = ex; if (e->isLvalue()) { e = callCpCtor(e->loc, sc, e, 1); } else { Type *tb = e->type->toBasetype(); if (tb->ty == Tsarray) { e = callCpCtor(e->loc, sc, e, 1); } else if (tb->ty == Tstruct) { if (e->op == TOKcall && !e->isLvalue()) { valueNoDtor(e); } else { /* Not transferring it, so call the copy constructor */ e = callCpCtor(e->loc, sc, e, 1); } } } if (t0) { if (t0 != e->type) { /* This applies ?: to merge the types. It's backwards; * ?: should call this function to merge types. */ condexp.type = NULL; condexp.e1 = e0; condexp.e2 = e; condexp.loc = e->loc; condexp.semantic(sc); (*exps)[j0] = condexp.e1; e = condexp.e2; j0 = i; e0 = e; t0 = e0->type; } } else { j0 = i; e0 = e; t0 = e->type; } (*exps)[i] = e; } if (t0) { for (size_t i = 0; i < exps->dim; i++) { Expression *e = (*exps)[i]; e = e->implicitCastTo(sc, t0); (*exps)[i] = e; } } else t0 = Type::tvoid; // [] is typed as void[] if (pt) *pt = t0; // Eventually, we want to make this copy-on-write return exps; #endif } /**************************************** * Get TemplateDeclaration enclosing FuncDeclaration. */ TemplateDeclaration *getFuncTemplateDecl(Dsymbol *s) { FuncDeclaration *f = s->isFuncDeclaration(); if (f && f->parent) { TemplateInstance *ti = f->parent->isTemplateInstance(); if (ti && !ti->isTemplateMixin() && (ti->name == f->ident || ti->toAlias()->ident == f->ident) && ti->tempdecl && ti->tempdecl->onemember) { return ti->tempdecl; } } return NULL; } /**************************************** * Preprocess arguments to function. */ void preFunctionParameters(Loc loc, Scope *sc, Expressions *exps) { if (exps) { expandTuples(exps); for (size_t i = 0; i < exps->dim; i++) { Expression *arg = (*exps)[i]; arg = resolveProperties(sc, arg); (*exps)[i] = arg; if (arg->op == TOKtype) arg->error("%s is not an expression", arg->toChars()); //arg->rvalue(); } } } /************************************************ * If we want the value of this expression, but do not want to call * the destructor on it. */ void valueNoDtor(Expression *e) { if (e->op == TOKcall) { /* The struct value returned from the function is transferred * so do not call the destructor on it. * Recognize: * ((S _ctmp = S.init), _ctmp).this(...) * and make sure the destructor is not called on _ctmp * BUG: if e is a CommaExp, we should go down the right side. */ CallExp *ce = (CallExp *)e; if (ce->e1->op == TOKdotvar) { DotVarExp *dve = (DotVarExp *)ce->e1; if (dve->var->isCtorDeclaration()) { // It's a constructor call if (dve->e1->op == TOKcomma) { CommaExp *comma = (CommaExp *)dve->e1; if (comma->e2->op == TOKvar) { VarExp *ve = (VarExp *)comma->e2; VarDeclaration *ctmp = ve->var->isVarDeclaration(); if (ctmp) ctmp->noscope = 1; } } } } } } /******************************************** * Determine if t is an array of structs that need a default construction. */ #if DMDV2 bool checkDefCtor(Loc loc, Type *t) { t = t->toBasetype(); while (t->ty == Tsarray) t = t->nextOf()->toBasetype(); if (t->ty == Tstruct) { StructDeclaration *sd = ((TypeStruct *)t)->sym; if (sd->noDefaultCtor) { sd->error(loc, "default construction is disabled"); return true; } } return false; } #endif /******************************************** * Determine if t is an array of structs that need a postblit. */ #if DMDV2 bool checkPostblit(Loc loc, Type *t) { t = t->toBasetype(); while (t->ty == Tsarray) t = t->nextOf()->toBasetype(); if (t->ty == Tstruct) { StructDeclaration *sd = ((TypeStruct *)t)->sym; if (sd->postblit) { if (sd->postblit->storage_class & STCdisable) sd->error(loc, "is not copyable because it is annotated with @disable"); return true; } } return false; } #endif /********************************************* * Call copy constructor for struct value argument. */ #if DMDV2 Expression *callCpCtor(Loc loc, Scope *sc, Expression *e, int noscope) { if (e->op == TOKarrayliteral) { ArrayLiteralExp *ae = (ArrayLiteralExp *)e; for (size_t i = 0; i < ae->elements->dim; i++) { ae->elements->tdata()[i] = callCpCtor(loc, sc, ae->elements->tdata()[i], noscope); } e = ae->semantic(sc); return e; } Type *tb = e->type->toBasetype(); Type *tv = tb; while (tv->ty == Tsarray) tv = tv->nextOf()->toBasetype(); if (tv->ty == Tstruct) { StructDeclaration *sd = ((TypeStruct *)tv)->sym; if (sd->cpctor && e->isLvalue()) { /* Create a variable tmp, and replace the argument e with: * (tmp = e),tmp * and let AssignExp() handle the construction. * This is not the most efficent, ideally tmp would be constructed * directly onto the stack. */ Identifier *idtmp = Lexer::uniqueId("__cpcttmp"); VarDeclaration *tmp = new VarDeclaration(loc, tb, idtmp, new ExpInitializer(Loc(), e)); tmp->storage_class |= STCctfe; tmp->noscope = noscope; Expression *ae = new DeclarationExp(loc, tmp); e = new CommaExp(loc, ae, new VarExp(loc, tmp)); e = e->semantic(sc); } } return e; } #endif /**************************************** * Now that we know the exact type of the function we're calling, * the arguments[] need to be adjusted: * 1. implicitly convert argument to the corresponding parameter type * 2. add default arguments for any missing arguments * 3. do default promotions on arguments corresponding to ... * 4. add hidden _arguments[] argument * 5. call copy constructor for struct value arguments * Input: * fd the function being called, NULL if called indirectly * Returns: * return type from function */ Type *functionParameters(Loc loc, Scope *sc, TypeFunction *tf, Type *tthis, Expressions *arguments, FuncDeclaration *fd) { //printf("functionParameters()\n"); assert(arguments); assert(fd || tf->next); size_t nargs = arguments ? arguments->dim : 0; size_t nparams = Parameter::dim(tf->parameters); if (nargs > nparams && tf->varargs == 0) { error(loc, "expected %llu arguments, not %llu for non-variadic function type %s", (ulonglong)nparams, (ulonglong)nargs, tf->toChars()); return Type::terror; } // If inferring return type, and semantic3() needs to be run if not already run if (!tf->next && fd->inferRetType) { fd->functionSemantic(); } else if (fd && fd->parent) { TemplateInstance *ti = fd->parent->isTemplateInstance(); if (ti && ti->tempdecl) { fd->functionSemantic3(); } } bool isCtorCall = fd && fd->needThis() && fd->isCtorDeclaration(); size_t n = (nargs > nparams) ? nargs : nparams; // n = max(nargs, nparams) unsigned wildmatch = 0; if (tthis && tf->isWild() && !isCtorCall) { Type *t = tthis; if (t->isWild()) wildmatch |= MODwild; else if (t->isConst()) wildmatch |= MODconst; else if (t->isImmutable()) wildmatch |= MODimmutable; else wildmatch |= MODmutable; } int done = 0; for (size_t i = 0; i < n; i++) { Expression *arg; if (i < nargs) arg = (*arguments)[i]; else arg = NULL; if (i < nparams) { Parameter *p = Parameter::getNth(tf->parameters, i); if (!arg) { if (!p->defaultArg || !fd) { if (tf->varargs == 2 && i + 1 == nparams) goto L2; error(loc, "expected %llu function arguments, not %llu", (ulonglong)nparams, (ulonglong)nargs); return Type::terror; } arg = p->defaultArg; arg = arg->inlineCopy(sc); #if DMDV2 // __FILE__, __LINE__, __MODULE__, __FUNCTION__, and __PRETTY_FUNCTION__ arg = arg->resolveLoc(loc, sc); #endif arguments->push(arg); nargs++; } else { Type *pt = p->type; if (tf->varargs == 2 && i + 1 == nparams && pt->nextOf()) pt = pt->nextOf(); arg = arg->inferType(pt); (*arguments)[i] = arg; } if (tf->varargs == 2 && i + 1 == nparams) { //printf("\t\tvarargs == 2, p->type = '%s'\n", p->type->toChars()); MATCH m; if ((m = arg->implicitConvTo(p->type)) != MATCHnomatch) { if (p->type->nextOf() && arg->implicitConvTo(p->type->nextOf()) >= m) goto L2; else if (nargs != nparams) { error(loc, "expected %llu function arguments, not %llu", (ulonglong)nparams, (ulonglong)nargs); return Type::terror; } goto L1; } L2: Type *tb = p->type->toBasetype(); Type *tret = p->isLazyArray(); switch (tb->ty) { case Tsarray: case Tarray: { // Create a static array variable v of type arg->type #ifdef IN_GCC /* GCC 4.0 does not like zero length arrays used like this; pass a null array value instead. Could also just make a one-element array. */ if (nargs - i == 0) { arg = new NullExp(loc); break; } #endif Identifier *id = Lexer::uniqueId("__arrayArg"); Type *t = new TypeSArray(((TypeArray *)tb)->next, new IntegerExp(nargs - i)); t = t->semantic(loc, sc); bool isSafe = fd ? fd->isSafe() : tf->trust == TRUSTsafe; VarDeclaration *v = new VarDeclaration(loc, t, id, (isSafe && sc->func) ? NULL : new VoidInitializer(loc)); v->storage_class |= STCctfe; v->semantic(sc); v->parent = sc->parent; //sc->insert(v); Expression *c = new DeclarationExp(Loc(), v); c->type = v->type; for (size_t u = i; u < nargs; u++) { Expression *a = (*arguments)[u]; TypeArray *ta = (TypeArray *)tb; if (tret && !ta->next->equals(a->type)) { if (tret->toBasetype()->ty == Tvoid || a->implicitConvTo(tret)) { a = a->toDelegate(sc, tret); } } Expression *e = new VarExp(loc, v); e = new IndexExp(loc, e, new IntegerExp(u + 1 - nparams)); ConstructExp *ae = new ConstructExp(loc, e, a); if (c) c = new CommaExp(loc, c, ae); else c = ae; } arg = new VarExp(loc, v); if (c) arg = new CommaExp(loc, c, arg); break; } case Tclass: { /* Set arg to be: * new Tclass(arg0, arg1, ..., argn) */ Expressions *args = new Expressions(); args->setDim(nargs - i); for (size_t u = i; u < nargs; u++) (*args)[u - i] = (*arguments)[u]; arg = new NewExp(loc, NULL, NULL, p->type, args); break; } default: if (!arg) { error(loc, "not enough arguments"); return Type::terror; } break; } arg = arg->semantic(sc); //printf("\targ = '%s'\n", arg->toChars()); arguments->setDim(i + 1); (*arguments)[i] = arg; nargs = i + 1; done = 1; } L1: if (!(p->storageClass & STClazy && p->type->ty == Tvoid)) { unsigned mod = arg->type->wildConvTo(p->type); if (mod) { wildmatch |= mod; } } } if (done) break; } if (wildmatch) { /* Calculate wild matching modifier */ if (wildmatch & MODconst || wildmatch & (wildmatch - 1)) wildmatch = MODconst; else if (wildmatch & MODimmutable) wildmatch = MODimmutable; else if (wildmatch & MODwild) wildmatch = MODwild; else { assert(wildmatch & MODmutable); wildmatch = MODmutable; } } assert(nargs >= nparams); for (size_t i = 0; i < nargs; i++) { Expression *arg = (*arguments)[i]; assert(arg); if (i < nparams) { Parameter *p = Parameter::getNth(tf->parameters, i); if (!(p->storageClass & STClazy && p->type->ty == Tvoid)) { if (p->type->hasWild()) { arg = arg->implicitCastTo(sc, p->type->substWildTo(wildmatch)); arg = arg->optimize(WANTvalue, p->storageClass & STCref); } else if (p->type != arg->type) { //printf("arg->type = %s, p->type = %s\n", arg->type->toChars(), p->type->toChars()); if (arg->op == TOKtype) { arg->error("cannot pass type %s as function argument", arg->toChars()); arg = new ErrorExp(); goto L3; } else arg = arg->implicitCastTo(sc, p->type); arg = arg->optimize(WANTvalue, p->storageClass & STCref); } } if (p->storageClass & STCref) { arg = arg->toLvalue(sc, arg); } else if (p->storageClass & STCout) { Type *t = arg->type; if (!t->isMutable() || !t->isAssignable()) // check blit assignable arg->error("cannot modify struct %s with immutable members", arg->toChars()); else checkDefCtor(arg->loc, t); arg = arg->toLvalue(sc, arg); } else if (p->storageClass & STClazy) { // Convert lazy argument to a delegate arg = arg->toDelegate(sc, p->type); } else { if (Expression *e = arg->isTemp()) arg = e; Type *tb = arg->type->toBasetype(); if (tb->ty == Tsarray) { // call copy constructor of each element arg = callCpCtor(loc, sc, arg, 1); } #if DMDV2 else if (tb->ty == Tstruct) { if (arg->op == TOKcall && !arg->isLvalue()) { /* The struct value returned from the function is transferred * to the function, so the callee should not call the destructor * on it. */ valueNoDtor(arg); } else { /* Not transferring it, so call the copy constructor */ arg = callCpCtor(loc, sc, arg, 1); } } #endif } //printf("arg: %s\n", arg->toChars()); //printf("type: %s\n", arg->type->toChars()); #if DMDV2 /* Look for arguments that cannot 'escape' from the called * function. */ if (!tf->parameterEscapes(p)) { Expression *a = arg; if (a->op == TOKcast) a = ((CastExp *)a)->e1; /* Function literals can only appear once, so if this * appearance was scoped, there cannot be any others. */ if (a->op == TOKfunction) { FuncExp *fe = (FuncExp *)a; fe->fd->tookAddressOf = 0; } /* For passing a delegate to a scoped parameter, * this doesn't count as taking the address of it. * We only worry about 'escaping' references to the function. */ else if (a->op == TOKdelegate) { DelegateExp *de = (DelegateExp *)a; if (de->e1->op == TOKvar) { VarExp *ve = (VarExp *)de->e1; FuncDeclaration *f = ve->var->isFuncDeclaration(); if (f) { f->tookAddressOf--; //printf("tookAddressOf = %d\n", f->tookAddressOf); } } } } #endif arg = arg->optimize(WANTvalue, (p->storageClass & (STCref | STCout)) != 0); } else { // If not D linkage, do promotions // LDC: don't do promotions on intrinsics if (tf->linkage != LINKd && tf->linkage != LINKintrinsic) { // Promote bytes, words, etc., to ints arg = arg->integralPromotions(sc); // Promote floats to doubles switch (arg->type->ty) { case Tfloat32: arg = arg->castTo(sc, Type::tfloat64); break; case Timaginary32: arg = arg->castTo(sc, Type::timaginary64); break; } } // Do not allow types that need destructors if (arg->type->needsDestruction()) { arg->error("cannot pass types that need destruction as variadic arguments"); arg = new ErrorExp(); } // Convert static arrays to dynamic arrays // BUG: I don't think this is right for D2 Type *tb = arg->type->toBasetype(); if (tb->ty == Tsarray) { TypeSArray *ts = (TypeSArray *)tb; Type *ta = ts->next->arrayOf(); if (ts->size(arg->loc) == 0) arg = new NullExp(arg->loc, ta); else arg = arg->castTo(sc, ta); } #if DMDV2 if (tb->ty == Tstruct) { arg = callCpCtor(loc, sc, arg, 1); } #endif // Give error for overloaded function addresses if (arg->op == TOKsymoff) { SymOffExp *se = (SymOffExp *)arg; if ( #if DMDV2 se->hasOverloads && #endif !se->var->isFuncDeclaration()->isUnique()) { arg->error("function %s is overloaded", arg->toChars()); arg = new ErrorExp(); } } arg->rvalue(); arg = arg->optimize(WANTvalue); } L3: (*arguments)[i] = arg; } #if !IN_LLVM // If D linkage and variadic, add _arguments[] as first argument if (tf->linkage == LINKd && tf->varargs == 1) { assert(arguments->dim >= nparams); Expression *e = createTypeInfoArray(sc, (Expression **)&arguments->tdata()[nparams], arguments->dim - nparams); arguments->insert(0, e); } #endif Type *tret = tf->next; if (isCtorCall) { //printf("[%s] fd = %s %s, %d %d %d\n", loc.toChars(), fd->toChars(), fd->type->toChars(), // wildmatch, tf->isWild(), fd->isolateReturn()); if (!tthis) { assert(sc->intypeof || global.errors); tthis = fd->isThis()->type->addMod(fd->type->mod); } if (tf->isWild() && !fd->isolateReturn()) { if (wildmatch) tret = tret->substWildTo(wildmatch); if (!tret->implicitConvTo(tthis)) { const char* s1 = tret ->isNaked() ? " mutable" : tret ->modToChars(); const char* s2 = tthis->isNaked() ? " mutable" : tthis->modToChars(); ::error(loc, "inout constructor %s creates%s object, not%s", fd->toPrettyChars(), s1, s2); } } tret = tthis; } else if (wildmatch) { /* Adjust function return type based on wildmatch */ //printf("wildmatch = x%x, tret = %s\n", wildmatch, tret->toChars()); tret = tret->substWildTo(wildmatch); } return tret; } /************************************************** * Write expression out to buf, but wrap it * in ( ) if its precedence is less than pr. */ void expToCBuffer(OutBuffer *buf, HdrGenState *hgs, Expression *e, enum PREC pr) { #if !IN_LLVM #ifdef DEBUG if (precedence[e->op] == PREC_zero) printf("precedence not defined for token '%s'\n",Token::tochars[e->op]); #endif assert(precedence[e->op] != PREC_zero); assert(pr != PREC_zero); #endif //if (precedence[e->op] == 0) e->dump(0); if (precedence[e->op] < pr || /* Despite precedence, we don't allow aop] == pr)) { buf->writeByte('('); e->toCBuffer(buf, hgs); buf->writeByte(')'); } else e->toCBuffer(buf, hgs); } /************************************************** * Write out argument list to buf. */ void argsToCBuffer(OutBuffer *buf, Expressions *expressions, HdrGenState *hgs) { if (expressions) { for (size_t i = 0; i < expressions->dim; i++) { Expression *e = (*expressions)[i]; if (i) buf->writestring(", "); if (e) expToCBuffer(buf, hgs, e, PREC_assign); } } } /************************************************** * Write out argument types to buf. */ void argExpTypesToCBuffer(OutBuffer *buf, Expressions *arguments, HdrGenState *hgs) { if (arguments) { OutBuffer argbuf; for (size_t i = 0; i < arguments->dim; i++) { Expression *e = (*arguments)[i]; if (i) buf->writestring(", "); argbuf.reset(); e->type->toCBuffer2(&argbuf, hgs, 0); buf->write(&argbuf); } } } /******************************** Expression **************************/ Expression::Expression(Loc loc, enum TOK op, int size) { //printf("Expression::Expression(op = %d) this = %p\n", op, this); this->loc = loc; this->op = op; this->size = size; this->parens = 0; type = NULL; #if IN_LLVM cachedLvalue = NULL; #endif } Expression *EXP_CANT_INTERPRET; Expression *EXP_CONTINUE_INTERPRET; Expression *EXP_BREAK_INTERPRET; Expression *EXP_GOTO_INTERPRET; Expression *EXP_VOID_INTERPRET; void Expression::init() { EXP_CANT_INTERPRET = new ErrorExp(); EXP_CONTINUE_INTERPRET = new ErrorExp(); EXP_BREAK_INTERPRET = new ErrorExp(); EXP_GOTO_INTERPRET = new ErrorExp(); EXP_VOID_INTERPRET = new ErrorExp(); } Expression *Expression::syntaxCopy() { //printf("Expression::syntaxCopy()\n"); //dump(0); return copy(); } /********************************* * Does *not* do a deep copy. */ Expression *Expression::copy() { Expression *e; if (!size) { #ifdef DEBUG fprintf(stderr, "No expression copy for: %s\n", toChars()); printf("op = %d\n", op); dump(0); #endif assert(0); } e = (Expression *)mem.malloc(size); //printf("Expression::copy(op = %d) e = %p\n", op, e); return (Expression *)memcpy(e, this, size); } /************************** * Semantically analyze Expression. * Determine types, fold constants, etc. */ Expression *Expression::semantic(Scope *sc) { #if LOGSEMANTIC printf("Expression::semantic() %s\n", toChars()); #endif if (type) type = type->semantic(loc, sc); else type = Type::tvoid; return this; } /********************************** * Try to run semantic routines. * If they fail, return NULL. */ Expression *Expression::trySemantic(Scope *sc) { //printf("+trySemantic(%s)\n", toChars()); unsigned errors = global.startGagging(); Expression *e = semantic(sc); if (global.endGagging(errors)) { e = NULL; } //printf("-trySemantic(%s)\n", toChars()); return e; } /********************************** * Shortcut to run semantic with purity and * safety checking disabled for the immediate * expressions */ Expression *Expression::ctfeSemantic(Scope *sc) { if (sc) { assert(sc->needctfe >= 0); sc->needctfe++; Expression *e = semantic(sc); sc->needctfe--; assert(sc->needctfe >= 0); return e; } else { return semantic(sc); } } void Expression::print() { fprintf(stderr, "%s\n", toChars()); fflush(stderr); } char *Expression::toChars() { HdrGenState hgs; memset(&hgs, 0, sizeof(hgs)); OutBuffer buf; toCBuffer(&buf, &hgs); buf.writeByte(0); char *p = (char *)buf.data; buf.data = NULL; return p; } void Expression::error(const char *format, ...) { if (type != Type::terror) { va_list ap; va_start(ap, format); ::verror(loc, format, ap); va_end( ap ); } } void Expression::warning(const char *format, ...) { if (type != Type::terror) { va_list ap; va_start(ap, format); ::vwarning(loc, format, ap); va_end( ap ); } } void Expression::deprecation(const char *format, ...) { if (type != Type::terror) { va_list ap; va_start(ap, format); ::vdeprecation(loc, format, ap); va_end( ap ); } } int Expression::rvalue() { if (type && type->toBasetype()->ty == Tvoid) { error("expression %s is void and has no value", toChars()); #if 0 dump(0); halt(); #endif if (!global.gag) type = Type::terror; return 0; } return 1; } Expression *Expression::combine(Expression *e1, Expression *e2) { if (e1) { if (e2) { e1 = new CommaExp(e1->loc, e1, e2); e1->type = e2->type; } } else e1 = e2; return e1; } dinteger_t Expression::toInteger() { //printf("Expression %s\n", Token::toChars(op)); error("Integer constant expression expected instead of %s", toChars()); return 0; } uinteger_t Expression::toUInteger() { //printf("Expression %s\n", Token::toChars(op)); return (uinteger_t)toInteger(); } real_t Expression::toReal() { error("Floating point constant expression expected instead of %s", toChars()); return ldouble(0); } real_t Expression::toImaginary() { error("Floating point constant expression expected instead of %s", toChars()); return ldouble(0); } complex_t Expression::toComplex() { error("Floating point constant expression expected instead of %s", toChars()); #ifdef IN_GCC return complex_t(real_t(0)); // %% nicer #else return 0.0; #endif } StringExp *Expression::toString() { return NULL; } void Expression::toCBuffer(OutBuffer *buf, HdrGenState *hgs) { buf->writestring(Token::toChars(op)); } void Expression::toMangleBuffer(OutBuffer *buf) { error("expression %s is not a valid template value argument", toChars()); } /*************************************** * Return !=0 if expression is an lvalue. */ int Expression::isLvalue() { return 0; } /******************************* * Give error if we're not an lvalue. * If we can, convert expression to be an lvalue. */ Expression *Expression::toLvalue(Scope *sc, Expression *e) { if (!e) e = this; else if (!loc.filename) loc = e->loc; error("%s is not an lvalue", e->toChars()); return new ErrorExp(); } /*************************************** * Parameters: * sc: scope * flag: 1: do not issue error message for invalid modification * Returns: * 0: is not modifiable * 1: is modifiable in default == being related to type->isMutable() * 2: is modifiable, because this is a part of initializing. */ int Expression::checkModifiable(Scope *sc, int flag) { return type ? 1 : 0; // default modifiable } Expression *Expression::modifiableLvalue(Scope *sc, Expression *e) { //printf("Expression::modifiableLvalue() %s, type = %s\n", toChars(), type->toChars()); // See if this expression is a modifiable lvalue (i.e. not const) if (checkModifiable(sc) == 1) { assert(type); if (type->isMutable()) { if (!type->isAssignable()) error("cannot modify struct %s %s with immutable members", toChars(), type->toChars()); } else { Declaration *var = NULL; if (op == TOKvar) var = ((VarExp *)this)->var; else if (op == TOKdotvar) var = ((DotVarExp *)this)->var; if (var && var->storage_class & STCctorinit) { const char *p = var->isStatic() ? "static " : ""; error("can only initialize %sconst member %s inside %sconstructor", p, var->toChars(), p); } else { error("cannot modify %s expression %s", MODtoChars(type->mod), toChars()); } } } return toLvalue(sc, e); } /************************************ * Detect cases where pointers to the stack can 'escape' the * lifetime of the stack frame. */ void Expression::checkEscape() { } void Expression::checkEscapeRef() { } void Expression::checkScalar() { if (!type->isscalar() && type->toBasetype() != Type::terror) error("'%s' is not a scalar, it is a %s", toChars(), type->toChars()); rvalue(); } void Expression::checkNoBool() { if (type->toBasetype()->ty == Tbool) error("operation not allowed on bool '%s'", toChars()); } Expression *Expression::checkIntegral() { if (!type->isintegral()) { if (type->toBasetype() != Type::terror) error("'%s' is not of integral type, it is a %s", toChars(), type->toChars()); return new ErrorExp(); } if (!rvalue()) return new ErrorExp(); return this; } Expression *Expression::checkArithmetic() { if (!type->isintegral() && !type->isfloating()) { if (type->toBasetype() != Type::terror) error("'%s' is not of arithmetic type, it is a %s", toChars(), type->toChars()); return new ErrorExp(); } if (!rvalue()) return new ErrorExp(); return this; } void Expression::checkDeprecated(Scope *sc, Dsymbol *s) { s->checkDeprecated(loc, sc); } #if DMDV2 /********************************************* * Calling function f. * Check the purity, i.e. if we're in a pure function * we can only call other pure functions. */ void Expression::checkPurity(Scope *sc, FuncDeclaration *f) { #if 1 if (sc->func && !sc->intypeof && !(sc->flags & SCOPEdebug)) { /* Given: * void f() * { pure void g() * { * void h() * { * void i() { } * } * } * } * g() can call h() but not f() * i() can call h() and g() but not f() */ // Find the closest pure parent of the calling function FuncDeclaration *outerfunc = sc->func; while ( outerfunc->toParent2() && !outerfunc->isPureBypassingInference() && outerfunc->toParent2()->isFuncDeclaration()) { outerfunc = outerfunc->toParent2()->isFuncDeclaration(); } // Find the closest pure parent of the called function if (getFuncTemplateDecl(f) && f->parent->isTemplateInstance()->enclosing == NULL) { // The closest pure parent of instantiated non-nested template function is // always itself. if (!f->isPure() && outerfunc->setImpure()) error("pure function '%s' cannot call impure function '%s'", outerfunc->toChars(), f->toChars()); return; } FuncDeclaration *calledparent = f; while ( calledparent->toParent2() && !calledparent->isPureBypassingInference() && calledparent->toParent2()->isFuncDeclaration()) { calledparent = calledparent->toParent2()->isFuncDeclaration(); } /* Both escape!allocator and escapeImpl!allocator are impure at [a], * but they are nested template function that instantiated in test(). * Then calling them from [a] doesn't break purity. * It's similar to normal impure nested function inside pure function. * * auto escapeImpl(alias fun)() { * return fun(); * } * auto escape(alias fun)() { * return escape!fun(); * } * pure string test() { * char[] allocator() { return new char[1]; } // impure * return escape!allocator(); // [a] * } */ if (getFuncTemplateDecl(outerfunc) && outerfunc->toParent2() == calledparent && f != calledparent) { return; } // If the caller has a pure parent, then either the called func must be pure, // OR, they must have the same pure parent. if (/*outerfunc->isPure() &&*/ // comment out because we deduce purity now !f->isPure() && calledparent != outerfunc && !sc->needctfe) { if (outerfunc->setImpure()) error("pure function '%s' cannot call impure function '%s'", outerfunc->toPrettyChars(), f->toPrettyChars()); } } #else if (sc->func && sc->func->isPure() && !sc->intypeof && !f->isPure()) error("pure function '%s' cannot call impure function '%s'", sc->func->toPrettyChars(), f->toPrettyChars()); #endif } /******************************************* * Accessing variable v. * Check for purity and safety violations. * If ethis is not NULL, then ethis is the 'this' pointer as in ethis.v */ void Expression::checkPurity(Scope *sc, VarDeclaration *v, Expression *ethis) { /* Look for purity and safety violations when accessing variable v * from current function. */ if (sc->func && !sc->intypeof && // allow violations inside typeof(expression) !(sc->flags & SCOPEdebug) && // allow violations inside debug conditionals v->ident != Id::ctfe && // magic variable never violates pure and safe !v->isImmutable() && // always safe and pure to access immutables... !(v->isConst() && !v->isRef() && (v->isDataseg() || v->isParameter()) && v->type->implicitConvTo(v->type->invariantOf())) && // or const global/parameter values which have no mutable indirections !(v->storage_class & STCmanifest) // ...or manifest constants ) { if (v->isDataseg()) { /* Accessing global mutable state. * Therefore, this function and all its immediately enclosing * functions must be pure. */ bool msg = FALSE; for (Dsymbol *s = sc->func; s; s = s->toParent2()) { FuncDeclaration *ff = s->isFuncDeclaration(); if (!ff) break; if (ff->setImpure() && !msg) { error("pure function '%s' cannot access mutable static data '%s'", sc->func->toPrettyChars(), v->toChars()); msg = TRUE; // only need the innermost message } } } else { /* Given: * void f() * { int fx; * pure void g() * { int gx; * void h() * { int hx; * void i() { } * } * } * } * i() can modify hx and gx but not fx */ Dsymbol *vparent = v->toParent2(); for (Dsymbol *s = sc->func; s; s = s->toParent2()) { if (s == vparent) break; FuncDeclaration *ff = s->isFuncDeclaration(); if (!ff) break; if (ff->setImpure()) { error("pure nested function '%s' cannot access mutable data '%s'", ff->toChars(), v->toChars()); break; } } } /* Do not allow safe functions to access __gshared data */ if (v->storage_class & STCgshared) { if (sc->func->setUnsafe()) error("safe function '%s' cannot access __gshared data '%s'", sc->func->toChars(), v->toChars()); } } } void Expression::checkSafety(Scope *sc, FuncDeclaration *f) { if (sc->func && !sc->intypeof && !(sc->needctfe) && !f->isSafe() && !f->isTrusted()) { if (sc->func->setUnsafe()) { if (loc.linnum == 0) // e.g. implicitly generated dtor loc = sc->func->loc; error("safe function '%s' cannot call system function '%s'", sc->func->toPrettyChars(), f->toPrettyChars()); } } } #endif /***************************** * Check that expression can be tested for true or false. */ Expression *Expression::checkToBoolean(Scope *sc) { // Default is 'yes' - do nothing #ifdef DEBUG if (!type) dump(0); assert(type); #endif Expression *e = this; Type *t = type; Type *tb = type->toBasetype(); Type *att = NULL; Lagain: // Structs can be converted to bool using opCast(bool)() if (tb->ty == Tstruct) { AggregateDeclaration *ad = ((TypeStruct *)tb)->sym; /* Don't really need to check for opCast first, but by doing so we * get better error messages if it isn't there. */ Dsymbol *fd = search_function(ad, Id::cast); if (fd) { e = new CastExp(loc, e, Type::tbool); e = e->semantic(sc); return e; } // Forward to aliasthis. if (ad->aliasthis && tb != att) { if (!att && tb->checkAliasThisRec()) att = tb; e = resolveAliasThis(sc, e); t = e->type; tb = e->type->toBasetype(); goto Lagain; } } if (!t->checkBoolean()) { if (tb != Type::terror) error("expression %s of type %s does not have a boolean value", toChars(), t->toChars()); return new ErrorExp(); } return e; } /**************************** */ Expression *Expression::checkToPointer() { //printf("Expression::checkToPointer()\n"); Expression *e = this; return e; } /****************************** * Take address of expression. */ Expression *Expression::addressOf(Scope *sc) { Expression *e; Type *t = type; //printf("Expression::addressOf()\n"); e = toLvalue(sc, NULL); e = new AddrExp(loc, e); e->type = t->pointerTo(); return e; } /****************************** * If this is a reference, dereference it. */ Expression *Expression::deref() { //printf("Expression::deref()\n"); // type could be null if forward referencing an 'auto' variable if (type && type->ty == Treference) { Expression *e = new PtrExp(loc, this); e->type = ((TypeReference *)type)->next; return e; } return this; } /******************************** * Does this expression statically evaluate to a boolean TRUE or FALSE? */ int Expression::isBool(int result) { return FALSE; } /******************************** * Does this expression result in either a 1 or a 0? */ int Expression::isBit() { return FALSE; } /**************************************** * Resolve __FILE__, __LINE__, __MODULE__, __FUNCTION__, __PRETTY_FUNCTION__ to loc. */ Expression *Expression::resolveLoc(Loc loc, Scope *sc) { return this; } Expressions *Expression::arraySyntaxCopy(Expressions *exps) { Expressions *a = NULL; if (exps) { a = new Expressions(); a->setDim(exps->dim); for (size_t i = 0; i < a->dim; i++) { Expression *e = (*exps)[i]; if (e) e = e->syntaxCopy(); (*a)[i] = e; } } return a; } /*************************************************** * Recognize expressions of the form: * ((T v = init), v) * where v is a temp. * This is used in optimizing out unnecessary temporary generation. * Returns initializer expression of v if so, NULL if not. */ Expression *Expression::isTemp() { //printf("isTemp() %s\n", toChars()); if (op == TOKcomma) { CommaExp *ec = (CommaExp *)this; if (ec->e1->op == TOKdeclaration && ec->e2->op == TOKvar) { DeclarationExp *de = (DeclarationExp *)ec->e1; VarExp *ve = (VarExp *)ec->e2; if (ve->var == de->declaration && ve->var->storage_class & STCctfe) { VarDeclaration *v = ve->var->isVarDeclaration(); if (v && v->init) { ExpInitializer *ei = v->init->isExpInitializer(); if (ei) { Expression *e = ei->exp; if (e->op == TOKconstruct) { ConstructExp *ce = (ConstructExp *)e; if (ce->e1->op == TOKvar && ((VarExp *)ce->e1)->var == ve->var) e = ce->e2; } return e; } } } } } return NULL; } /************************************************ * Destructors are attached to VarDeclarations. * Hence, if expression returns a temp that needs a destructor, * make sure and create a VarDeclaration for that temp. */ Expression *Expression::addDtorHook(Scope *sc) { return this; } /******************************** IntegerExp **************************/ IntegerExp::IntegerExp(Loc loc, dinteger_t value, Type *type) : Expression(loc, TOKint64, sizeof(IntegerExp)) { //printf("IntegerExp(value = %lld, type = '%s')\n", value, type ? type->toChars() : ""); if (type && !type->isscalar()) { //printf("%s, loc = %d\n", toChars(), loc.linnum); if (type->ty != Terror) error("integral constant must be scalar type, not %s", type->toChars()); type = Type::terror; } this->type = type; this->value = value; } IntegerExp::IntegerExp(dinteger_t value) : Expression(Loc(), TOKint64, sizeof(IntegerExp)) { this->type = Type::tint32; this->value = value; } int IntegerExp::equals(Object *o) { IntegerExp *ne; if (this == o || (((Expression *)o)->op == TOKint64 && ((ne = (IntegerExp *)o), type->toHeadMutable()->equals(ne->type->toHeadMutable())) && value == ne->value)) return 1; return 0; } char *IntegerExp::toChars() { return Expression::toChars(); } dinteger_t IntegerExp::toInteger() { Type *t; t = type; while (t) { switch (t->ty) { case Tbool: value = (value != 0); break; case Tint8: value = (d_int8) value; break; case Tchar: case Tuns8: value = (d_uns8) value; break; case Tint16: value = (d_int16) value; break; case Twchar: case Tuns16: value = (d_uns16) value; break; case Tint32: value = (d_int32) value; break; case Tdchar: case Tuns32: value = (d_uns32) value; break; case Tint64: value = (d_int64) value; break; case Tuns64: value = (d_uns64) value; break; case Tpointer: if (Target::ptrsize == 4) value = (d_uns32) value; else if (Target::ptrsize == 8) value = (d_uns64) value; else assert(0); break; case Tenum: { TypeEnum *te = (TypeEnum *)t; t = te->sym->memtype; continue; } case Ttypedef: { TypeTypedef *tt = (TypeTypedef *)t; t = tt->sym->basetype; continue; } default: /* This can happen if errors, such as * the type is painted on like in fromConstInitializer(). */ if (!global.errors) { printf("e = %p, ty = %d\n", this, type->ty); type->print(); assert(0); } break; } break; } return value; } real_t IntegerExp::toReal() { Type *t; toInteger(); t = type->toBasetype(); if (t->ty == Tuns64) return ldouble((d_uns64)value); else return ldouble((d_int64)value); } real_t IntegerExp::toImaginary() { return ldouble(0); } complex_t IntegerExp::toComplex() { return toReal(); } int IntegerExp::isBool(int result) { int r = toInteger() != 0; return result ? r : !r; } Expression *IntegerExp::semantic(Scope *sc) { if (!type) { // Determine what the type of this number is dinteger_t number = value; if (number & 0x8000000000000000LL) type = Type::tuns64; else if (number & 0xFFFFFFFF80000000LL) type = Type::tint64; else type = Type::tint32; } else { if (!type->deco) type = type->semantic(loc, sc); } return this; } Expression *IntegerExp::toLvalue(Scope *sc, Expression *e) { if (!e) e = this; else if (!loc.filename) loc = e->loc; e->error("constant %s is not an lvalue", e->toChars()); return new ErrorExp(); } void IntegerExp::toCBuffer(OutBuffer *buf, HdrGenState *hgs) { dinteger_t v = toInteger(); if (type) { Type *t = type; L1: switch (t->ty) { case Tenum: { TypeEnum *te = (TypeEnum *)t; buf->printf("cast(%s)", te->sym->toChars()); t = te->sym->memtype; goto L1; } case Ttypedef: { TypeTypedef *tt = (TypeTypedef *)t; buf->printf("cast(%s)", tt->sym->toChars()); t = tt->sym->basetype; goto L1; } case Twchar: // BUG: need to cast(wchar) case Tdchar: // BUG: need to cast(dchar) if ((uinteger_t)v > 0xFF) { buf->printf("'\\U%08x'", (unsigned)v); break; } case Tchar: { unsigned o = buf->offset; if (v == '\'') buf->writestring("'\\''"); else if (isprint(v) && v != '\\') buf->printf("'%c'", (int)v); else buf->printf("'\\x%02x'", (int)v); if (hgs->ddoc) escapeDdocString(buf, o); break; } case Tint8: buf->writestring("cast(byte)"); goto L2; case Tint16: buf->writestring("cast(short)"); goto L2; case Tint32: L2: buf->printf("%d", (int)v); break; case Tuns8: buf->writestring("cast(ubyte)"); goto L3; case Tuns16: buf->writestring("cast(ushort)"); goto L3; case Tuns32: L3: buf->printf("%uu", (unsigned)v); break; case Tint64: buf->printf("%lldL", v); break; case Tuns64: L4: buf->printf("%lluLU", v); break; case Tbool: buf->writestring((char *)(v ? "true" : "false")); break; case Tpointer: buf->writestring("cast("); buf->writestring(t->toChars()); buf->writeByte(')'); if (Target::ptrsize == 4) goto L3; else if (Target::ptrsize == 8) goto L4; else assert(0); default: /* This can happen if errors, such as * the type is painted on like in fromConstInitializer(). */ if (!global.errors) { #ifdef DEBUG t->print(); #endif assert(0); } break; } } else if (v & 0x8000000000000000LL) buf->printf("0x%llx", v); else buf->printf("%lld", v); } void IntegerExp::toMangleBuffer(OutBuffer *buf) { if ((sinteger_t)value < 0) buf->printf("N%lld", -value); else { /* This is an awful hack to maintain backwards compatibility. * There really always should be an 'i' before a number, but * there wasn't in earlier implementations, so to maintain * backwards compatibility it is only done if necessary to disambiguate. * See bugzilla 3029 */ if (buf->offset > 0 && isdigit(buf->data[buf->offset - 1])) buf->writeByte('i'); buf->printf("%lld", value); } } /******************************** ErrorExp **************************/ /* Use this expression for error recovery. * It should behave as a 'sink' to prevent further cascaded error messages. */ ErrorExp::ErrorExp() : IntegerExp(Loc(), 0, Type::terror) { op = TOKerror; } Expression *ErrorExp::toLvalue(Scope *sc, Expression *e) { return this; } void ErrorExp::toCBuffer(OutBuffer *buf, HdrGenState *hgs) { buf->writestring("__error"); } /******************************** RealExp **************************/ RealExp::RealExp(Loc loc, real_t value, Type *type) : Expression(loc, TOKfloat64, sizeof(RealExp)) { //printf("RealExp::RealExp(%Lg)\n", value); this->value = value; this->type = type; } char *RealExp::toChars() { /** sizeof(value)*3 is because each byte of mantissa is max of 256 (3 characters). The string will be "-M.MMMMe-4932". (ie, 8 chars more than mantissa). Plus one for trailing \0. Plus one for rounding. */ char buffer[sizeof(value) * 3 + 8 + 1 + 1]; #ifdef IN_GCC value.format(buffer, sizeof(buffer)); #else ld_sprint(buffer, 'g', value); #endif if (type->isimaginary()) strcat(buffer, "i"); assert(strlen(buffer) < sizeof(buffer) / sizeof(buffer[0])); return mem.strdup(buffer); } dinteger_t RealExp::toInteger() { #ifdef IN_GCC return (sinteger_t) toReal().toInt(); #else return (sinteger_t) toReal(); #endif } uinteger_t RealExp::toUInteger() { #ifdef IN_GCC return (uinteger_t) toReal().toInt(); #else return (uinteger_t) toReal(); #endif } real_t RealExp::toReal() { return type->isreal() ? value : ldouble(0); } real_t RealExp::toImaginary() { return type->isreal() ? ldouble(0) : value; } complex_t RealExp::toComplex() { #ifdef __DMC__ return toReal() + toImaginary() * I; #else return complex_t(toReal(), toImaginary()); #endif } /******************************** * Test to see if two reals are the same. * Regard NaN's as equivalent. * Regard +0 and -0 as different. */ int RealEquals(real_t x1, real_t x2) { return (Port::isNan(x1) && Port::isNan(x2)) || /* In some cases, the REALPAD bytes get garbage in them, * so be sure and ignore them. */ memcmp(&x1, &x2, Target::realsize - Target::realpad) == 0; } int RealExp::equals(Object *o) { RealExp *ne; if (this == o || (((Expression *)o)->op == TOKfloat64 && ((ne = (RealExp *)o), type->toHeadMutable()->equals(ne->type->toHeadMutable())) && RealEquals(value, ne->value) ) ) return 1; return 0; } Expression *RealExp::semantic(Scope *sc) { if (!type) type = Type::tfloat64; else type = type->semantic(loc, sc); return this; } int RealExp::isBool(int result) { #ifdef IN_GCC return result ? (! value.isZero()) : (value.isZero()); #else return result ? (value != 0) : (value == 0); #endif } void floatToBuffer(OutBuffer *buf, Type *type, real_t value) { /* In order to get an exact representation, try converting it * to decimal then back again. If it matches, use it. * If it doesn't, fall back to hex, which is * always exact. * Longest string is for -real.max: * "-1.18973e+4932\0".length == 17 * "-0xf.fffffffffffffffp+16380\0".length == 28 */ char buffer[32]; ld_sprint(buffer, 'g', value); assert(strlen(buffer) < sizeof(buffer) / sizeof(buffer[0])); #if _WIN32 && __DMC__ const char *save = __locale_decpoint; __locale_decpoint = "."; real_t r = strtold(buffer, NULL); __locale_decpoint = save; #else real_t r = Port::strtold(buffer, NULL); #endif #if IN_LLVM if (r == value) // if exact duplication buf->writestring(buffer); else { #ifdef __HAIKU__ // broken printf workaround char buffer2[25]; char *ptr = (char *)&value; for(int i = 0; i < sizeof(value); i++) snprintf(buffer2, sizeof(char), "%x", ptr[i]); buf->writestring(buffer2); #else buf->printf("%La", value); // ensure exact duplication #endif } #else // if IN_DMD if (r != value) // if exact duplication ld_sprint(buffer, 'a', value); buf->writestring(buffer); #endif if (type) { Type *t = type->toBasetype(); switch (t->ty) { case Tfloat32: case Timaginary32: case Tcomplex32: buf->writeByte('F'); break; case Tfloat80: case Timaginary80: case Tcomplex80: buf->writeByte('L'); break; default: break; } if (t->isimaginary()) buf->writeByte('i'); } } void RealExp::toCBuffer(OutBuffer *buf, HdrGenState *hgs) { floatToBuffer(buf, type, value); } void realToMangleBuffer(OutBuffer *buf, real_t value) { /* Rely on %A to get portable mangling. * Must munge result to get only identifier characters. * * Possible values from %A => mangled result * NAN => NAN * -INF => NINF * INF => INF * -0X1.1BC18BA997B95P+79 => N11BC18BA997B95P79 * 0X1.9P+2 => 19P2 */ if (Port::isNan(value)) buf->writestring("NAN"); // no -NAN bugs else { char buffer[36]; int n = ld_sprint(buffer, 'A', value); assert(n > 0 && n < sizeof(buffer) / sizeof(buffer[0])); for (int i = 0; i < n; i++) { char c = buffer[i]; switch (c) { case '-': buf->writeByte('N'); break; case '+': case 'X': case '.': break; case '0': if (i < 2) break; // skip leading 0X default: buf->writeByte(c); break; } } } } void RealExp::toMangleBuffer(OutBuffer *buf) { buf->writeByte('e'); realToMangleBuffer(buf, value); } /******************************** ComplexExp **************************/ ComplexExp::ComplexExp(Loc loc, complex_t value, Type *type) : Expression(loc, TOKcomplex80, sizeof(ComplexExp)) { this->value = value; this->type = type; //printf("ComplexExp::ComplexExp(%s)\n", toChars()); } char *ComplexExp::toChars() { char buffer[sizeof(value) * 3 + 8 + 1]; char buf1[sizeof(value) * 3 + 8 + 1]; char buf2[sizeof(value) * 3 + 8 + 1]; #ifdef IN_GCC creall(value).format(buf1, sizeof(buf1)); cimagl(value).format(buf2, sizeof(buf2)); #else ld_sprint(buf1, 'g', creall(value)); ld_sprint(buf2, 'g', cimagl(value)); #endif sprintf(buffer, "(%s+%si)", buf1, buf2); assert(strlen(buffer) < sizeof(buffer) / sizeof(buffer[0])); return mem.strdup(buffer); } dinteger_t ComplexExp::toInteger() { #ifdef IN_GCC return (sinteger_t) toReal().toInt(); #else return (sinteger_t) toReal(); #endif } uinteger_t ComplexExp::toUInteger() { #ifdef IN_GCC return (uinteger_t) toReal().toInt(); #else return (uinteger_t) toReal(); #endif } real_t ComplexExp::toReal() { return creall(value); } real_t ComplexExp::toImaginary() { return cimagl(value); } complex_t ComplexExp::toComplex() { return value; } int ComplexExp::equals(Object *o) { ComplexExp *ne; if (this == o || (((Expression *)o)->op == TOKcomplex80 && ((ne = (ComplexExp *)o), type->toHeadMutable()->equals(ne->type->toHeadMutable())) && RealEquals(creall(value), creall(ne->value)) && RealEquals(cimagl(value), cimagl(ne->value)) ) ) return 1; return 0; } Expression *ComplexExp::semantic(Scope *sc) { if (!type) type = Type::tcomplex80; else type = type->semantic(loc, sc); return this; } int ComplexExp::isBool(int result) { if (result) return (bool)(value); else return !value; } void ComplexExp::toCBuffer(OutBuffer *buf, HdrGenState *hgs) { /* Print as: * (re+imi) */ #ifdef IN_GCC char buf1[sizeof(value) * 3 + 8 + 1]; char buf2[sizeof(value) * 3 + 8 + 1]; creall(value).format(buf1, sizeof(buf1)); cimagl(value).format(buf2, sizeof(buf2)); buf->printf("(%s+%si)", buf1, buf2); #else buf->writeByte('('); floatToBuffer(buf, type, creall(value)); buf->writeByte('+'); floatToBuffer(buf, type, cimagl(value)); buf->writestring("i)"); #endif } void ComplexExp::toMangleBuffer(OutBuffer *buf) { buf->writeByte('c'); real_t r = toReal(); realToMangleBuffer(buf, r); buf->writeByte('c'); // separate the two r = toImaginary(); realToMangleBuffer(buf, r); } /******************************** IdentifierExp **************************/ IdentifierExp::IdentifierExp(Loc loc, Identifier *ident) : Expression(loc, TOKidentifier, sizeof(IdentifierExp)) { this->ident = ident; } Expression *IdentifierExp::semantic(Scope *sc) { Dsymbol *s; Dsymbol *scopesym; #if LOGSEMANTIC printf("IdentifierExp::semantic('%s')\n", ident->toChars()); #endif s = sc->search(loc, ident, &scopesym); if (s) { Expression *e; if (s->errors) return new ErrorExp(); /* See if the symbol was a member of an enclosing 'with' */ WithScopeSymbol *withsym = scopesym->isWithScopeSymbol(); if (withsym) { #if DMDV2 /* Disallow shadowing */ // First find the scope of the with Scope *scwith = sc; while (scwith->scopesym != scopesym) { scwith = scwith->enclosing; assert(scwith); } // Look at enclosing scopes for symbols with the same name, // in the same function for (Scope *scx = scwith; scx && scx->func == scwith->func; scx = scx->enclosing) { Dsymbol *s2; if (scx->scopesym && scx->scopesym->symtab && (s2 = scx->scopesym->symtab->lookup(s->ident)) != NULL && s != s2) { error("with symbol %s is shadowing local symbol %s", s->toPrettyChars(), s2->toPrettyChars()); return new ErrorExp(); } } #endif s = s->toAlias(); // Same as wthis.ident if (s->needThis() || s->isTemplateDeclaration()) { e = new VarExp(loc, withsym->withstate->wthis); e = new DotIdExp(loc, e, ident); } else { Type *t = withsym->withstate->wthis->type; if (t->ty == Tpointer) t = ((TypePointer *)t)->next; e = typeDotIdExp(loc, t, ident); } } else { /* If f is really a function template, * then replace f with the function template declaration. */ FuncDeclaration *f = s->isFuncDeclaration(); if (f) { TemplateDeclaration *tempdecl = getFuncTemplateDecl(f); if (tempdecl) { if (tempdecl->overroot) // if not start of overloaded list of TemplateDeclaration's tempdecl = tempdecl->overroot; // then get the start e = new TemplateExp(loc, tempdecl, f); e = e->semantic(sc); return e; } } // Haven't done overload resolution yet, so pass 1 e = new DsymbolExp(loc, s, 1); } return e->semantic(sc); } #if DMDV2 if (hasThis(sc)) { AggregateDeclaration *ad = sc->getStructClassScope(); if (ad && ad->aliasthis) { Expression *e; e = new IdentifierExp(loc, Id::This); e = new DotIdExp(loc, e, ad->aliasthis->ident); e = new DotIdExp(loc, e, ident); e = e->trySemantic(sc); if (e) return e; } } if (ident == Id::ctfe) { // Create the magic __ctfe bool variable VarDeclaration *vd = new VarDeclaration(loc, Type::tbool, Id::ctfe, NULL); Expression *e = new VarExp(loc, vd); e = e->semantic(sc); return e; } #endif const char *n = importHint(ident->toChars()); if (n) error("'%s' is not defined, perhaps you need to import %s; ?", ident->toChars(), n); else { s = sc->search_correct(ident); if (s) error("undefined identifier %s, did you mean %s %s?", ident->toChars(), s->kind(), s->toChars()); else error("undefined identifier %s", ident->toChars()); } return new ErrorExp(); } char *IdentifierExp::toChars() { return ident->toChars(); } void IdentifierExp::toCBuffer(OutBuffer *buf, HdrGenState *hgs) { if (hgs->hdrgen) buf->writestring(ident->toHChars2()); else buf->writestring(ident->toChars()); } int IdentifierExp::isLvalue() { return 1; } Expression *IdentifierExp::toLvalue(Scope *sc, Expression *e) { return this; } /******************************** DollarExp **************************/ DollarExp::DollarExp(Loc loc) : IdentifierExp(loc, Id::dollar) { } /******************************** DsymbolExp **************************/ DsymbolExp::DsymbolExp(Loc loc, Dsymbol *s, int hasOverloads) : Expression(loc, TOKdsymbol, sizeof(DsymbolExp)) { this->s = s; this->hasOverloads = hasOverloads; } AggregateDeclaration *isAggregate(Type *t); Expression *DsymbolExp::semantic(Scope *sc) { #if LOGSEMANTIC printf("DsymbolExp::semantic(%s %s)\n", s->kind(), s->toChars()); #endif Lagain: EnumMember *em; Expression *e; VarDeclaration *v; FuncDeclaration *f; FuncLiteralDeclaration *fld; OverloadSet *o; Import *imp; Package *pkg; Type *t; //printf("DsymbolExp:: %p '%s' is a symbol\n", this, toChars()); //printf("s = '%s', s->kind = '%s'\n", s->toChars(), s->kind()); if (!s->isFuncDeclaration()) // functions are checked after overloading checkDeprecated(sc, s); Dsymbol *olds = s; s = s->toAlias(); //printf("s = '%s', s->kind = '%s', s->needThis() = %p\n", s->toChars(), s->kind(), s->needThis()); if (s != olds && !s->isFuncDeclaration()) checkDeprecated(sc, s); // BUG: This should happen after overload resolution for functions, not before if (s->needThis()) { if (hasThis(sc) #if DMDV2 && !s->isFuncDeclaration() #endif ) { // Supply an implicit 'this', as in // this.ident DotVarExp *de; de = new DotVarExp(loc, new ThisExp(loc), s->isDeclaration()); return de->semantic(sc); } } em = s->isEnumMember(); if (em) { e = em->value; if (!e) { em->errors = true; error("forward reference of %s %s", s->kind(), s->toChars()); return new ErrorExp(); } return em->getVarExp(loc, sc); } v = s->isVarDeclaration(); if (v) { //printf("Identifier '%s' is a variable, type '%s'\n", toChars(), v->type->toChars()); if (!type) { if ((!v->type || !v->type->deco) && v->scope) v->semantic(v->scope); type = v->type; if (!v->type) { error("forward reference of %s %s", s->kind(), s->toChars()); return new ErrorExp(); } } if ((v->storage_class & STCmanifest) && v->init) { if (v->scope) { v->inuse++; v->init->semantic(v->scope, v->type, INITinterpret); v->scope = NULL; v->inuse--; } e = v->init->toExpression(v->type); if (!e) { error("cannot make expression out of initializer for %s", v->toChars()); return new ErrorExp(); } e = e->copy(); e->loc = loc; // for better error message e = e->semantic(sc); return e; } e = new VarExp(loc, v); e->type = type; e = e->semantic(sc); return e->deref(); } fld = s->isFuncLiteralDeclaration(); if (fld) { //printf("'%s' is a function literal\n", fld->toChars()); e = new FuncExp(loc, fld); return e->semantic(sc); } f = s->isFuncDeclaration(); if (f) { f = f->toAliasFunc(); if (!f->functionSemantic()) return new ErrorExp(); if (f->isUnitTestDeclaration()) { error("cannot call unittest function %s", toChars()); return new ErrorExp(); } if (!f->type->deco) { error("forward reference to %s", toChars()); return new ErrorExp(); } FuncDeclaration *fd = s->isFuncDeclaration(); fd->type = f->type; return new VarExp(loc, fd, hasOverloads); } o = s->isOverloadSet(); if (o) { //printf("'%s' is an overload set\n", o->toChars()); return new OverExp(loc, o); } imp = s->isImport(); if (imp) { if (!imp->pkg) { error("forward reference of import %s", imp->toChars()); return new ErrorExp(); } ScopeExp *ie = new ScopeExp(loc, imp->pkg); return ie->semantic(sc); } pkg = s->isPackage(); if (pkg) { ScopeExp *ie; ie = new ScopeExp(loc, pkg); return ie->semantic(sc); } Module *mod = s->isModule(); if (mod) { ScopeExp *ie; ie = new ScopeExp(loc, mod); return ie->semantic(sc); } t = s->getType(); if (t) { TypeExp *te = new TypeExp(loc, t); return te->semantic(sc); } TupleDeclaration *tup = s->isTupleDeclaration(); if (tup) { e = new TupleExp(loc, tup); e = e->semantic(sc); return e; } TemplateInstance *ti = s->isTemplateInstance(); if (ti) { if (!ti->semanticRun) ti->semantic(sc); s = ti->toAlias(); if (!s->isTemplateInstance()) goto Lagain; if (ti->errors) return new ErrorExp(); e = new ScopeExp(loc, ti); e = e->semantic(sc); return e; } TemplateDeclaration *td = s->isTemplateDeclaration(); if (td) { Dsymbol *p = td->toParent2(); FuncDeclaration *fdthis = hasThis(sc); AggregateDeclaration *ad = p ? p->isAggregateDeclaration() : NULL; if (fdthis && ad && isAggregate(fdthis->vthis->type) == ad && (td->scope->stc & STCstatic) == 0) { e = new DotTemplateExp(loc, new ThisExp(loc), td); } else e = new TemplateExp(loc, td); e = e->semantic(sc); return e; } error("%s '%s' is not a variable", s->kind(), s->toChars()); return new ErrorExp(); } char *DsymbolExp::toChars() { return s->toChars(); } void DsymbolExp::toCBuffer(OutBuffer *buf, HdrGenState *hgs) { buf->writestring(s->toChars()); } int DsymbolExp::isLvalue() { return 1; } Expression *DsymbolExp::toLvalue(Scope *sc, Expression *e) { return this; } /******************************** ThisExp **************************/ ThisExp::ThisExp(Loc loc) : Expression(loc, TOKthis, sizeof(ThisExp)) { //printf("ThisExp::ThisExp() loc = %d\n", loc.linnum); var = NULL; } Expression *ThisExp::semantic(Scope *sc) { #if LOGSEMANTIC printf("ThisExp::semantic()\n"); #endif if (type && var) { //assert(global.errors || var); #if IN_LLVM var->isVarDeclaration()->checkNestedReference(sc, loc); #endif return this; } FuncDeclaration *fd = hasThis(sc); // fd is the uplevel function with the 'this' variable /* Special case for typeof(this) and typeof(super) since both * should work even if they are not inside a non-static member function */ if (!fd && sc->intypeof == 1) { // Find enclosing struct or class for (Dsymbol *s = sc->getStructClassScope(); 1; s = s->parent) { if (!s) { error("%s is not in a class or struct scope", toChars()); goto Lerr; } ClassDeclaration *cd = s->isClassDeclaration(); if (cd) { type = cd->type; return this; } StructDeclaration *sd = s->isStructDeclaration(); if (sd) { type = sd->type; return this; } } } if (!fd) goto Lerr; assert(fd->vthis); var = fd->vthis; assert(var->parent); if (!type) type = var->type; var->isVarDeclaration()->checkNestedReference(sc, loc); if (!sc->intypeof) sc->callSuper |= CSXthis; return this; Lerr: error("'this' is only defined in non-static member functions, not %s", sc->parent->toChars()); return new ErrorExp(); } int ThisExp::isBool(int result) { return result ? TRUE : FALSE; } void ThisExp::toCBuffer(OutBuffer *buf, HdrGenState *hgs) { buf->writestring("this"); } int ThisExp::isLvalue() { return 1; } Expression *ThisExp::toLvalue(Scope *sc, Expression *e) { return this; } Expression *ThisExp::modifiableLvalue(Scope *sc, Expression *e) { if (type->toBasetype()->ty == Tclass) { error("Cannot modify '%s'", toChars()); return toLvalue(sc, e); } return Expression::modifiableLvalue(sc, e); } /******************************** SuperExp **************************/ SuperExp::SuperExp(Loc loc) : ThisExp(loc) { op = TOKsuper; } Expression *SuperExp::semantic(Scope *sc) { ClassDeclaration *cd; Dsymbol *s; #if LOGSEMANTIC printf("SuperExp::semantic('%s')\n", toChars()); #endif if (type) return this; FuncDeclaration *fd = hasThis(sc); /* Special case for typeof(this) and typeof(super) since both * should work even if they are not inside a non-static member function */ if (!fd && sc->intypeof == 1) { // Find enclosing class for (Dsymbol *s = sc->getStructClassScope(); 1; s = s->parent) { if (!s) { error("%s is not in a class scope", toChars()); goto Lerr; } ClassDeclaration *cd = s->isClassDeclaration(); if (cd) { cd = cd->baseClass; if (!cd) { error("class %s has no 'super'", s->toChars()); goto Lerr; } type = cd->type; return this; } } } if (!fd) goto Lerr; assert(fd->vthis); var = fd->vthis; assert(var->parent); s = fd->toParent(); while (s && s->isTemplateInstance()) s = s->toParent(); if (s->isTemplateDeclaration()) // allow inside template constraint s = s->toParent(); assert(s); cd = s->isClassDeclaration(); //printf("parent is %s %s\n", fd->toParent()->kind(), fd->toParent()->toChars()); if (!cd) goto Lerr; if (!cd->baseClass) { error("no base class for %s", cd->toChars()); type = fd->vthis->type; } else { type = cd->baseClass->type; type = type->castMod(var->type->mod); } var->isVarDeclaration()->checkNestedReference(sc, loc); if (!sc->intypeof) sc->callSuper |= CSXsuper; return this; Lerr: error("'super' is only allowed in non-static class member functions"); return new ErrorExp(); } void SuperExp::toCBuffer(OutBuffer *buf, HdrGenState *hgs) { buf->writestring("super"); } /******************************** NullExp **************************/ NullExp::NullExp(Loc loc, Type *type) : Expression(loc, TOKnull, sizeof(NullExp)) { committed = 0; this->type = type; } int NullExp::equals(Object *o) { if (o && o->dyncast() == DYNCAST_EXPRESSION) { Expression *e = (Expression *)o; if (e->op == TOKnull) return TRUE; } return FALSE; } Expression *NullExp::semantic(Scope *sc) { #if LOGSEMANTIC printf("NullExp::semantic('%s')\n", toChars()); #endif // NULL is the same as (void *)0 if (!type) type = Type::tnull; return this; } int NullExp::isBool(int result) { return result ? FALSE : TRUE; } StringExp *NullExp::toString() { if (implicitConvTo(Type::tstring)) { StringExp *se = new StringExp(loc, (char*)mem.calloc(1, 1), 0); se->type = Type::tstring; return se; } return NULL; } void NullExp::toCBuffer(OutBuffer *buf, HdrGenState *hgs) { buf->writestring("null"); } void NullExp::toMangleBuffer(OutBuffer *buf) { buf->writeByte('n'); } /******************************** StringExp **************************/ StringExp::StringExp(Loc loc, char *string) : Expression(loc, TOKstring, sizeof(StringExp)) { this->string = string; this->len = strlen(string); this->sz = 1; this->committed = 0; this->postfix = 0; this->ownedByCtfe = false; } StringExp::StringExp(Loc loc, void *string, size_t len) : Expression(loc, TOKstring, sizeof(StringExp)) { this->string = string; this->len = len; this->sz = 1; this->committed = 0; this->postfix = 0; this->ownedByCtfe = false; } StringExp::StringExp(Loc loc, void *string, size_t len, unsigned char postfix) : Expression(loc, TOKstring, sizeof(StringExp)) { this->string = string; this->len = len; this->sz = 1; this->committed = 0; this->postfix = postfix; this->ownedByCtfe = false; } #if 0 Expression *StringExp::syntaxCopy() { printf("StringExp::syntaxCopy() %s\n", toChars()); return copy(); } #endif int StringExp::equals(Object *o) { //printf("StringExp::equals('%s') %s\n", o->toChars(), toChars()); if (o && o->dyncast() == DYNCAST_EXPRESSION) { Expression *e = (Expression *)o; if (e->op == TOKstring) { return compare(o) == 0; } } return FALSE; } Expression *StringExp::semantic(Scope *sc) { #if LOGSEMANTIC printf("StringExp::semantic() %s\n", toChars()); #endif if (!type) { OutBuffer buffer; size_t newlen = 0; const char *p; size_t u; unsigned c; switch (postfix) { case 'd': for (u = 0; u < len;) { p = utf_decodeChar((unsigned char *)string, len, &u, &c); if (p) { error("%s", p); return new ErrorExp(); } else { buffer.write4(c); newlen++; } } buffer.write4(0); string = buffer.extractData(); len = newlen; sz = 4; //type = new TypeSArray(Type::tdchar, new IntegerExp(loc, len, Type::tindex)); type = new TypeDArray(Type::tdchar->invariantOf()); committed = 1; break; case 'w': for (u = 0; u < len;) { p = utf_decodeChar((unsigned char *)string, len, &u, &c); if (p) { error("%s", p); return new ErrorExp(); } else { buffer.writeUTF16(c); newlen++; if (c >= 0x10000) newlen++; } } buffer.writeUTF16(0); string = buffer.extractData(); len = newlen; sz = 2; //type = new TypeSArray(Type::twchar, new IntegerExp(loc, len, Type::tindex)); type = new TypeDArray(Type::twchar->invariantOf()); committed = 1; break; case 'c': committed = 1; default: //type = new TypeSArray(Type::tchar, new IntegerExp(loc, len, Type::tindex)); type = new TypeDArray(Type::tchar->invariantOf()); break; } type = type->semantic(loc, sc); //type = type->invariantOf(); //printf("type = %s\n", type->toChars()); } return this; } /********************************** * Return length of string. */ size_t StringExp::length() { size_t result = 0; dchar_t c; const char *p; switch (sz) { case 1: for (size_t u = 0; u < len;) { p = utf_decodeChar((unsigned char *)string, len, &u, &c); if (p) { error("%s", p); return 0; } else result++; } break; case 2: for (size_t u = 0; u < len;) { p = utf_decodeWchar((unsigned short *)string, len, &u, &c); if (p) { error("%s", p); return 0; } else result++; } break; case 4: result = len; break; default: assert(0); } return result; } StringExp *StringExp::toString() { return this; } /**************************************** * Convert string to char[]. */ StringExp *StringExp::toUTF8(Scope *sc) { if (sz != 1) { // Convert to UTF-8 string committed = 0; Expression *e = castTo(sc, Type::tchar->arrayOf()); e = e->optimize(WANTvalue); assert(e->op == TOKstring); StringExp *se = (StringExp *)e; assert(se->sz == 1); return se; } return this; } int StringExp::compare(Object *obj) { //printf("StringExp::compare()\n"); // Used to sort case statement expressions so we can do an efficient lookup StringExp *se2 = (StringExp *)(obj); // This is a kludge so isExpression() in template.c will return 5 // for StringExp's. if (!se2) return 5; assert(se2->op == TOKstring); size_t len1 = len; size_t len2 = se2->len; //printf("sz = %d, len1 = %d, len2 = %d\n", sz, (int)len1, (int)len2); if (len1 == len2) { switch (sz) { case 1: return memcmp((char *)string, (char *)se2->string, len1); case 2: { d_wchar *s1 = (d_wchar *)string; d_wchar *s2 = (d_wchar *)se2->string; for (size_t u = 0; u < len; u++) { if (s1[u] != s2[u]) return s1[u] - s2[u]; } } case 4: { d_dchar *s1 = (d_dchar *)string; d_dchar *s2 = (d_dchar *)se2->string; for (size_t u = 0; u < len; u++) { if (s1[u] != s2[u]) return s1[u] - s2[u]; } } break; default: assert(0); } } return (int)(len1 - len2); } int StringExp::isBool(int result) { return result ? TRUE : FALSE; } int StringExp::isLvalue() { /* string literal is rvalue in default, but * conversion to reference of static array is only allowed. */ return (type && type->toBasetype()->ty == Tsarray); } Expression *StringExp::toLvalue(Scope *sc, Expression *e) { //printf("StringExp::toLvalue(%s) type = %s\n", toChars(), type ? type->toChars() : NULL); return (type && type->toBasetype()->ty == Tsarray) ? this : Expression::toLvalue(sc, e); } Expression *StringExp::modifiableLvalue(Scope *sc, Expression *e) { e->error("Cannot modify '%s'", toChars()); return new ErrorExp(); } unsigned StringExp::charAt(size_t i) { unsigned value; switch (sz) { case 1: value = ((unsigned char *)string)[i]; break; case 2: value = ((unsigned short *)string)[i]; break; case 4: value = ((unsigned int *)string)[i]; break; default: assert(0); break; } return value; } void StringExp::toCBuffer(OutBuffer *buf, HdrGenState *hgs) { buf->writeByte('"'); unsigned o = buf->offset; for (size_t i = 0; i < len; i++) { unsigned c = charAt(i); switch (c) { case '"': case '\\': if (!hgs->console) buf->writeByte('\\'); default: if (c <= 0xFF) { if (c <= 0x7F && (isprint(c) || hgs->console)) buf->writeByte(c); else buf->printf("\\x%02x", c); } else if (c <= 0xFFFF) buf->printf("\\x%02x\\x%02x", c & 0xFF, c >> 8); else buf->printf("\\x%02x\\x%02x\\x%02x\\x%02x", c & 0xFF, (c >> 8) & 0xFF, (c >> 16) & 0xFF, c >> 24); break; } } if (hgs->ddoc) escapeDdocString(buf, o); buf->writeByte('"'); if (postfix) buf->writeByte(postfix); } void StringExp::toMangleBuffer(OutBuffer *buf) { char m; OutBuffer tmp; const char *p; unsigned c; size_t u; unsigned char *q; size_t qlen; /* Write string in UTF-8 format */ switch (sz) { case 1: m = 'a'; q = (unsigned char *)string; qlen = len; break; case 2: m = 'w'; for (u = 0; u < len; ) { p = utf_decodeWchar((unsigned short *)string, len, &u, &c); if (p) error("%s", p); else tmp.writeUTF8(c); } q = tmp.data; qlen = tmp.offset; break; case 4: m = 'd'; for (u = 0; u < len; u++) { c = ((unsigned *)string)[u]; if (!utf_isValidDchar(c)) error("invalid UCS-32 char \\U%08x", c); else tmp.writeUTF8(c); } q = tmp.data; qlen = tmp.offset; break; default: assert(0); } buf->reserve(1 + 11 + 2 * qlen); buf->writeByte(m); buf->printf("%d_", (int)qlen); // nbytes <= 11 for (unsigned char *p = buf->data + buf->offset, *pend = p + 2 * qlen; p < pend; p += 2, ++q) { unsigned char hi = *q >> 4 & 0xF; p[0] = (hi < 10 ? hi + '0' : hi - 10 + 'a'); unsigned char lo = *q & 0xF; p[1] = (lo < 10 ? lo + '0' : lo - 10 + 'a'); } buf->offset += 2 * qlen; } /************************ ArrayLiteralExp ************************************/ // [ e1, e2, e3, ... ] ArrayLiteralExp::ArrayLiteralExp(Loc loc, Expressions *elements) : Expression(loc, TOKarrayliteral, sizeof(ArrayLiteralExp)) { this->elements = elements; this->ownedByCtfe = false; } ArrayLiteralExp::ArrayLiteralExp(Loc loc, Expression *e) : Expression(loc, TOKarrayliteral, sizeof(ArrayLiteralExp)) { elements = new Expressions; elements->push(e); this->ownedByCtfe = false; } Expression *ArrayLiteralExp::syntaxCopy() { return new ArrayLiteralExp(loc, arraySyntaxCopy(elements)); } Expression *ArrayLiteralExp::semantic(Scope *sc) { #if LOGSEMANTIC printf("ArrayLiteralExp::semantic('%s')\n", toChars()); #endif if (type) return this; /* Perhaps an empty array literal [ ] should be rewritten as null? */ arrayExpressionSemantic(elements, sc); // run semantic() on each element expandTuples(elements); Type *t0; elements = arrayExpressionToCommonType(sc, elements, &t0); type = t0->arrayOf(); //type = new TypeSArray(t0, new IntegerExp(elements->dim)); type = type->semantic(loc, sc); /* Disallow array literals of type void being used. */ if (elements->dim > 0 && t0->ty == Tvoid) { error("%s of type %s has no value", toChars(), type->toChars()); return new ErrorExp(); } return this; } int ArrayLiteralExp::isBool(int result) { size_t dim = elements ? elements->dim : 0; return result ? (dim != 0) : (dim == 0); } StringExp *ArrayLiteralExp::toString() { TY telem = type->nextOf()->toBasetype()->ty; if (telem == Tchar || telem == Twchar || telem == Tdchar || (telem == Tvoid && (!elements || elements->dim == 0))) { OutBuffer buf; if (elements) for (int i = 0; i < elements->dim; ++i) { Expression *ch = (*elements)[i]; if (ch->op != TOKint64) return NULL; buf.writeUTF8(ch->toInteger()); } buf.writebyte(0); char prefix = 'c'; if (telem == Twchar) prefix = 'w'; else if (telem == Tdchar) prefix = 'd'; const size_t len = buf.offset - 1; StringExp *se = new StringExp(loc, buf.extractData(), len, prefix); se->type = type; return se; } return NULL; } void ArrayLiteralExp::toCBuffer(OutBuffer *buf, HdrGenState *hgs) { buf->writeByte('['); argsToCBuffer(buf, elements, hgs); buf->writeByte(']'); } void ArrayLiteralExp::toMangleBuffer(OutBuffer *buf) { size_t dim = elements ? elements->dim : 0; buf->printf("A%zu", dim); for (size_t i = 0; i < dim; i++) { Expression *e = (*elements)[i]; e->toMangleBuffer(buf); } } /************************ AssocArrayLiteralExp ************************************/ // [ key0 : value0, key1 : value1, ... ] AssocArrayLiteralExp::AssocArrayLiteralExp(Loc loc, Expressions *keys, Expressions *values) : Expression(loc, TOKassocarrayliteral, sizeof(AssocArrayLiteralExp)) { assert(keys->dim == values->dim); this->keys = keys; this->values = values; this->ownedByCtfe = false; } Expression *AssocArrayLiteralExp::syntaxCopy() { return new AssocArrayLiteralExp(loc, arraySyntaxCopy(keys), arraySyntaxCopy(values)); } Expression *AssocArrayLiteralExp::semantic(Scope *sc) { #if LOGSEMANTIC printf("AssocArrayLiteralExp::semantic('%s')\n", toChars()); #endif if (type) return this; // Run semantic() on each element arrayExpressionSemantic(keys, sc); arrayExpressionSemantic(values, sc); expandTuples(keys); expandTuples(values); if (keys->dim != values->dim) { error("number of keys is %u, must match number of values %u", keys->dim, values->dim); return new ErrorExp(); } Type *tkey = NULL; Type *tvalue = NULL; keys = arrayExpressionToCommonType(sc, keys, &tkey); values = arrayExpressionToCommonType(sc, values, &tvalue); if (tkey == Type::terror || tvalue == Type::terror) return new ErrorExp; type = new TypeAArray(tvalue, tkey); type = type->semantic(loc, sc); return this; } int AssocArrayLiteralExp::isBool(int result) { size_t dim = keys->dim; return result ? (dim != 0) : (dim == 0); } void AssocArrayLiteralExp::toCBuffer(OutBuffer *buf, HdrGenState *hgs) { buf->writeByte('['); for (size_t i = 0; i < keys->dim; i++) { Expression *key = (*keys)[i]; Expression *value = (*values)[i]; if (i) buf->writestring(", "); expToCBuffer(buf, hgs, key, PREC_assign); buf->writeByte(':'); expToCBuffer(buf, hgs, value, PREC_assign); } buf->writeByte(']'); } void AssocArrayLiteralExp::toMangleBuffer(OutBuffer *buf) { size_t dim = keys->dim; buf->printf("A%zu", dim); for (size_t i = 0; i < dim; i++) { Expression *key = (*keys)[i]; Expression *value = (*values)[i]; key->toMangleBuffer(buf); value->toMangleBuffer(buf); } } /************************ StructLiteralExp ************************************/ // sd( e1, e2, e3, ... ) StructLiteralExp::StructLiteralExp(Loc loc, StructDeclaration *sd, Expressions *elements, Type *stype) : Expression(loc, TOKstructliteral, sizeof(StructLiteralExp)) { this->sd = sd; if (!elements) elements = new Expressions(); this->elements = elements; this->stype = stype; this->sinit = NULL; #if IN_DMD this->sym = NULL; #endif this->soffset = 0; this->fillHoles = 1; this->ownedByCtfe = false; this->ctorinit = 0; #if IN_LLVM this->inProgressMemory = NULL; this->globalVar = NULL; #endif this->origin = this; this->stageflags = 0; this->inlinecopy = NULL; //printf("StructLiteralExp::StructLiteralExp(%s)\n", toChars()); } int StructLiteralExp::equals(Object *o) { if (this == o) return 1; if (o && o->dyncast() == DYNCAST_EXPRESSION && ((Expression *)o)->op == TOKstructliteral) { StructLiteralExp *se = (StructLiteralExp *)o; if (sd != se->sd) return 0; if (elements->dim != se->elements->dim) return 0; for (size_t i = 0; i < elements->dim; i++) { if (!(*elements)[i]->equals((*se->elements)[i])) return 0; } return 1; } return 0; } Expression *StructLiteralExp::syntaxCopy() { StructLiteralExp *exp = new StructLiteralExp(loc, sd, arraySyntaxCopy(elements), stype); exp->origin = this; return exp; } Expression *StructLiteralExp::semantic(Scope *sc) { Expression *e; #if LOGSEMANTIC printf("StructLiteralExp::semantic('%s')\n", toChars()); #endif if (type) return this; sd->size(loc); if (sd->sizeok != SIZEOKdone) return new ErrorExp(); size_t nfields = sd->fields.dim - sd->isNested(); elements = arrayExpressionSemantic(elements, sc); // run semantic() on each element expandTuples(elements); size_t offset = 0; for (size_t i = 0; i < elements->dim; i++) { e = (*elements)[i]; if (!e) continue; e = resolveProperties(sc, e); if (i >= nfields) { #if 0 for (size_t i = 0; i < sd->fields.dim; i++) printf("[%d] = %s\n", i, sd->fields[i]->toChars()); #endif error("more initializers than fields (%d) of %s", nfields, sd->toChars()); return new ErrorExp(); } Dsymbol *s = sd->fields[i]; VarDeclaration *v = s->isVarDeclaration(); assert(v); if (v->offset < offset) { error("overlapping initialization for %s", v->toChars()); return new ErrorExp(); } offset = v->offset + v->type->size(); Type *telem = v->type; if (stype) telem = telem->addMod(stype->mod); Type *origType = telem; while (!e->implicitConvTo(telem) && telem->toBasetype()->ty == Tsarray) { /* Static array initialization, as in: * T[3][5] = e; */ telem = telem->toBasetype()->nextOf(); } if (!e->implicitConvTo(telem)) telem = origType; // restore type for better diagnostic e = e->implicitCastTo(sc, telem); if (e->op == TOKerror) return e; (*elements)[i] = callCpCtor(e->loc, sc, e, 1); } /* Fill out remainder of elements[] with default initializers for fields[] */ for (size_t i = elements->dim; i < nfields; i++) { Dsymbol *s = sd->fields[i]; VarDeclaration *v = s->isVarDeclaration(); assert(v); assert(!v->isThisDeclaration()); if (v->offset < offset) { e = NULL; sd->hasUnions = 1; } else { if (v->init) { if (v->init->isVoidInitializer()) e = NULL; else e = v->getConstInitializer(false); } else { if (v->storage_class & STCnodefaultctor) { error("field %s.%s must be initialized because it has no default constructor", sd->type->toChars(), v->toChars()); } if (v->type->needsNested() && ctorinit) e = v->type->defaultInit(loc); else e = v->type->defaultInitLiteral(loc); } offset = v->offset + v->type->size(); } elements->push(e); } type = stype ? stype : sd->type; /* If struct requires a destructor, rewrite as: * (S tmp = S()),tmp * so that the destructor can be hung on tmp. */ if (sd->dtor && sc->func) { Identifier *idtmp = Lexer::uniqueId("__sl"); VarDeclaration *tmp = new VarDeclaration(loc, type, idtmp, new ExpInitializer(Loc(), this)); tmp->storage_class |= STCctfe; Expression *ae = new DeclarationExp(loc, tmp); Expression *e = new CommaExp(loc, ae, new VarExp(loc, tmp)); e = e->semantic(sc); return e; } return this; } /************************************** * Gets expression at offset of type. * Returns NULL if not found. */ Expression *StructLiteralExp::getField(Type *type, unsigned offset) { //printf("StructLiteralExp::getField(this = %s, type = %s, offset = %u)\n", // /*toChars()*/"", type->toChars(), offset); Expression *e = NULL; int i = getFieldIndex(type, offset); if (i != -1) { //printf("\ti = %d\n", i); if (i == sd->fields.dim - 1 && sd->isNested()) return NULL; assert(i < elements->dim); e = (*elements)[i]; if (e) { //printf("e = %s, e->type = %s\n", e->toChars(), e->type->toChars()); /* If type is a static array, and e is an initializer for that array, * then the field initializer should be an array literal of e. */ if (e->type->castMod(0) != type->castMod(0) && type->ty == Tsarray) { TypeSArray *tsa = (TypeSArray *)type; uinteger_t length = tsa->dim->toInteger(); Expressions *z = new Expressions; z->setDim(length); for (size_t q = 0; q < length; ++q) (*z)[q] = e->copy(); e = new ArrayLiteralExp(loc, z); e->type = type; } else { e = e->copy(); e->type = type; } #if !IN_LLVM if (sinit && e->op == TOKstructliteral && e->type->needsNested()) { StructLiteralExp *se = (StructLiteralExp *)e; se->sinit = se->sd->toInitializer(); } #endif } } return e; } /************************************ * Get index of field. * Returns -1 if not found. */ int StructLiteralExp::getFieldIndex(Type *type, unsigned offset) { /* Find which field offset is by looking at the field offsets */ if (elements->dim) { for (size_t i = 0; i < sd->fields.dim; i++) { Dsymbol *s = sd->fields[i]; VarDeclaration *v = s->isVarDeclaration(); assert(v); if (offset == v->offset && type->size() == v->type->size()) { /* context field might not be filled. */ if (i == sd->fields.dim - 1 && sd->isNested()) return (int)i; Expression *e = (*elements)[i]; if (e) { return (int)i; } break; } } } return -1; } void StructLiteralExp::toCBuffer(OutBuffer *buf, HdrGenState *hgs) { buf->writestring(sd->toChars()); buf->writeByte('('); #if IN_LLVM // Backport of DMD pull request 2183. if (stageflags & 32) buf->writestring("..."); else { int old = stageflags; stageflags |= 32; #endif argsToCBuffer(buf, elements, hgs); #if IN_LLVM stageflags = old; } #endif buf->writeByte(')'); } void StructLiteralExp::toMangleBuffer(OutBuffer *buf) { size_t dim = elements ? elements->dim : 0; buf->printf("S%zu", dim); for (size_t i = 0; i < dim; i++) { Expression *e = (*elements)[i]; if (e) e->toMangleBuffer(buf); else buf->writeByte('v'); // 'v' for void } } /************************ TypeDotIdExp ************************************/ /* Things like: * int.size * foo.size * (foo).size * cast(foo).size */ DotIdExp *typeDotIdExp(Loc loc, Type *type, Identifier *ident) { return new DotIdExp(loc, new TypeExp(loc, type), ident); } /************************************************************/ // Mainly just a placeholder TypeExp::TypeExp(Loc loc, Type *type) : Expression(loc, TOKtype, sizeof(TypeExp)) { //printf("TypeExp::TypeExp(%s)\n", type->toChars()); this->type = type; } Expression *TypeExp::syntaxCopy() { //printf("TypeExp::syntaxCopy()\n"); return new TypeExp(loc, type->syntaxCopy()); } Expression *TypeExp::semantic(Scope *sc) { //printf("TypeExp::semantic(%s)\n", type->toChars()); Expression *e; Type *t; Dsymbol *s; type->resolve(loc, sc, &e, &t, &s); if (e) { //printf("e = %s %s\n", Token::toChars(e->op), e->toChars()); e = e->semantic(sc); } else if (t) { //printf("t = %d %s\n", t->ty, t->toChars()); type = t->semantic(loc, sc); e = this; } else if (s) { //printf("s = %s %s\n", s->kind(), s->toChars()); e = new DsymbolExp(loc, s, s->hasOverloads()); e = e->semantic(sc); } else assert(0); return e; } int TypeExp::rvalue() { error("type %s has no value", toChars()); return 0; } void TypeExp::toCBuffer(OutBuffer *buf, HdrGenState *hgs) { type->toCBuffer(buf, NULL, hgs); } /************************************************************/ // Mainly just a placeholder ScopeExp::ScopeExp(Loc loc, ScopeDsymbol *pkg) : Expression(loc, TOKimport, sizeof(ScopeExp)) { //printf("ScopeExp::ScopeExp(pkg = '%s')\n", pkg->toChars()); //static int count; if (++count == 38) *(char*)0=0; this->sds = pkg; } Expression *ScopeExp::syntaxCopy() { ScopeExp *se = new ScopeExp(loc, (ScopeDsymbol *)sds->syntaxCopy(NULL)); return se; } Expression *ScopeExp::semantic(Scope *sc) { TemplateInstance *ti; ScopeDsymbol *sds2; #if LOGSEMANTIC printf("+ScopeExp::semantic('%s')\n", toChars()); #endif Lagain: ti = sds->isTemplateInstance(); if (ti && !ti->errors) { unsigned olderrs = global.errors; if (ti->needsTypeInference(sc)) { TemplateDeclaration *td = ti->tempdecl; Dsymbol *p = td->toParent2(); FuncDeclaration *fdthis = hasThis(sc); AggregateDeclaration *ad = p ? p->isAggregateDeclaration() : NULL; if (fdthis && ad && isAggregate(fdthis->vthis->type) == ad && (td->scope->stc & STCstatic) == 0) { Expression *e = new DotTemplateInstanceExp(loc, new ThisExp(loc), ti->name, ti->tiargs); return e->semantic(sc); } return this; } if (!ti->semanticRun) ti->semantic(sc); if (ti->inst) { if (ti->inst->errors) return new ErrorExp(); Dsymbol *s = ti->inst->toAlias(); sds2 = s->isScopeDsymbol(); if (!sds2) { Expression *e; //printf("s = %s, '%s'\n", s->kind(), s->toChars()); if (ti->withsym) { // Same as wthis.s e = new VarExp(loc, ti->withsym->withstate->wthis); e = new DotVarExp(loc, e, s->isDeclaration()); } else e = new DsymbolExp(loc, s, s->hasOverloads()); e = e->semantic(sc); //printf("-1ScopeExp::semantic()\n"); return e; } if (sds2 != sds) { sds = sds2; goto Lagain; } //printf("sds = %s, '%s'\n", sds->kind(), sds->toChars()); } if (olderrs != global.errors) return new ErrorExp(); } else { //printf("sds = %s, '%s'\n", sds->kind(), sds->toChars()); //printf("\tparent = '%s'\n", sds->parent->toChars()); sds->semantic(sc); AggregateDeclaration *ad = sds->isAggregateDeclaration(); if (ad) return (new TypeExp(loc, ad->type))->semantic(sc); } type = Type::tvoid; //printf("-2ScopeExp::semantic() %s\n", toChars()); return this; } void ScopeExp::toCBuffer(OutBuffer *buf, HdrGenState *hgs) { if (sds->isTemplateInstance()) { sds->toCBuffer(buf, hgs); } else if (hgs != NULL && hgs->ddoc) { // fixes bug 6491 Module *module = sds->isModule(); if (module) buf->writestring(module->md->toChars()); else buf->writestring(sds->toChars()); } else { buf->writestring(sds->kind()); buf->writestring(" "); buf->writestring(sds->toChars()); } } /********************** TemplateExp **************************************/ // Mainly just a placeholder TemplateExp::TemplateExp(Loc loc, TemplateDeclaration *td, FuncDeclaration *fd) : Expression(loc, TOKtemplate, sizeof(TemplateExp)) { //printf("TemplateExp(): %s\n", td->toChars()); this->td = td; this->fd = fd; } void TemplateExp::toCBuffer(OutBuffer *buf, HdrGenState *hgs) { buf->writestring(td->toChars()); } int TemplateExp::rvalue() { error("template %s has no value", toChars()); return 0; } int TemplateExp::isLvalue() { return fd != NULL; } Expression *TemplateExp::toLvalue(Scope *sc, Expression *e) { if (!fd) return Expression::toLvalue(sc, e); Expression *ex = new DsymbolExp(loc, fd, 1); ex = ex->semantic(sc); return ex; } /********************** NewExp **************************************/ /* thisexp.new(newargs) newtype(arguments) */ NewExp::NewExp(Loc loc, Expression *thisexp, Expressions *newargs, Type *newtype, Expressions *arguments) : Expression(loc, TOKnew, sizeof(NewExp)) { this->thisexp = thisexp; this->newargs = newargs; this->newtype = newtype; this->arguments = arguments; member = NULL; allocator = NULL; onstack = 0; } Expression *NewExp::syntaxCopy() { return new NewExp(loc, thisexp ? thisexp->syntaxCopy() : NULL, arraySyntaxCopy(newargs), newtype->syntaxCopy(), arraySyntaxCopy(arguments)); } Expression *NewExp::semantic(Scope *sc) { Type *tb; ClassDeclaration *cdthis = NULL; size_t nargs; #if LOGSEMANTIC printf("NewExp::semantic() %s\n", toChars()); if (thisexp) printf("\tthisexp = %s\n", thisexp->toChars()); printf("\tnewtype: %s\n", newtype->toChars()); #endif if (type) // if semantic() already run return this; Lagain: if (thisexp) { thisexp = thisexp->semantic(sc); cdthis = thisexp->type->isClassHandle(); if (cdthis) { sc = sc->push(cdthis); type = newtype->semantic(loc, sc); sc = sc->pop(); if (!MODimplicitConv(thisexp->type->mod, newtype->mod)) { error("nested type %s should have the same or weaker constancy as enclosing type %s", newtype->toChars(), thisexp->type->toChars()); goto Lerr; } } else { error("'this' for nested class must be a class type, not %s", thisexp->type->toChars()); goto Lerr; } } else type = newtype->semantic(loc, sc); newtype = type; // in case type gets cast to something else tb = type->toBasetype(); //printf("tb: %s, deco = %s\n", tb->toChars(), tb->deco); arrayExpressionSemantic(newargs, sc); preFunctionParameters(loc, sc, newargs); arrayExpressionSemantic(arguments, sc); preFunctionParameters(loc, sc, arguments); nargs = arguments ? arguments->dim : 0; if (thisexp && tb->ty != Tclass) { error("e.new is only for allocating nested classes, not %s", tb->toChars()); goto Lerr; } if (tb->ty == Tclass) { TypeClass *tc = (TypeClass *)(tb); ClassDeclaration *cd = tc->sym->isClassDeclaration(); if (cd->scope) cd->semantic(NULL); if (cd->isInterfaceDeclaration()) { error("cannot create instance of interface %s", cd->toChars()); goto Lerr; } else if (cd->isAbstract()) { error("cannot create instance of abstract class %s", cd->toChars()); for (size_t i = 0; i < cd->vtbl.dim; i++) { FuncDeclaration *fd = cd->vtbl[i]->isFuncDeclaration(); if (fd && fd->isAbstract()) errorSupplemental(loc, "function '%s' is not implemented", fd->toFullSignature()); } goto Lerr; } if (cd->noDefaultCtor && !nargs) { error("default construction is disabled for type %s", cd->type->toChars()); goto Lerr; } checkDeprecated(sc, cd); if (cd->isNested()) { /* We need a 'this' pointer for the nested class. * Ensure we have the right one. */ Dsymbol *s = cd->toParent2(); ClassDeclaration *cdn = s->isClassDeclaration(); FuncDeclaration *fdn = s->isFuncDeclaration(); //printf("cd isNested, cdn = %s\n", cdn ? cdn->toChars() : "null"); if (cdn) { if (!cdthis) { // Supply an implicit 'this' and try again thisexp = new ThisExp(loc); for (Dsymbol *sp = sc->parent; 1; sp = sp->parent) { if (!sp) { error("outer class %s 'this' needed to 'new' nested class %s", cdn->toChars(), cd->toChars()); goto Lerr; } ClassDeclaration *cdp = sp->isClassDeclaration(); if (!cdp) continue; if (cdp == cdn || cdn->isBaseOf(cdp, NULL)) break; // Add a '.outer' and try again thisexp = new DotIdExp(loc, thisexp, Id::outer); } if (!global.errors) goto Lagain; } if (cdthis) { //printf("cdthis = %s\n", cdthis->toChars()); if (cdthis != cdn && !cdn->isBaseOf(cdthis, NULL)) { error("'this' for nested class must be of type %s, not %s", cdn->toChars(), thisexp->type->toChars()); goto Lerr; } } } else if (thisexp) { error("e.new is only for allocating nested classes"); goto Lerr; } else if (fdn) { // make sure the parent context fdn of cd is reachable from sc for (Dsymbol *sp = sc->parent; 1; sp = sp->parent) { if (fdn == sp) break; FuncDeclaration *fsp = sp ? sp->isFuncDeclaration() : NULL; if (!sp || (fsp && fsp->isStatic())) { error("outer function context of %s is needed to 'new' nested class %s", fdn->toPrettyChars(), cd->toPrettyChars()); goto Lerr; } } } else assert(0); } else if (thisexp) { error("e.new is only for allocating nested classes"); goto Lerr; } FuncDeclaration *f = NULL; if (cd->ctor) f = resolveFuncCall(loc, sc, cd->ctor, NULL, tb, arguments, 0); if (f) { checkDeprecated(sc, f); member = f->isCtorDeclaration(); assert(member); cd->accessCheck(loc, sc, member); TypeFunction *tf = (TypeFunction *)f->type; if (!arguments) arguments = new Expressions(); unsigned olderrors = global.errors; type = functionParameters(loc, sc, tf, type, arguments, f); if (olderrors != global.errors) return new ErrorExp(); } else { if (nargs) { error("no constructor for %s", cd->toChars()); goto Lerr; } } if (cd->aggNew) { // Prepend the size argument to newargs[] Expression *e = new IntegerExp(loc, cd->size(loc), Type::tsize_t); if (!newargs) newargs = new Expressions(); newargs->shift(e); f = resolveFuncCall(loc, sc, cd->aggNew, NULL, tb, newargs); if (!f) goto Lerr; allocator = f->isNewDeclaration(); assert(allocator); TypeFunction *tf = (TypeFunction *)f->type; unsigned olderrors = global.errors; functionParameters(loc, sc, tf, NULL, newargs, f); if (olderrors != global.errors) return new ErrorExp(); } else { if (newargs && newargs->dim) { error("no allocator for %s", cd->toChars()); goto Lerr; } } } else if (tb->ty == Tstruct) { TypeStruct *ts = (TypeStruct *)tb; StructDeclaration *sd = ts->sym; if (sd->scope) sd->semantic(NULL); if (sd->noDefaultCtor && !nargs) { error("default construction is disabled for type %s", sd->type->toChars()); goto Lerr; } if (sd->aggNew) { // Prepend the uint size argument to newargs[] Expression *e = new IntegerExp(loc, sd->size(loc), Type::tuns32); if (!newargs) newargs = new Expressions(); newargs->shift(e); FuncDeclaration *f = resolveFuncCall(loc, sc, sd->aggNew, NULL, tb, newargs); if (!f) goto Lerr; allocator = f->isNewDeclaration(); assert(allocator); TypeFunction *tf = (TypeFunction *)f->type; unsigned olderrors = global.errors; functionParameters(loc, sc, tf, NULL, newargs, f); if (olderrors != global.errors) return new ErrorExp(); } else { if (newargs && newargs->dim) { error("no allocator for %s", sd->toChars()); goto Lerr; } } FuncDeclaration *f = NULL; if (sd->ctor && nargs) f = resolveFuncCall(loc, sc, sd->ctor, NULL, tb, arguments, 0); if (f) { checkDeprecated(sc, f); member = f->isCtorDeclaration(); assert(member); sd->accessCheck(loc, sc, member); TypeFunction *tf = (TypeFunction *)f->type; if (!arguments) arguments = new Expressions(); unsigned olderrors = global.errors; type = functionParameters(loc, sc, tf, type, arguments, f); if (olderrors != global.errors) return new ErrorExp(); } else if (nargs) { Type *tptr = type->pointerTo(); /* Rewrite: * new S(arguments) * as: * (((S* __newsl = new S()), (*__newsl = S(arguments))), __newsl) */ Identifier *id = Lexer::uniqueId("__newsl"); ExpInitializer *ei = new ExpInitializer(loc, this); VarDeclaration *v = new VarDeclaration(loc, tptr, id, ei); v->storage_class |= STCctfe; Expression *e = new DeclarationExp(loc, v); Expression *ve = new VarExp(loc, v); Expression *se = new StructLiteralExp(loc, sd, arguments, type); Expression *ae = new ConstructExp(loc, new PtrExp(loc, ve), se); e = new CommaExp(loc, e, ae); e = new CommaExp(loc, e, ve); // rewrite this this->arguments = NULL; this->type = tptr; return e->semantic(sc); } type = type->pointerTo(); } else if (tb->ty == Tarray && nargs) { Type *tn = tb->nextOf()->toBasetype(); while (tn->ty == Tsarray) tn = tn->nextOf()->toBasetype(); Dsymbol *s = tn->toDsymbol(sc); AggregateDeclaration *ad = s ? s->isAggregateDeclaration() : NULL; if (ad && ad->noDefaultCtor) { error("default construction is disabled for type %s", tb->nextOf()->toChars()); goto Lerr; } for (size_t i = 0; i < nargs; i++) { if (tb->ty != Tarray) { error("too many arguments for array"); goto Lerr; } Expression *arg = (*arguments)[i]; arg = resolveProperties(sc, arg); arg = arg->implicitCastTo(sc, Type::tsize_t); arg = arg->optimize(WANTvalue); if (arg->op == TOKint64 && (sinteger_t)arg->toInteger() < 0) { error("negative array index %s", arg->toChars()); goto Lerr; } (*arguments)[i] = arg; tb = ((TypeDArray *)tb)->next->toBasetype(); } } else if (tb->isscalar()) { if (nargs) { error("no constructor for %s", type->toChars()); goto Lerr; } type = type->pointerTo(); } else { error("new can only create structs, dynamic arrays or class objects, not %s's", type->toChars()); goto Lerr; } //printf("NewExp: '%s'\n", toChars()); //printf("NewExp:type '%s'\n", type->toChars()); return this; Lerr: return new ErrorExp(); } void NewExp::toCBuffer(OutBuffer *buf, HdrGenState *hgs) { if (thisexp) { expToCBuffer(buf, hgs, thisexp, PREC_primary); buf->writeByte('.'); } buf->writestring("new "); if (newargs && newargs->dim) { buf->writeByte('('); argsToCBuffer(buf, newargs, hgs); buf->writeByte(')'); } newtype->toCBuffer(buf, NULL, hgs); if (arguments && arguments->dim) { buf->writeByte('('); argsToCBuffer(buf, arguments, hgs); buf->writeByte(')'); } } /********************** NewAnonClassExp **************************************/ NewAnonClassExp::NewAnonClassExp(Loc loc, Expression *thisexp, Expressions *newargs, ClassDeclaration *cd, Expressions *arguments) : Expression(loc, TOKnewanonclass, sizeof(NewAnonClassExp)) { this->thisexp = thisexp; this->newargs = newargs; this->cd = cd; this->arguments = arguments; } Expression *NewAnonClassExp::syntaxCopy() { return new NewAnonClassExp(loc, thisexp ? thisexp->syntaxCopy() : NULL, arraySyntaxCopy(newargs), (ClassDeclaration *)cd->syntaxCopy(NULL), arraySyntaxCopy(arguments)); } Expression *NewAnonClassExp::semantic(Scope *sc) { #if LOGSEMANTIC printf("NewAnonClassExp::semantic() %s\n", toChars()); //printf("thisexp = %p\n", thisexp); //printf("type: %s\n", type->toChars()); #endif Expression *d = new DeclarationExp(loc, cd); int needctfe = sc->needctfe; sc->needctfe = 0; d = d->semantic(sc); sc->needctfe = needctfe; Expression *n = new NewExp(loc, thisexp, newargs, cd->type, arguments); Expression *c = new CommaExp(loc, d, n); return c->semantic(sc); } void NewAnonClassExp::toCBuffer(OutBuffer *buf, HdrGenState *hgs) { if (thisexp) { expToCBuffer(buf, hgs, thisexp, PREC_primary); buf->writeByte('.'); } buf->writestring("new"); if (newargs && newargs->dim) { buf->writeByte('('); argsToCBuffer(buf, newargs, hgs); buf->writeByte(')'); } buf->writestring(" class "); if (arguments && arguments->dim) { buf->writeByte('('); argsToCBuffer(buf, arguments, hgs); buf->writeByte(')'); } //buf->writestring(" { }"); if (cd) { cd->toCBuffer(buf, hgs); } } /********************** SymbolExp **************************************/ #if DMDV2 SymbolExp::SymbolExp(Loc loc, enum TOK op, int size, Declaration *var, int hasOverloads) : Expression(loc, op, size) { assert(var); this->var = var; this->hasOverloads = hasOverloads; } #endif /********************** SymOffExp **************************************/ SymOffExp::SymOffExp(Loc loc, Declaration *var, unsigned offset, int hasOverloads) : SymbolExp(loc, TOKsymoff, sizeof(SymOffExp), var, hasOverloads) { this->offset = offset; VarDeclaration *v = var->isVarDeclaration(); if (v && v->needThis()) error("need 'this' for address of %s", v->toChars()); } Expression *SymOffExp::semantic(Scope *sc) { #if LOGSEMANTIC printf("SymOffExp::semantic('%s')\n", toChars()); #endif //var->semantic(sc); if (!type) type = var->type->pointerTo(); VarDeclaration *v = var->isVarDeclaration(); if (v) v->checkNestedReference(sc, loc); FuncDeclaration *f = var->isFuncDeclaration(); if (f) f->checkNestedReference(sc, loc); return this; } int SymOffExp::isBool(int result) { return result ? TRUE : FALSE; } void SymOffExp::checkEscape() { VarDeclaration *v = var->isVarDeclaration(); if (v) { if (!v->isDataseg() && !(v->storage_class & (STCref | STCout))) { /* BUG: This should be allowed: * void foo() * { int a; * int* bar() { return &a; } * } */ error("escaping reference to local %s", v->toChars()); } } } void SymOffExp::toCBuffer(OutBuffer *buf, HdrGenState *hgs) { if (offset) buf->printf("(& %s+%u)", var->toChars(), offset); else buf->printf("& %s", var->toChars()); } /******************************** VarExp **************************/ VarExp::VarExp(Loc loc, Declaration *var, int hasOverloads) : SymbolExp(loc, TOKvar, sizeof(VarExp), var, hasOverloads) { //printf("VarExp(this = %p, '%s', loc = %s)\n", this, var->toChars(), loc.toChars()); //if (strcmp(var->ident->toChars(), "func") == 0) halt(); this->type = var->type; } int VarExp::equals(Object *o) { VarExp *ne; if (this == o || (((Expression *)o)->op == TOKvar && ((ne = (VarExp *)o), type->toHeadMutable()->equals(ne->type->toHeadMutable())) && var == ne->var)) return 1; return 0; } Expression *VarExp::semantic(Scope *sc) { #if LOGSEMANTIC printf("VarExp::semantic(%s)\n", toChars()); #endif if (FuncDeclaration *f = var->isFuncDeclaration()) { //printf("L%d fd = %s\n", __LINE__, f->toChars()); if (!f->functionSemantic()) return new ErrorExp(); } if (!type) type = var->type; if (type && !type->deco) type = type->semantic(loc, sc); /* Fix for 1161 doesn't work because it causes protection * problems when instantiating imported templates passing private * variables as alias template parameters. */ //accessCheck(loc, sc, NULL, var); VarDeclaration *v = var->isVarDeclaration(); if (v) { v->checkNestedReference(sc, loc); #if DMDV2 checkPurity(sc, v, NULL); #endif } FuncDeclaration *f = var->isFuncDeclaration(); if (f) f->checkNestedReference(sc, loc); return this; } char *VarExp::toChars() { return var->toChars(); } void VarExp::toCBuffer(OutBuffer *buf, HdrGenState *hgs) { buf->writestring(var->toChars()); } void VarExp::checkEscape() { VarDeclaration *v = var->isVarDeclaration(); if (v) { Type *tb = v->type->toBasetype(); // if reference type if (tb->ty == Tarray || tb->ty == Tsarray || tb->ty == Tclass || tb->ty == Tdelegate) { if (v->isScope() && (!v->noscope || tb->ty == Tclass)) error("escaping reference to scope local %s", v->toChars()); else if (v->storage_class & STCvariadic) error("escaping reference to variadic parameter %s", v->toChars()); } } } void VarExp::checkEscapeRef() { VarDeclaration *v = var->isVarDeclaration(); if (v) { if (!v->isDataseg() && !(v->storage_class & (STCref | STCout))) error("escaping reference to local variable %s", v->toChars()); } } int VarExp::isLvalue() { if (var->storage_class & (STClazy | STCtemp | STCmanifest)) return 0; return 1; } Expression *VarExp::toLvalue(Scope *sc, Expression *e) { if (var->storage_class & STCmanifest) { error("manifest constant '%s' is not lvalue", var->toChars()); return new ErrorExp(); } if (var->storage_class & STClazy) { error("lazy variables cannot be lvalues"); return new ErrorExp(); } if (var->ident == Id::ctfe) { error("compiler-generated variable __ctfe is not an lvalue"); return new ErrorExp(); } return this; } int VarExp::checkModifiable(Scope *sc, int flag) { //printf("VarExp::checkModifiable %s", toChars()); assert(type); return var->checkModify(loc, sc, type, NULL, flag); } Expression *VarExp::modifiableLvalue(Scope *sc, Expression *e) { //printf("VarExp::modifiableLvalue('%s')\n", var->toChars()); if (var->storage_class & STCmanifest) { error("Cannot modify '%s'", toChars()); return new ErrorExp(); } // See if this expression is a modifiable lvalue (i.e. not const) return Expression::modifiableLvalue(sc, e); } /******************************** OverExp **************************/ #if DMDV2 OverExp::OverExp(Loc loc, OverloadSet *s) : Expression(loc, TOKoverloadset, sizeof(OverExp)) { //printf("OverExp(this = %p, '%s')\n", this, var->toChars()); vars = s; type = Type::tvoid; } int OverExp::isLvalue() { return 1; } Expression *OverExp::toLvalue(Scope *sc, Expression *e) { return this; } #endif /******************************** TupleExp **************************/ TupleExp::TupleExp(Loc loc, Expression *e0, Expressions *exps) : Expression(loc, TOKtuple, sizeof(TupleExp)) { //printf("TupleExp(this = %p)\n", this); this->e0 = e0; this->exps = exps; } TupleExp::TupleExp(Loc loc, Expressions *exps) : Expression(loc, TOKtuple, sizeof(TupleExp)) { //printf("TupleExp(this = %p)\n", this); this->e0 = NULL; this->exps = exps; } TupleExp::TupleExp(Loc loc, TupleDeclaration *tup) : Expression(loc, TOKtuple, sizeof(TupleExp)) { this->e0 = NULL; this->exps = new Expressions(); this->exps->reserve(tup->objects->dim); for (size_t i = 0; i < tup->objects->dim; i++) { Object *o = (*tup->objects)[i]; if (Dsymbol *s = getDsymbol(o)) { /* If tuple element represents a symbol, translate to DsymbolExp * to supply implicit 'this' if needed later. */ Expression *e = new DsymbolExp(loc, s); this->exps->push(e); } else if (o->dyncast() == DYNCAST_EXPRESSION) { Expression *e = (Expression *)o; this->exps->push(e); } else if (o->dyncast() == DYNCAST_TYPE) { Type *t = (Type *)o; Expression *e = new TypeExp(loc, t); this->exps->push(e); } else { error("%s is not an expression", o->toChars()); } } } int TupleExp::equals(Object *o) { if (this == o) return 1; if (((Expression *)o)->op == TOKtuple) { TupleExp *te = (TupleExp *)o; if (exps->dim != te->exps->dim) return 0; if (e0 && !e0->equals(te->e0) || !e0 && te->e0) return 0; for (size_t i = 0; i < exps->dim; i++) { Expression *e1 = (*exps)[i]; Expression *e2 = (*te->exps)[i]; if (!e1->equals(e2)) return 0; } return 1; } return 0; } Expression *TupleExp::syntaxCopy() { return new TupleExp(loc, e0 ? e0->syntaxCopy() : NULL, arraySyntaxCopy(exps)); } Expression *TupleExp::semantic(Scope *sc) { #if LOGSEMANTIC printf("+TupleExp::semantic(%s)\n", toChars()); #endif if (type) return this; if (e0) e0 = e0->semantic(sc); // Run semantic() on each argument for (size_t i = 0; i < exps->dim; i++) { Expression *e = (*exps)[i]; e = e->semantic(sc); if (!e->type) { error("%s has no value", e->toChars()); return new ErrorExp(); } (*exps)[i] = e; } expandTuples(exps); type = new TypeTuple(exps); type = type->semantic(loc, sc); //printf("-TupleExp::semantic(%s)\n", toChars()); return this; } void TupleExp::toCBuffer(OutBuffer *buf, HdrGenState *hgs) { if (e0) { buf->writeByte('('); e0->toCBuffer(buf, hgs); buf->writestring(", tuple("); argsToCBuffer(buf, exps, hgs); buf->writestring("))"); } else { buf->writestring("tuple("); argsToCBuffer(buf, exps, hgs); buf->writeByte(')'); } } void TupleExp::checkEscape() { for (size_t i = 0; i < exps->dim; i++) { Expression *e = (*exps)[i]; e->checkEscape(); } } /******************************** FuncExp *********************************/ FuncExp::FuncExp(Loc loc, FuncLiteralDeclaration *fd, TemplateDeclaration *td) : Expression(loc, TOKfunction, sizeof(FuncExp)) { this->fd = fd; this->td = td; tok = fd->tok; // save original kind of function/delegate/(infer) } Expression *FuncExp::syntaxCopy() { TemplateDeclaration *td2 = td ? (TemplateDeclaration *)td->syntaxCopy(NULL) : NULL; return new FuncExp(loc, (FuncLiteralDeclaration *)fd->syntaxCopy(NULL), td2); } Expression *FuncExp::semantic(Scope *sc) { #if LOGSEMANTIC printf("FuncExp::semantic(%s)\n", toChars()); if (fd->treq) printf(" treq = %s\n", fd->treq->toChars()); #endif Expression *e = this; int needctfe = sc->needctfe; sc->needctfe = 0; if (!type || type == Type::tvoid) { /* fd->treq might be incomplete type, * so should not semantic it. * void foo(T)(T delegate(int) dg){} * foo(a=>a); // in IFTI, treq == T delegate(int) */ //if (fd->treq) // fd->treq = fd->treq->semantic(loc, sc); // Set target of return type inference if (fd->treq && !fd->type->nextOf()) { TypeFunction *tfv = NULL; if (fd->treq->ty == Tdelegate || (fd->treq->ty == Tpointer && fd->treq->nextOf()->ty == Tfunction)) tfv = (TypeFunction *)fd->treq->nextOf(); if (tfv) { TypeFunction *tfl = (TypeFunction *)fd->type; tfl->next = tfv->nextOf(); } } //printf("td = %p, treq = %p\n", td, fd->treq); if (td) { assert(td->parameters && td->parameters->dim); td->semantic(sc); type = Type::tvoid; // temporary type if (fd->treq) // defer type determination e = inferType(fd->treq); goto Ldone; } unsigned olderrors = global.errors; fd->semantic(sc); //fd->parent = sc->parent; if (olderrors != global.errors) { } else { fd->semantic2(sc); if ( (olderrors == global.errors) || // need to infer return type (fd->type && fd->type->ty == Tfunction && !fd->type->nextOf())) { fd->semantic3(sc); } } // need to infer return type if ((olderrors != global.errors) && fd->type && fd->type->ty == Tfunction && !fd->type->nextOf()) ((TypeFunction *)fd->type)->next = Type::terror; // Type is a "delegate to" or "pointer to" the function literal if ((fd->isNested() && fd->tok == TOKdelegate) || (tok == TOKreserved && fd->treq && fd->treq->ty == Tdelegate)) { type = new TypeDelegate(fd->type); type = type->semantic(loc, sc); fd->tok = TOKdelegate; } else { type = new TypePointer(fd->type); type = type->semantic(loc, sc); //type = fd->type->pointerTo(); /* A lambda expression deduced to function pointer might become * to a delegate literal implicitly. * * auto foo(void function() fp) { return 1; } * assert(foo({}) == 1); * * So, should keep fd->tok == TOKreserve if fd->treq == NULL. */ if (fd->treq && fd->treq->ty == Tpointer) { // change to non-nested fd->tok = TOKfunction; fd->vthis = NULL; } } fd->tookAddressOf++; } Ldone: sc->needctfe = needctfe; return e; } // used from CallExp::semantic() Expression *FuncExp::semantic(Scope *sc, Expressions *arguments) { if ((!type || type == Type::tvoid) && td && arguments && arguments->dim) { for (size_t k = 0; k < arguments->dim; k++) { Expression *checkarg = (*arguments)[k]; if (checkarg->op == TOKerror) return checkarg; } assert(td->parameters && td->parameters->dim); td->semantic(sc); TypeFunction *tfl = (TypeFunction *)fd->type; size_t dim = Parameter::dim(tfl->parameters); if (arguments->dim < dim) { // Default arguments are always typed, so they don't need inference. Parameter *p = Parameter::getNth(tfl->parameters, arguments->dim); if (p->defaultArg) dim = arguments->dim; } if ((!tfl->varargs && arguments->dim == dim) || ( tfl->varargs && arguments->dim >= dim)) { Objects *tiargs = new Objects(); tiargs->reserve(td->parameters->dim); for (size_t i = 0; i < td->parameters->dim; i++) { TemplateParameter *tp = (*td->parameters)[i]; for (size_t u = 0; u < dim; u++) { Parameter *p = Parameter::getNth(tfl->parameters, u); if (p->type->ty == Tident && ((TypeIdentifier *)p->type)->ident == tp->ident) { Expression *e = (*arguments)[u]; tiargs->push(e->type); u = dim; // break inner loop } } } TemplateInstance *ti = new TemplateInstance(loc, td, tiargs); return (new ScopeExp(loc, ti))->semantic(sc); } error("cannot infer function literal type"); return new ErrorExp(); } return semantic(sc); } char *FuncExp::toChars() { return fd->toChars(); } void FuncExp::toCBuffer(OutBuffer *buf, HdrGenState *hgs) { fd->toCBuffer(buf, hgs); //buf->writestring(fd->toChars()); } /******************************** DeclarationExp **************************/ DeclarationExp::DeclarationExp(Loc loc, Dsymbol *declaration) : Expression(loc, TOKdeclaration, sizeof(DeclarationExp)) { this->declaration = declaration; } Expression *DeclarationExp::syntaxCopy() { return new DeclarationExp(loc, declaration->syntaxCopy(NULL)); } Expression *DeclarationExp::semantic(Scope *sc) { if (type) return this; #if LOGSEMANTIC printf("DeclarationExp::semantic() %s\n", toChars()); #endif unsigned olderrors = global.errors; /* This is here to support extern(linkage) declaration, * where the extern(linkage) winds up being an AttribDeclaration * wrapper. */ Dsymbol *s = declaration; while (1) { AttribDeclaration *ad = s->isAttribDeclaration(); if (ad) { if (ad->decl && ad->decl->dim == 1) { s = (*ad->decl)[0]; continue; } } break; } if (s->isVarDeclaration()) { // Do semantic() on initializer first, so: // int a = a; // will be illegal. declaration->semantic(sc); s->parent = sc->parent; } //printf("inserting '%s' %p into sc = %p\n", s->toChars(), s, sc); // Insert into both local scope and function scope. // Must be unique in both. if (s->ident) { if (!sc->insert(s)) { error("declaration %s is already defined", s->toPrettyChars()); return new ErrorExp(); } else if (sc->func) { VarDeclaration *v = s->isVarDeclaration(); if ( (s->isFuncDeclaration() || s->isTypedefDeclaration() || s->isAggregateDeclaration() || s->isEnumDeclaration() || s->isInterfaceDeclaration()) && !sc->func->localsymtab->insert(s)) { error("declaration %s is already defined in another scope in %s", s->toPrettyChars(), sc->func->toChars()); return new ErrorExp(); } else { // Disallow shadowing for (Scope *scx = sc->enclosing; scx && scx->func == sc->func; scx = scx->enclosing) { Dsymbol *s2; if (scx->scopesym && scx->scopesym->symtab && (s2 = scx->scopesym->symtab->lookup(s->ident)) != NULL && s != s2) { error("is shadowing declaration %s", s->toPrettyChars()); return new ErrorExp(); } } } } } if (!s->isVarDeclaration()) { Scope *sc2 = sc; if (sc2->stc & (STCpure | STCnothrow)) sc2 = sc->push(); sc2->stc &= ~(STCpure | STCnothrow); declaration->semantic(sc2); if (sc2 != sc) sc2->pop(); s->parent = sc->parent; } if (global.errors == olderrors) { declaration->semantic2(sc); if (global.errors == olderrors) { declaration->semantic3(sc); } } type = Type::tvoid; return this; } void DeclarationExp::toCBuffer(OutBuffer *buf, HdrGenState *hgs) { declaration->toCBuffer(buf, hgs); } /************************ TypeidExp ************************************/ /* * typeid(int) */ TypeidExp::TypeidExp(Loc loc, Object *o) : Expression(loc, TOKtypeid, sizeof(TypeidExp)) { this->obj = o; } Expression *TypeidExp::syntaxCopy() { return new TypeidExp(loc, objectSyntaxCopy(obj)); } Expression *TypeidExp::semantic(Scope *sc) { Expression *e; #if LOGSEMANTIC printf("TypeidExp::semantic() %s\n", toChars()); #endif Type *ta = isType(obj); Expression *ea = isExpression(obj); Dsymbol *sa = isDsymbol(obj); //printf("ta %p ea %p sa %p\n", ta, ea, sa); if (ta) { ta->resolve(loc, sc, &ea, &ta, &sa); } if (ea) { Dsymbol *sym = getDsymbol(ea); if (sym) ea = new DsymbolExp(loc, sym); ea = ea->semantic(sc); ea = resolveProperties(sc, ea); ta = ea->type; if (ea->op == TOKtype) ea = NULL; } if (!ta) { //printf("ta %p ea %p sa %p\n", ta, ea, sa); error("no type for typeid(%s)", ea ? ea->toChars() : (sa ? sa->toChars() : "")); return new ErrorExp(); } if (ea && ta->toBasetype()->ty == Tclass) { /* Get the dynamic type, which is .classinfo */ e = new DotIdExp(ea->loc, ea, Id::classinfo); e = e->semantic(sc); } else { /* Get the static type */ e = ta->getTypeInfo(sc); if (e->loc.linnum == 0) e->loc = loc; // so there's at least some line number info if (ea) { e = new CommaExp(loc, ea, e); // execute ea e = e->semantic(sc); } } return e; } void TypeidExp::toCBuffer(OutBuffer *buf, HdrGenState *hgs) { buf->writestring("typeid("); ObjectToCBuffer(buf, hgs, obj); buf->writeByte(')'); } /************************ TraitsExp ************************************/ #if DMDV2 /* * __traits(identifier, args...) */ TraitsExp::TraitsExp(Loc loc, Identifier *ident, Objects *args) : Expression(loc, TOKtraits, sizeof(TraitsExp)) { this->ident = ident; this->args = args; } Expression *TraitsExp::syntaxCopy() { return new TraitsExp(loc, ident, TemplateInstance::arraySyntaxCopy(args)); } void TraitsExp::toCBuffer(OutBuffer *buf, HdrGenState *hgs) { buf->writestring("__traits("); buf->writestring(ident->toChars()); if (args) { for (size_t i = 0; i < args->dim; i++) { buf->writestring(", ");; Object *oarg = (*args)[i]; ObjectToCBuffer(buf, hgs, oarg); } } buf->writeByte(')'); } #endif /************************************************************/ HaltExp::HaltExp(Loc loc) : Expression(loc, TOKhalt, sizeof(HaltExp)) { } Expression *HaltExp::semantic(Scope *sc) { #if LOGSEMANTIC printf("HaltExp::semantic()\n"); #endif type = Type::tvoid; return this; } void HaltExp::toCBuffer(OutBuffer *buf, HdrGenState *hgs) { buf->writestring("halt"); } /************************************************************/ IsExp::IsExp(Loc loc, Type *targ, Identifier *id, enum TOK tok, Type *tspec, enum TOK tok2, TemplateParameters *parameters) : Expression(loc, TOKis, sizeof(IsExp)) { this->targ = targ; this->id = id; this->tok = tok; this->tspec = tspec; this->tok2 = tok2; this->parameters = parameters; } Expression *IsExp::syntaxCopy() { // This section is identical to that in TemplateDeclaration::syntaxCopy() TemplateParameters *p = NULL; if (parameters) { p = new TemplateParameters(); p->setDim(parameters->dim); for (size_t i = 0; i < p->dim; i++) { TemplateParameter *tp = (*parameters)[i]; (*p)[i] = tp->syntaxCopy(); } } return new IsExp(loc, targ->syntaxCopy(), id, tok, tspec ? tspec->syntaxCopy() : NULL, tok2, p); } Expression *IsExp::semantic(Scope *sc) { Type *tded; /* is(targ id tok tspec) * is(targ id : tok2) * is(targ id == tok2) */ //printf("IsExp::semantic(%s)\n", toChars()); if (id && !(sc->flags & (SCOPEstaticif | SCOPEstaticassert))) { error("can only declare type aliases within static if conditionals or static asserts"); return new ErrorExp(); } Type *t = targ->trySemantic(loc, sc); if (!t) goto Lno; // errors, so condition is false targ = t; if (tok2 != TOKreserved) { switch (tok2) { case TOKtypedef: if (targ->ty != Ttypedef) goto Lno; tded = ((TypeTypedef *)targ)->sym->basetype; break; case TOKstruct: if (targ->ty != Tstruct) goto Lno; if (((TypeStruct *)targ)->sym->isUnionDeclaration()) goto Lno; tded = targ; break; case TOKunion: if (targ->ty != Tstruct) goto Lno; if (!((TypeStruct *)targ)->sym->isUnionDeclaration()) goto Lno; tded = targ; break; case TOKclass: if (targ->ty != Tclass) goto Lno; if (((TypeClass *)targ)->sym->isInterfaceDeclaration()) goto Lno; tded = targ; break; case TOKinterface: if (targ->ty != Tclass) goto Lno; if (!((TypeClass *)targ)->sym->isInterfaceDeclaration()) goto Lno; tded = targ; break; #if DMDV2 case TOKconst: if (!targ->isConst()) goto Lno; tded = targ; break; case TOKinvariant: deprecation("use of 'invariant' rather than 'immutable' is deprecated"); case TOKimmutable: if (!targ->isImmutable()) goto Lno; tded = targ; break; case TOKshared: if (!targ->isShared()) goto Lno; tded = targ; break; case TOKwild: if (!targ->isWild()) goto Lno; tded = targ; break; #endif case TOKsuper: // If class or interface, get the base class and interfaces if (targ->ty != Tclass) goto Lno; else { ClassDeclaration *cd = ((TypeClass *)targ)->sym; Parameters *args = new Parameters; args->reserve(cd->baseclasses->dim); if (cd->scope && !cd->symtab) cd->semantic(cd->scope); for (size_t i = 0; i < cd->baseclasses->dim; i++) { BaseClass *b = (*cd->baseclasses)[i]; args->push(new Parameter(STCin, b->type, NULL, NULL)); } tded = new TypeTuple(args); } break; case TOKenum: if (targ->ty != Tenum) goto Lno; tded = ((TypeEnum *)targ)->sym->memtype; break; case TOKdelegate: if (targ->ty != Tdelegate) goto Lno; tded = ((TypeDelegate *)targ)->next; // the underlying function type break; case TOKfunction: case TOKparameters: { if (targ->ty != Tfunction) goto Lno; tded = targ; /* Generate tuple from function parameter types. */ assert(tded->ty == Tfunction); Parameters *params = ((TypeFunction *)tded)->parameters; size_t dim = Parameter::dim(params); Parameters *args = new Parameters; args->reserve(dim); for (size_t i = 0; i < dim; i++) { Parameter *arg = Parameter::getNth(params, i); assert(arg && arg->type); /* If one of the default arguments was an error, don't return an invalid tuple */ if (tok2 == TOKparameters && arg->defaultArg && arg->defaultArg->op == TOKerror) return new ErrorExp(); args->push(new Parameter(arg->storageClass, arg->type, (tok2 == TOKparameters) ? arg->ident : NULL, (tok2 == TOKparameters) ? arg->defaultArg : NULL)); } tded = new TypeTuple(args); break; } case TOKreturn: /* Get the 'return type' for the function, * delegate, or pointer to function. */ if (targ->ty == Tfunction) tded = ((TypeFunction *)targ)->next; else if (targ->ty == Tdelegate) { tded = ((TypeDelegate *)targ)->next; tded = ((TypeFunction *)tded)->next; } else if (targ->ty == Tpointer && ((TypePointer *)targ)->next->ty == Tfunction) { tded = ((TypePointer *)targ)->next; tded = ((TypeFunction *)tded)->next; } else goto Lno; break; case TOKargTypes: /* Generate a type tuple of the equivalent types used to determine if a * function argument of this type can be passed in registers. * The results of this are highly platform dependent, and intended * primarly for use in implementing va_arg(). */ tded = targ->toArgTypes(); if (!tded) goto Lno; // not valid for a parameter break; default: assert(0); } goto Lyes; } else if (tspec && !id && !(parameters && parameters->dim)) { /* Evaluate to TRUE if targ matches tspec * is(targ == tspec) * is(targ : tspec) */ tspec = tspec->semantic(loc, sc); //printf("targ = %s, %s\n", targ->toChars(), targ->deco); //printf("tspec = %s, %s\n", tspec->toChars(), tspec->deco); if (tok == TOKcolon) { if (targ->implicitConvTo(tspec)) goto Lyes; else goto Lno; } else /* == */ { if (targ->equals(tspec)) goto Lyes; else goto Lno; } } else if (tspec) { /* Evaluate to TRUE if targ matches tspec. * If TRUE, declare id as an alias for the specialized type. * is(targ == tspec, tpl) * is(targ : tspec, tpl) * is(targ id == tspec) * is(targ id : tspec) * is(targ id == tspec, tpl) * is(targ id : tspec, tpl) */ Identifier *tid = id ? id : Lexer::uniqueId("__isexp_id"); TemplateParameter *tp = new TemplateTypeParameter(loc, tid, NULL, NULL); parameters->insert(0, tp); Objects dedtypes; dedtypes.setDim(parameters->dim); dedtypes.zero(); MATCH m = targ->deduceType(sc, tspec, parameters, &dedtypes); //printf("targ: %s\n", targ->toChars()); //printf("tspec: %s\n", tspec->toChars()); if (m == MATCHnomatch || (m != MATCHexact && tok == TOKequal)) { goto Lno; } else { tded = (Type *)dedtypes[0]; if (!tded) tded = targ; #if DMDV2 Objects tiargs; tiargs.setDim(1); tiargs[0] = targ; /* Declare trailing parameters */ for (size_t i = 1; i < parameters->dim; i++) { TemplateParameter *tp = (*parameters)[i]; Declaration *s = NULL; m = tp->matchArg(sc, &tiargs, i, parameters, &dedtypes, &s); if (m == MATCHnomatch) goto Lno; s->semantic(sc); if (sc->sd) s->addMember(sc, sc->sd, 1); else if (!sc->insert(s)) error("declaration %s is already defined", s->toChars()); } #endif goto Lyes; } } else if (id) { /* Declare id as an alias for type targ. Evaluate to TRUE * is(targ id) */ tded = targ; goto Lyes; } Lyes: if (id) { Dsymbol *s; Tuple *tup = isTuple(tded); if (tup) s = new TupleDeclaration(loc, id, &(tup->objects)); else s = new AliasDeclaration(loc, id, tded); s->semantic(sc); /* The reason for the !tup is unclear. It fails Phobos unittests if it is not there. * More investigation is needed. */ if (!tup && !sc->insert(s)) error("declaration %s is already defined", s->toChars()); if (sc->sd) s->addMember(sc, sc->sd, 1); } //printf("Lyes\n"); return new IntegerExp(loc, 1, Type::tbool); Lno: //printf("Lno\n"); return new IntegerExp(loc, 0, Type::tbool); } void IsExp::toCBuffer(OutBuffer *buf, HdrGenState *hgs) { buf->writestring("is("); targ->toCBuffer(buf, id, hgs); if (tok2 != TOKreserved) { buf->printf(" %s %s", Token::toChars(tok), Token::toChars(tok2)); } else if (tspec) { if (tok == TOKcolon) buf->writestring(" : "); else buf->writestring(" == "); tspec->toCBuffer(buf, NULL, hgs); } #if DMDV2 if (parameters) { for (size_t i = 0; i < parameters->dim; i++) { buf->writestring(", "); TemplateParameter *tp = (*parameters)[i]; tp->toCBuffer(buf, hgs); } } #endif buf->writeByte(')'); } /************************************************************/ UnaExp::UnaExp(Loc loc, enum TOK op, int size, Expression *e1) : Expression(loc, op, size) { this->e1 = e1; this->att1 = NULL; } Expression *UnaExp::syntaxCopy() { UnaExp *e = (UnaExp *)copy(); e->type = NULL; e->e1 = e->e1->syntaxCopy(); return e; } Expression *UnaExp::semantic(Scope *sc) { #if LOGSEMANTIC printf("UnaExp::semantic('%s')\n", toChars()); #endif e1 = e1->semantic(sc); // if (!e1->type) // error("%s has no value", e1->toChars()); return this; } Expression *UnaExp::resolveLoc(Loc loc, Scope *sc) { e1 = e1->resolveLoc(loc, sc); return this; } void UnaExp::toCBuffer(OutBuffer *buf, HdrGenState *hgs) { buf->writestring(Token::toChars(op)); expToCBuffer(buf, hgs, e1, precedence[op]); } /************************************************************/ BinExp::BinExp(Loc loc, enum TOK op, int size, Expression *e1, Expression *e2) : Expression(loc, op, size) { this->e1 = e1; this->e2 = e2; this->att1 = NULL; this->att2 = NULL; } Expression *BinExp::syntaxCopy() { BinExp *e = (BinExp *)copy(); e->type = NULL; e->e1 = e->e1->syntaxCopy(); e->e2 = e->e2->syntaxCopy(); return e; } Expression *BinExp::semantic(Scope *sc) { #if LOGSEMANTIC printf("BinExp::semantic('%s')\n", toChars()); #endif e1 = e1->semantic(sc); e2 = e2->semantic(sc); if (e1->op == TOKerror || e2->op == TOKerror) return new ErrorExp(); return this; } Expression *BinExp::semanticp(Scope *sc) { BinExp::semantic(sc); e1 = resolveProperties(sc, e1); e2 = resolveProperties(sc, e2); return this; } Expression *BinExp::checkComplexOpAssign(Scope *sc) { // generate an error if this is a nonsensical *=,/=, or %=, eg real *= imaginary if (op == TOKmulass || op == TOKdivass || op == TOKmodass) { // Any multiplication by an imaginary or complex number yields a complex result. // r *= c, i*=c, r*=i, i*=i are all forbidden operations. const char *opstr = Token::toChars(op); if ( e1->type->isreal() && e2->type->iscomplex()) { error("%s %s %s is undefined. Did you mean %s %s %s.re ?", e1->type->toChars(), opstr, e2->type->toChars(), e1->type->toChars(), opstr, e2->type->toChars()); } else if (e1->type->isimaginary() && e2->type->iscomplex()) { error("%s %s %s is undefined. Did you mean %s %s %s.im ?", e1->type->toChars(), opstr, e2->type->toChars(), e1->type->toChars(), opstr, e2->type->toChars()); } else if ((e1->type->isreal() || e1->type->isimaginary()) && e2->type->isimaginary()) { error("%s %s %s is an undefined operation", e1->type->toChars(), opstr, e2->type->toChars()); } } // generate an error if this is a nonsensical += or -=, eg real += imaginary if (op == TOKaddass || op == TOKminass) { // Addition or subtraction of a real and an imaginary is a complex result. // Thus, r+=i, r+=c, i+=r, i+=c are all forbidden operations. if ( (e1->type->isreal() && (e2->type->isimaginary() || e2->type->iscomplex())) || (e1->type->isimaginary() && (e2->type->isreal() || e2->type->iscomplex())) ) { error("%s %s %s is undefined (result is complex)", e1->type->toChars(), Token::toChars(op), e2->type->toChars()); } if (type->isreal() || type->isimaginary()) { assert(global.errors || e2->type->isfloating()); e2 = e2->castTo(sc, e1->type); } } if (op == TOKmulass) { if (e2->type->isfloating()) { Type *t1 = e1->type; Type *t2 = e2->type; if (t1->isreal()) { if (t2->isimaginary() || t2->iscomplex()) { e2 = e2->castTo(sc, t1); } } else if (t1->isimaginary()) { if (t2->isimaginary() || t2->iscomplex()) { switch (t1->ty) { case Timaginary32: t2 = Type::tfloat32; break; case Timaginary64: t2 = Type::tfloat64; break; case Timaginary80: t2 = Type::tfloat80; break; default: assert(0); } e2 = e2->castTo(sc, t2); } } } } else if (op == TOKdivass) { if (e2->type->isimaginary()) { Type *t1 = e1->type; if (t1->isreal()) { // x/iv = i(-x/v) // Therefore, the result is 0 e2 = new CommaExp(loc, e2, new RealExp(loc, ldouble(0.0), t1)); e2->type = t1; Expression *e = new AssignExp(loc, e1, e2); e->type = t1; return e; } else if (t1->isimaginary()) { Type *t2; switch (t1->ty) { case Timaginary32: t2 = Type::tfloat32; break; case Timaginary64: t2 = Type::tfloat64; break; case Timaginary80: t2 = Type::tfloat80; break; default: assert(0); } e2 = e2->castTo(sc, t2); Expression *e = new AssignExp(loc, e1, e2); e->type = t1; return e; } } } else if (op == TOKmodass) { if (e2->type->iscomplex()) { error("cannot perform modulo complex arithmetic"); return new ErrorExp(); } } return this; } void BinExp::toCBuffer(OutBuffer *buf, HdrGenState *hgs) { expToCBuffer(buf, hgs, e1, precedence[op]); buf->writeByte(' '); buf->writestring(Token::toChars(op)); buf->writeByte(' '); expToCBuffer(buf, hgs, e2, (enum PREC)(precedence[op] + 1)); } int BinExp::isunsigned() { return e1->type->isunsigned() || e2->type->isunsigned(); } Expression *BinExp::incompatibleTypes() { if (e1->type->toBasetype() != Type::terror && e2->type->toBasetype() != Type::terror ) { // CondExp uses 'a ? b : c' but we're comparing 'b : c' TOK thisOp = (op == TOKquestion) ? TOKcolon : op; if (e1->op == TOKtype || e2->op == TOKtype) { error("incompatible types for ((%s) %s (%s)): cannot use '%s' with types", e1->toChars(), Token::toChars(thisOp), e2->toChars(), Token::toChars(op)); } else { error("incompatible types for ((%s) %s (%s)): '%s' and '%s'", e1->toChars(), Token::toChars(thisOp), e2->toChars(), e1->type->toChars(), e2->type->toChars()); } return new ErrorExp(); } return this; } /********************** BinAssignExp **************************************/ Expression *BinAssignExp::semantic(Scope *sc) { Expression *e; if (type) return this; e = op_overload(sc); if (e) return e; if (e1->op == TOKarraylength) { e = ArrayLengthExp::rewriteOpAssign(this); e = e->semantic(sc); return e; } else if (e1->op == TOKslice) { // T[] op= ... e = typeCombine(sc); if (e->op == TOKerror) return e; type = e1->type; return arrayOp(sc); } e1 = e1->semantic(sc); e1 = e1->optimize(WANTvalue); e1 = e1->modifiableLvalue(sc, e1); type = e1->type; checkScalar(); int arith = (op == TOKaddass || op == TOKminass || op == TOKmulass || op == TOKdivass || op == TOKmodass || op == TOKpowass); int bitwise = (op == TOKandass || op == TOKorass || op == TOKxorass); int shift = (op == TOKshlass || op == TOKshrass || op == TOKushrass); if (bitwise && type->toBasetype()->ty == Tbool) e2 = e2->implicitCastTo(sc, type); else checkNoBool(); if ((op == TOKaddass || op == TOKminass) && e1->type->toBasetype()->ty == Tpointer && e2->type->toBasetype()->isintegral()) return scaleFactor(sc); typeCombine(sc); if (arith) { e1 = e1->checkArithmetic(); e2 = e2->checkArithmetic(); } if (bitwise || shift) { e1 = e1->checkIntegral(); e2 = e2->checkIntegral(); } if (shift) { #if IN_LLVM e2 = e2->castTo(sc, e1->type); #else e2 = e2->castTo(sc, Type::tshiftcnt); #endif } // vectors if (shift && (e1->type->toBasetype()->ty == Tvector || e2->type->toBasetype()->ty == Tvector)) return incompatibleTypes(); int isvector = type->toBasetype()->ty == Tvector; if (op == TOKmulass && isvector && !e2->type->isfloating() && ((TypeVector *)type->toBasetype())->elementType()->size(loc) != 2) return incompatibleTypes(); // Only short[8] and ushort[8] work with multiply if (op == TOKdivass && isvector && !e1->type->isfloating()) return incompatibleTypes(); if (op == TOKmodass && isvector) return incompatibleTypes(); if (e1->op == TOKerror || e2->op == TOKerror) return new ErrorExp(); checkComplexOpAssign(sc); return reorderSettingAAElem(sc); } #if DMDV2 int BinAssignExp::isLvalue() { return 1; } Expression *BinAssignExp::toLvalue(Scope *sc, Expression *ex) { Expression *e; if (e1->op == TOKvar) { /* Convert (e1 op= e2) to * e1 op= e2; * e1 */ e = e1->copy(); e = new CommaExp(loc, this, e); e = e->semantic(sc); } else { /* Convert (e1 op= e2) to * ref v = e1; * v op= e2; * v */ // ref v = e1; Identifier *id = Lexer::uniqueId("__assignop"); ExpInitializer *ei = new ExpInitializer(loc, e1); VarDeclaration *v = new VarDeclaration(loc, e1->type, id, ei); v->storage_class |= STCref | STCforeach; Expression *de = new DeclarationExp(loc, v); // v op= e2 e1 = new VarExp(e1->loc, v); e = new CommaExp(loc, de, this); e = new CommaExp(loc, e, new VarExp(loc, v)); e = e->semantic(sc); } return e; } Expression *BinAssignExp::modifiableLvalue(Scope *sc, Expression *e) { // should check e1->checkModifiable() ? return toLvalue(sc, this); } #endif /************************************************************/ CompileExp::CompileExp(Loc loc, Expression *e) : UnaExp(loc, TOKmixin, sizeof(CompileExp), e) { } Expression *CompileExp::semantic(Scope *sc) { #if LOGSEMANTIC printf("CompileExp::semantic('%s')\n", toChars()); #endif e1 = e1->ctfeSemantic(sc); e1 = resolveProperties(sc, e1); if (e1->op == TOKerror) return e1; if (!e1->type->isString()) { error("argument to mixin must be a string type, not %s", e1->type->toChars()); return new ErrorExp(); } e1 = e1->ctfeInterpret(); StringExp *se = e1->toString(); if (!se) { error("argument to mixin must be a string, not (%s)", e1->toChars()); return new ErrorExp(); } se = se->toUTF8(sc); Parser p(sc->module, (unsigned char *)se->string, se->len, 0); p.loc = loc; p.nextToken(); //printf("p.loc.linnum = %d\n", p.loc.linnum); unsigned errors = global.errors; Expression *e = p.parseExpression(); if (global.errors != errors) return new ErrorExp(); if (p.token.value != TOKeof) { error("incomplete mixin expression (%s)", se->toChars()); return new ErrorExp(); } return e->semantic(sc); } void CompileExp::toCBuffer(OutBuffer *buf, HdrGenState *hgs) { buf->writestring("mixin("); expToCBuffer(buf, hgs, e1, PREC_assign); buf->writeByte(')'); } /************************************************************/ FileExp::FileExp(Loc loc, Expression *e) : UnaExp(loc, TOKmixin, sizeof(FileExp), e) { } Expression *FileExp::semantic(Scope *sc) { const char *name; StringExp *se; #if LOGSEMANTIC printf("FileExp::semantic('%s')\n", toChars()); #endif e1 = e1->ctfeSemantic(sc); e1 = resolveProperties(sc, e1); e1 = e1->ctfeInterpret(); if (e1->op != TOKstring) { error("file name argument must be a string, not (%s)", e1->toChars()); goto Lerror; } se = (StringExp *)e1; se = se->toUTF8(sc); name = (char *)se->string; if (!global.params.fileImppath) { error("need -Jpath switch to import text file %s", name); goto Lerror; } /* Be wary of CWE-22: Improper Limitation of a Pathname to a Restricted Directory * ('Path Traversal') attacks. * http://cwe.mitre.org/data/definitions/22.html */ name = FileName::safeSearchPath(global.filePath, name); if (!name) { error("file %s cannot be found or not in a path specified with -J", se->toChars()); goto Lerror; } if (global.params.verbose) printf("file %s\t(%s)\n", (char *)se->string, name); { File f(name); if (f.read()) { error("cannot read file %s", f.toChars()); goto Lerror; } else { f.ref = 1; se = new StringExp(loc, f.buffer, f.len); } } return se->semantic(sc); Lerror: return new ErrorExp(); } void FileExp::toCBuffer(OutBuffer *buf, HdrGenState *hgs) { buf->writestring("import("); expToCBuffer(buf, hgs, e1, PREC_assign); buf->writeByte(')'); } /************************************************************/ AssertExp::AssertExp(Loc loc, Expression *e, Expression *msg) : UnaExp(loc, TOKassert, sizeof(AssertExp), e) { this->msg = msg; } Expression *AssertExp::syntaxCopy() { AssertExp *ae = new AssertExp(loc, e1->syntaxCopy(), msg ? msg->syntaxCopy() : NULL); return ae; } Expression *AssertExp::semantic(Scope *sc) { #if LOGSEMANTIC printf("AssertExp::semantic('%s')\n", toChars()); #endif UnaExp::semantic(sc); e1 = resolveProperties(sc, e1); // BUG: see if we can do compile time elimination of the Assert e1 = e1->optimize(WANTvalue); e1 = e1->checkToBoolean(sc); if (msg) { msg = msg->semantic(sc); msg = resolveProperties(sc, msg); msg = msg->implicitCastTo(sc, Type::tchar->constOf()->arrayOf()); msg = msg->optimize(WANTvalue); } if (e1->isBool(FALSE)) { FuncDeclaration *fd = sc->parent->isFuncDeclaration(); if (fd) fd->hasReturnExp |= 4; if (!global.params.useAssert) { Expression *e = new HaltExp(loc); e = e->semantic(sc); return e; } } type = Type::tvoid; return this; } void AssertExp::toCBuffer(OutBuffer *buf, HdrGenState *hgs) { buf->writestring("assert("); expToCBuffer(buf, hgs, e1, PREC_assign); if (msg) { buf->writestring(", "); expToCBuffer(buf, hgs, msg, PREC_assign); } buf->writeByte(')'); } /************************************************************/ DotIdExp::DotIdExp(Loc loc, Expression *e, Identifier *ident) : UnaExp(loc, TOKdot, sizeof(DotIdExp), e) { this->ident = ident; } Expression *DotIdExp::semantic(Scope *sc) { #if LOGSEMANTIC printf("DotIdExp::semantic(this = %p, '%s')\n", this, toChars()); //printf("e1->op = %d, '%s'\n", e1->op, Token::toChars(e1->op)); #endif Expression *e = semanticY(sc, 1); if (!e) // if failed to find the property { /* If ident is not a valid property, rewrite: * e1.ident * as: * .ident(e1) */ e = resolveUFCSProperties(sc, this); } return e; } // Run sematnic in e1 Expression *DotIdExp::semanticX(Scope *sc) { //printf("DotIdExp::semanticX(this = %p, '%s')\n", this, toChars()); Expression *e; UnaExp::semantic(sc); if (e1->op == TOKerror) return e1; if (ident == Id::mangleof) { // symbol.mangleof Dsymbol *ds; switch (e1->op) { case TOKimport: ds = ((ScopeExp *)e1)->sds; goto L1; case TOKvar: ds = ((VarExp *)e1)->var; goto L1; case TOKdotvar: ds = ((DotVarExp *)e1)->var; goto L1; default: break; L1: const char* s = ds->mangle(); e = new StringExp(loc, (void*)s, strlen(s), 'c'); e = e->semantic(sc); return e; } } if (e1->op == TOKdotexp) { } else { e1 = resolvePropertiesX(sc, e1); } #if DMDV2 if (e1->op == TOKtuple && ident == Id::offsetof) { /* 'distribute' the .offsetof to each of the tuple elements. */ TupleExp *te = (TupleExp *)e1; Expressions *exps = new Expressions(); exps->setDim(te->exps->dim); for (size_t i = 0; i < exps->dim; i++) { Expression *e = (*te->exps)[i]; e = e->semantic(sc); e = new DotIdExp(e->loc, e, Id::offsetof); (*exps)[i] = e; } // Don't evaluate te->e0 in runtime e = new TupleExp(loc, /*te->e0*/NULL, exps); e = e->semantic(sc); return e; } #endif if (e1->op == TOKtuple && ident == Id::length) { TupleExp *te = (TupleExp *)e1; // Don't evaluate te->e0 in runtime e = new IntegerExp(loc, te->exps->dim, Type::tsize_t); return e; } if (e1->op == TOKdottd) { error("template %s does not have property %s", e1->toChars(), ident->toChars()); return new ErrorExp(); } if (!e1->type) { error("expression %s does not have property %s", e1->toChars(), ident->toChars()); return new ErrorExp(); } return this; } // Resolve e1.ident without seeing UFCS. // If flag == 1, stop "not a property" error and return NULL. Expression *DotIdExp::semanticY(Scope *sc, int flag) { //printf("DotIdExp::semanticY(this = %p, '%s')\n", this, toChars()); //{ static int z; fflush(stdout); if (++z == 10) *(char*)0=0; } /* Special case: rewrite this.id and super.id * to be classtype.id and baseclasstype.id * if we have no this pointer. */ if ((e1->op == TOKthis || e1->op == TOKsuper) && !hasThis(sc)) { if (AggregateDeclaration *ad = sc->getStructClassScope()) { if (ClassDeclaration *cd = ad->isClassDeclaration()) { if (e1->op == TOKthis) { DotIdExp *die = typeDotIdExp(loc, cd->type, ident); return die->semanticY(sc, flag); } else if (cd->baseClass && e1->op == TOKsuper) { DotIdExp *die = typeDotIdExp(loc, cd->baseClass->type, ident); return die->semanticY(sc, flag); } } else if (StructDeclaration *sd = ad->isStructDeclaration()) { if (e1->op == TOKthis) { DotIdExp *die = typeDotIdExp(loc, sd->type, ident); return die->semanticY(sc, flag); } } } } Expression *e = semanticX(sc); if (e != this) return e; Expression *eleft; Expression *eright; if (e1->op == TOKdotexp) { DotExp *de = (DotExp *)e1; eleft = de->e1; eright = de->e2; } else { eleft = NULL; eright = e1; } Type *t1b = e1->type->toBasetype(); if (eright->op == TOKimport) // also used for template alias's { ScopeExp *ie = (ScopeExp *)eright; /* Disable access to another module's private imports. * The check for 'is sds our current module' is because * the current module should have access to its own imports. */ Dsymbol *s = ie->sds->search(loc, ident, (ie->sds->isModule() && ie->sds != sc->module) ? 1 : 0); if (s) { /* Check for access before resolving aliases because public * aliases to private symbols are public. */ if (Declaration *d = s->isDeclaration()) accessCheck(loc, sc, NULL, d); s = s->toAlias(); checkDeprecated(sc, s); EnumMember *em = s->isEnumMember(); if (em) { return em->getVarExp(loc, sc); } VarDeclaration *v = s->isVarDeclaration(); if (v) { //printf("DotIdExp:: Identifier '%s' is a variable, type '%s'\n", toChars(), v->type->toChars()); if (v->inuse) { error("circular reference to '%s'", v->toChars()); return new ErrorExp(); } type = v->type; if (v->needThis()) { if (!eleft) eleft = new ThisExp(loc); e = new DotVarExp(loc, eleft, v); e = e->semantic(sc); } else { e = new VarExp(loc, v); if (eleft) { e = new CommaExp(loc, eleft, e); e->type = v->type; } } e = e->deref(); return e->semantic(sc); } FuncDeclaration *f = s->isFuncDeclaration(); if (f) { //printf("it's a function\n"); if (!f->functionSemantic()) return new ErrorExp(); if (f->needThis()) { if (!eleft) eleft = new ThisExp(loc); e = new DotVarExp(loc, eleft, f); e = e->semantic(sc); } else { e = new VarExp(loc, f, 1); if (eleft) { e = new CommaExp(loc, eleft, e); e->type = f->type; } } return e; } #if DMDV2 OverloadSet *o = s->isOverloadSet(); if (o) { //printf("'%s' is an overload set\n", o->toChars()); return new OverExp(loc, o); } #endif Type *t = s->getType(); if (t) { return new TypeExp(loc, t); } TupleDeclaration *tup = s->isTupleDeclaration(); if (tup) { if (eleft) { error("cannot have e.tuple"); return new ErrorExp(); } e = new TupleExp(loc, tup); e = e->semantic(sc); return e; } ScopeDsymbol *sds = s->isScopeDsymbol(); if (sds) { //printf("it's a ScopeDsymbol\n"); e = new ScopeExp(loc, sds); e = e->semantic(sc); if (eleft) e = new DotExp(loc, eleft, e); return e; } Import *imp = s->isImport(); if (imp) { ScopeExp *ie; ie = new ScopeExp(loc, imp->pkg); return ie->semantic(sc); } // BUG: handle other cases like in IdentifierExp::semantic() #ifdef DEBUG printf("s = '%s', kind = '%s'\n", s->toChars(), s->kind()); #endif assert(0); } else if (ident == Id::stringof) { char *s = ie->toChars(); e = new StringExp(loc, s, strlen(s), 'c'); e = e->semantic(sc); return e; } if (ie->sds->isPackage() || ie->sds->isImport() || ie->sds->isModule()) { flag = 0; } if (flag) return NULL; s = ie->sds->search_correct(ident); if (s) error("undefined identifier '%s', did you mean '%s %s'?", ident->toChars(), s->kind(), s->toChars()); else error("undefined identifier '%s'", ident->toChars()); return new ErrorExp(); } else if (t1b->ty == Tpointer && e1->type->ty != Tenum && ident != Id::init && ident != Id::__sizeof && ident != Id::__xalignof && ident != Id::offsetof && ident != Id::mangleof && ident != Id::stringof) { /* Rewrite: * p.ident * as: * (*p).ident */ if (flag && t1b->nextOf()->ty == Tvoid) return NULL; e = new PtrExp(loc, e1); e = e->semantic(sc); return e->type->dotExp(sc, e, ident, flag); } else { if (e1->op == TOKtemplate) flag = 0; e = e1->type->dotExp(sc, e1, ident, flag); if (!flag || e) e = e->semantic(sc); return e; } } void DotIdExp::toCBuffer(OutBuffer *buf, HdrGenState *hgs) { //printf("DotIdExp::toCBuffer()\n"); expToCBuffer(buf, hgs, e1, PREC_primary); buf->writeByte('.'); buf->writestring(ident->toChars()); } /********************** DotTemplateExp ***********************************/ // Mainly just a placeholder DotTemplateExp::DotTemplateExp(Loc loc, Expression *e, TemplateDeclaration *td) : UnaExp(loc, TOKdottd, sizeof(DotTemplateExp), e) { this->td = td; } void DotTemplateExp::toCBuffer(OutBuffer *buf, HdrGenState *hgs) { expToCBuffer(buf, hgs, e1, PREC_primary); buf->writeByte('.'); buf->writestring(td->toChars()); } /************************************************************/ DotVarExp::DotVarExp(Loc loc, Expression *e, Declaration *v, int hasOverloads) : UnaExp(loc, TOKdotvar, sizeof(DotVarExp), e) { //printf("DotVarExp()\n"); this->var = v; this->hasOverloads = hasOverloads; } Expression *DotVarExp::semantic(Scope *sc) { #if LOGSEMANTIC printf("DotVarExp::semantic('%s')\n", toChars()); #endif if (!type) { var = var->toAlias()->isDeclaration(); TupleDeclaration *tup = var->isTupleDeclaration(); if (tup) { /* Replace: * e1.tuple(a, b, c) * with: * tuple(e1.a, e1.b, e1.c) */ e1 = e1->semantic(sc); Expressions *exps = new Expressions; Expression *e0 = NULL; Expression *ev = e1; if (sc->func && e1->hasSideEffect()) { Identifier *id = Lexer::uniqueId("__tup"); ExpInitializer *ei = new ExpInitializer(e1->loc, e1); VarDeclaration *v = new VarDeclaration(e1->loc, NULL, id, ei); v->storage_class |= STCctfe | STCref | STCforeach; e0 = new DeclarationExp(e1->loc, v); ev = new VarExp(e1->loc, v); e0 = e0->semantic(sc); ev = ev->semantic(sc); } exps->reserve(tup->objects->dim); for (size_t i = 0; i < tup->objects->dim; i++) { Object *o = (*tup->objects)[i]; Expression *e; if (o->dyncast() == DYNCAST_EXPRESSION) { e = (Expression *)o; if (e->op == TOKdsymbol) { Dsymbol *s = ((DsymbolExp *)e)->s; e = new DotVarExp(loc, ev, s->isDeclaration()); } } else if (o->dyncast() == DYNCAST_DSYMBOL) { e = new DsymbolExp(loc, (Dsymbol *)o); } else if (o->dyncast() == DYNCAST_TYPE) { e = new TypeExp(loc, (Type *)o); } else { error("%s is not an expression", o->toChars()); goto Lerr; } exps->push(e); } Expression *e = new TupleExp(loc, e0, exps); e = e->semantic(sc); return e; } e1 = e1->semantic(sc); e1 = e1->addDtorHook(sc); Type *t1 = e1->type; FuncDeclaration *f = var->isFuncDeclaration(); if (f) // for functions, do checks after overload resolution { //printf("L%d fd = %s\n", __LINE__, f->toChars()); if (!f->functionSemantic()) return new ErrorExp(); type = f->type; assert(type); } else { type = var->type; if (!type && global.errors) { // var is goofed up, just return 0 goto Lerr; } assert(type); if (t1->ty == Tpointer) t1 = t1->nextOf(); type = type->addMod(t1->mod); Dsymbol *vparent = var->toParent(); AggregateDeclaration *ad = vparent ? vparent->isAggregateDeclaration() : NULL; e1 = getRightThis(loc, sc, ad, e1, var); if (!sc->noaccesscheck) accessCheck(loc, sc, e1, var); VarDeclaration *v = var->isVarDeclaration(); #if PULL93 if (v && (v->isDataseg() || (v->storage_class & STCmanifest))) #endif { Expression *e = expandVar(WANTvalue, v); if (e) return e; } if (v && v->isDataseg()) // fix bugzilla 8238 { // (e1, v) accessCheck(loc, sc, e1, v); VarExp *ve = new VarExp(loc, v); Expression *e = new CommaExp(loc, e1, ve); e = e->semantic(sc); return e; } } Dsymbol *s; if (sc->func && !sc->intypeof && t1->hasPointers() && (s = t1->toDsymbol(sc)) != NULL) { AggregateDeclaration *ad = s->isAggregateDeclaration(); if (ad && ad->hasUnions) { if (sc->func->setUnsafe()) { error("union %s containing pointers are not allowed in @safe functions", t1->toChars()); goto Lerr; } } } } //printf("-DotVarExp::semantic('%s')\n", toChars()); return this; Lerr: return new ErrorExp(); } int DotVarExp::isLvalue() { return 1; } Expression *DotVarExp::toLvalue(Scope *sc, Expression *e) { //printf("DotVarExp::toLvalue(%s)\n", toChars()); return this; } /*********************************************** * Mark variable v as modified if it is inside a constructor that var * is a field in. */ int modifyFieldVar(Loc loc, Scope *sc, VarDeclaration *var, Expression *e1) { //printf("modifyFieldVar(var = %s)\n", var->toChars()); Dsymbol *s = sc->func; while (1) { FuncDeclaration *fd = NULL; if (s) fd = s->isFuncDeclaration(); if (fd && ((fd->isCtorDeclaration() && var->isField()) || (fd->isStaticCtorDeclaration() && !var->isField())) && fd->toParent2() == var->toParent2() && (!e1 || e1->op == TOKthis) ) { var->ctorinit = 1; //printf("setting ctorinit\n"); return TRUE; } else { if (s) { s = s->toParent2(); continue; } } break; } return FALSE; } int DotVarExp::checkModifiable(Scope *sc, int flag) { //printf("DotVarExp::checkModifiable %s %s\n", toChars(), type->toChars()); if (e1->op == TOKthis) return var->checkModify(loc, sc, type, e1, flag); //printf("\te1 = %s\n", e1->toChars()); return e1->checkModifiable(sc, flag); } Expression *DotVarExp::modifiableLvalue(Scope *sc, Expression *e) { #if 0 printf("DotVarExp::modifiableLvalue(%s)\n", toChars()); printf("e1->type = %s\n", e1->type->toChars()); printf("var->type = %s\n", var->type->toChars()); #endif return Expression::modifiableLvalue(sc, e); } void DotVarExp::toCBuffer(OutBuffer *buf, HdrGenState *hgs) { expToCBuffer(buf, hgs, e1, PREC_primary); buf->writeByte('.'); buf->writestring(var->toChars()); } /************************************************************/ /* Things like: * foo.bar!(args) */ DotTemplateInstanceExp::DotTemplateInstanceExp(Loc loc, Expression *e, Identifier *name, Objects *tiargs) : UnaExp(loc, TOKdotti, sizeof(DotTemplateInstanceExp), e) { //printf("DotTemplateInstanceExp()\n"); this->ti = new TemplateInstance(loc, name); this->ti->tiargs = tiargs; } Expression *DotTemplateInstanceExp::syntaxCopy() { DotTemplateInstanceExp *de = new DotTemplateInstanceExp(loc, e1->syntaxCopy(), ti->name, TemplateInstance::arraySyntaxCopy(ti->tiargs)); return de; } TemplateDeclaration *DotTemplateInstanceExp::getTempdecl(Scope *sc) { #if LOGSEMANTIC printf("DotTemplateInstanceExp::getTempdecl('%s')\n", toChars()); #endif if (!ti->tempdecl) { Expression *e = new DotIdExp(loc, e1, ti->name); e = e->semantic(sc); if (e->op == TOKdottd) { DotTemplateExp *dte = (DotTemplateExp *)e; ti->tempdecl = dte->td; } else if (e->op == TOKimport) { ScopeExp *se = (ScopeExp *)e; ti->tempdecl = se->sds->isTemplateDeclaration(); } } return ti->tempdecl; } Expression *DotTemplateInstanceExp::semantic(Scope *sc) { #if LOGSEMANTIC printf("DotTemplateInstanceExp::semantic('%s')\n", toChars()); #endif // Indicate we need to resolve by UFCS. Expression *e = semanticY(sc, 1); if (!e) e = resolveUFCSProperties(sc, this); return e; } // Resolve e1.ident!tiargs without seeing UFCS. // If flag == 1, stop "not a property" error and return NULL. Expression *DotTemplateInstanceExp::semanticY(Scope *sc, int flag) { #if LOGSEMANTIC printf("DotTemplateInstanceExpY::semantic('%s')\n", toChars()); #endif DotIdExp *die = new DotIdExp(loc, e1, ti->name); Expression *e = die->semanticX(sc); if (e == die) { e1 = die->e1; // take back Type *t1b = e1->type->toBasetype(); if (t1b->ty == Tarray || t1b->ty == Tsarray || t1b->ty == Taarray || t1b->ty == Tnull || (t1b->isTypeBasic() && t1b->ty != Tvoid)) { /* No built-in type has templatized properties, so do shortcut. * It is necessary in: 1024.max!"a < b" */ if (flag) return NULL; } e = die->semanticY(sc, flag); if (flag && !e) return NULL; } assert(e); L1: if (e->op == TOKerror) return e; if (e->op == TOKdottd) { if (ti->errors) return new ErrorExp(); DotTemplateExp *dte = (DotTemplateExp *)e; TemplateDeclaration *td = dte->td; Expression *eleft = dte->e1; ti->tempdecl = td; if (ti->needsTypeInference(sc)) { e1 = eleft; // save result of semantic() return this; } else ti->semantic(sc); if (!ti->inst) // if template failed to expand return new ErrorExp(); Dsymbol *s = ti->inst->toAlias(); Declaration *v = s->isDeclaration(); if (v && (v->isFuncDeclaration() || v->isVarDeclaration())) { /* Fix for Bugzilla 4003 * The problem is a class template member function v returning a reference to the same * type as the enclosing template instantiation. This results in a nested instantiation, * which of course gets short circuited. The return type then gets set to * the template instance type before instantiation, rather than after. * We can detect this by the deco not being set. If so, go ahead and retry * the return type semantic. * The offending code is the return type from std.typecons.Tuple.slice: * ref Tuple!(Types[from .. to]) slice(uint from, uint to)() * { * return *cast(typeof(return) *) &(field[from]); * } * and this line from the following unittest: * auto s = a.slice!(1, 3); * where s's type wound up not having semantic() run on it. */ if (v->type && !v->type->deco) v->type = v->type->semantic(v->loc, sc); e = new DotVarExp(loc, eleft, v); e = e->semantic(sc); return e; } if (eleft->op == TOKtype) { e = new DsymbolExp(loc, s); e = e->semantic(sc); return e; } e = new ScopeExp(loc, ti); e = new DotExp(loc, eleft, e); e = e->semantic(sc); return e; } else if (e->op == TOKimport) { ScopeExp *se = (ScopeExp *)e; TemplateDeclaration *td = se->sds->isTemplateDeclaration(); if (!td) { error("%s is not a template", e->toChars()); return new ErrorExp(); } ti->tempdecl = td; e = new ScopeExp(loc, ti); e = e->semantic(sc); return e; } else if (e->op == TOKdotexp) { DotExp *de = (DotExp *)e; if (de->e2->op == TOKoverloadset) { return e; } if (de->e2->op == TOKimport) { // This should *really* be moved to ScopeExp::semantic() ScopeExp *se = (ScopeExp *)de->e2; de->e2 = new DsymbolExp(loc, se->sds); de->e2 = de->e2->semantic(sc); } if (de->e2->op == TOKtemplate) { TemplateExp *te = (TemplateExp *) de->e2; e = new DotTemplateExp(loc,de->e1,te->td); } else goto Lerr; e = e->semantic(sc); if (e == de) goto Lerr; goto L1; } Lerr: error("%s isn't a template", e->toChars()); return new ErrorExp(); } void DotTemplateInstanceExp::toCBuffer(OutBuffer *buf, HdrGenState *hgs) { expToCBuffer(buf, hgs, e1, PREC_primary); buf->writeByte('.'); ti->toCBuffer(buf, hgs); } /************************************************************/ DelegateExp::DelegateExp(Loc loc, Expression *e, FuncDeclaration *f, int hasOverloads) : UnaExp(loc, TOKdelegate, sizeof(DelegateExp), e) { this->func = f; this->hasOverloads = hasOverloads; } Expression *DelegateExp::semantic(Scope *sc) { #if LOGSEMANTIC printf("DelegateExp::semantic('%s')\n", toChars()); #endif if (!type) { e1 = e1->semantic(sc); #if IN_LLVM // LDC we need a copy as we store the LLVM type in TypeFunction, // and delegate/members have different types for 'this' Type *funcType = func->type->syntaxCopy(); funcType->deco = func->type->deco; type = new TypeDelegate(funcType); #else type = new TypeDelegate(func->type); #endif type = type->semantic(loc, sc); AggregateDeclaration *ad = func->toParent()->isAggregateDeclaration(); if (func->needThis()) e1 = getRightThis(loc, sc, ad, e1, func); if (ad && ad->isClassDeclaration() && ad->type != e1->type) { // A downcast is required for interfaces, see Bugzilla 3706 e1 = new CastExp(loc, e1, ad->type); e1 = e1->semantic(sc); } } return this; } void DelegateExp::toCBuffer(OutBuffer *buf, HdrGenState *hgs) { buf->writeByte('&'); if (!func->isNested()) { expToCBuffer(buf, hgs, e1, PREC_primary); buf->writeByte('.'); } buf->writestring(func->toChars()); } /************************************************************/ DotTypeExp::DotTypeExp(Loc loc, Expression *e, Dsymbol *s) : UnaExp(loc, TOKdottype, sizeof(DotTypeExp), e) { this->sym = s; this->type = s->getType(); } Expression *DotTypeExp::semantic(Scope *sc) { #if LOGSEMANTIC printf("DotTypeExp::semantic('%s')\n", toChars()); #endif UnaExp::semantic(sc); return this; } void DotTypeExp::toCBuffer(OutBuffer *buf, HdrGenState *hgs) { expToCBuffer(buf, hgs, e1, PREC_primary); buf->writeByte('.'); buf->writestring(sym->toChars()); } /************************************************************/ CallExp::CallExp(Loc loc, Expression *e, Expressions *exps) : UnaExp(loc, TOKcall, sizeof(CallExp), e) { this->arguments = exps; this->f = NULL; } CallExp::CallExp(Loc loc, Expression *e) : UnaExp(loc, TOKcall, sizeof(CallExp), e) { this->arguments = NULL; } CallExp::CallExp(Loc loc, Expression *e, Expression *earg1) : UnaExp(loc, TOKcall, sizeof(CallExp), e) { Expressions *arguments = new Expressions(); if (earg1) { arguments->setDim(1); (*arguments)[0] = earg1; } this->arguments = arguments; } CallExp::CallExp(Loc loc, Expression *e, Expression *earg1, Expression *earg2) : UnaExp(loc, TOKcall, sizeof(CallExp), e) { Expressions *arguments = new Expressions(); arguments->setDim(2); (*arguments)[0] = earg1; (*arguments)[1] = earg2; this->arguments = arguments; } Expression *CallExp::syntaxCopy() { return new CallExp(loc, e1->syntaxCopy(), arraySyntaxCopy(arguments)); } Expression *CallExp::semantic(Scope *sc) { Type *t1; int istemp; Objects *tiargs = NULL; // initial list of template arguments TemplateInstance *tierror = NULL; Expression *ethis = NULL; Type *tthis = NULL; #if LOGSEMANTIC printf("CallExp::semantic() %s\n", toChars()); #endif if (type) return this; // semantic() already run #if 0 if (arguments && arguments->dim) { Expression *earg = (*arguments)[0]; earg->print(); if (earg->type) earg->type->print(); } #endif if (e1->op == TOKcomma) { /* Rewrite (a,b)(args) as (a,(b(args))) */ CommaExp *ce = (CommaExp *)e1; e1 = ce->e2; e1->type = ce->type; ce->e2 = this; ce->type = NULL; return ce->semantic(sc); } if (e1->op == TOKdelegate) { DelegateExp *de = (DelegateExp *)e1; e1 = new DotVarExp(de->loc, de->e1, de->func); return semantic(sc); } if (e1->op == TOKfunction) { FuncExp *fe = (FuncExp *)e1; arguments = arrayExpressionSemantic(arguments, sc); preFunctionParameters(loc, sc, arguments); e1 = fe->semantic(sc, arguments); if (e1->op == TOKerror) return e1; } Expression *e = resolveUFCS(sc, this); if (e) return e; /* This recognizes: * foo!(tiargs)(funcargs) */ if (e1->op == TOKimport && !e1->type) { ScopeExp *se = (ScopeExp *)e1; TemplateInstance *ti = se->sds->isTemplateInstance(); if (ti && !ti->semanticRun) { /* Attempt to instantiate ti. If that works, go with it. * If not, go with partial explicit specialization. */ unsigned olderrors = global.errors; ti->semanticTiargs(sc); if (olderrors != global.errors) return new ErrorExp(); if (ti->needsTypeInference(sc)) { /* Go with partial explicit specialization */ tiargs = ti->tiargs; tierror = ti; // for error reporting assert(ti->tempdecl); e1 = new TemplateExp(loc, ti->tempdecl); } else { ti->semantic(sc); } } } /* This recognizes: * expr.foo!(tiargs)(funcargs) */ Ldotti: if (e1->op == TOKdotti && !e1->type) { DotTemplateInstanceExp *se = (DotTemplateInstanceExp *)e1; TemplateInstance *ti = se->ti; if (!ti->semanticRun) { /* Attempt to instantiate ti. If that works, go with it. * If not, go with partial explicit specialization. */ ti->semanticTiargs(sc); if (!ti->tempdecl) { se->getTempdecl(sc); } if (ti->tempdecl && ti->needsTypeInference(sc)) { /* Go with partial explicit specialization */ tiargs = ti->tiargs; tierror = ti; // for error reporting e1 = new DotIdExp(loc, se->e1, ti->name); } else { e1 = e1->semantic(sc); } } } istemp = 0; Lagain: //printf("Lagain: %s\n", toChars()); f = NULL; if (e1->op == TOKthis || e1->op == TOKsuper) { // semantic() run later for these } else { if (e1->op == TOKdot) { DotIdExp *die = (DotIdExp *)e1; e1 = die->semantic(sc); /* Look for e1 having been rewritten to expr.opDispatch!(string) * We handle such earlier, so go back. * Note that in the rewrite, we carefully did not run semantic() on e1 */ if (e1->op == TOKdotti && !e1->type) { goto Ldotti; } } else { static int nest; if (++nest > 500) { error("recursive evaluation of %s", toChars()); --nest; return new ErrorExp(); } UnaExp::semantic(sc); --nest; } /* Look for e1 being a lazy parameter */ if (e1->op == TOKvar) { VarExp *ve = (VarExp *)e1; if (ve->var->storage_class & STClazy) { // lazy paramaters can be called without violating purity and safety Type *tw = ve->var->type; Type *tc = ve->var->type->substWildTo(MODconst); TypeFunction *tf = new TypeFunction(NULL, tc, 0, LINKd, STCsafe | STCpure); (tf = (TypeFunction *)tf->semantic(loc, sc))->next = tw; // hack for bug7757 TypeDelegate *t = new TypeDelegate(tf); ve->type = t->semantic(loc, sc); } } if (e1->op == TOKimport) { // Perhaps this should be moved to ScopeExp::semantic() ScopeExp *se = (ScopeExp *)e1; e1 = new DsymbolExp(loc, se->sds); e1 = e1->semantic(sc); } else if (e1->op == TOKsymoff && ((SymOffExp *)e1)->hasOverloads) { SymOffExp *se = (SymOffExp *)e1; e1 = new VarExp(se->loc, se->var, 1); e1 = e1->semantic(sc); } else if (e1->op == TOKdotexp) { DotExp *de = (DotExp *) e1; if (de->e2->op == TOKoverloadset) { ethis = de->e1; tthis = de->e1->type; e1 = de->e2; } if (de->e2->op == TOKimport) { // This should *really* be moved to ScopeExp::semantic() ScopeExp *se = (ScopeExp *)de->e2; de->e2 = new DsymbolExp(loc, se->sds); de->e2 = de->e2->semantic(sc); } if (de->e2->op == TOKtemplate) { TemplateExp *te = (TemplateExp *) de->e2; e1 = new DotTemplateExp(loc,de->e1,te->td); } } } t1 = NULL; if (e1->type) t1 = e1->type->toBasetype(); arguments = arrayExpressionSemantic(arguments, sc); preFunctionParameters(loc, sc, arguments); // Check for call operator overload if (t1) { AggregateDeclaration *ad; if (t1->ty == Tstruct) { ad = ((TypeStruct *)t1)->sym; #if DMDV2 if (ad->sizeok == SIZEOKnone) { if (ad->scope) ad->semantic(ad->scope); else if (!ad->ctor && ad->search(Loc(), Id::ctor, 0)) { // The constructor hasn't been found yet, see bug 8741 // This can happen if we are inferring type from // from VarDeclaration::semantic() in declaration.c error("cannot create a struct until its size is determined"); return new ErrorExp(); } } // First look for constructor if (e1->op == TOKtype && ad->ctor && (ad->noDefaultCtor || arguments && arguments->dim)) { // Create variable that will get constructed Identifier *idtmp = Lexer::uniqueId("__ctmp"); ExpInitializer *ei = NULL; if (t1->needsNested()) { Expressions *args = new Expressions(); StructLiteralExp *se = new StructLiteralExp(loc, (StructDeclaration *)ad, args); se->ctorinit = 1; ei = new ExpInitializer(loc, se); } VarDeclaration *tmp = new VarDeclaration(loc, t1, idtmp, ei); tmp->storage_class |= STCctfe; Expression *av = new DeclarationExp(loc, tmp); av = new CommaExp(loc, av, new VarExp(loc, tmp)); Expression *e; CtorDeclaration *cf = ad->ctor->isCtorDeclaration(); if (cf) e = new DotVarExp(loc, av, cf, 1); else { TemplateDeclaration *td = ad->ctor->isTemplateDeclaration(); assert(td); e = new DotTemplateExp(loc, av, td); } e = new CallExp(loc, e, arguments); e = e->semantic(sc); return e; } #endif // No constructor, look for overload of opCall if (search_function(ad, Id::call)) goto L1; // overload of opCall, therefore it's a call if (e1->op != TOKtype) { if (ad->aliasthis && e1->type != att1) { if (!att1 && e1->type->checkAliasThisRec()) att1 = e1->type; e1 = resolveAliasThis(sc, e1); goto Lagain; } error("%s %s does not overload ()", ad->kind(), ad->toChars()); return new ErrorExp(); } /* It's a struct literal */ Expression *e = new StructLiteralExp(loc, (StructDeclaration *)ad, arguments, e1->type); e = e->semantic(sc); return e; } else if (t1->ty == Tclass) { ad = ((TypeClass *)t1)->sym; goto L1; L1: // Rewrite as e1.call(arguments) Expression *e = new DotIdExp(loc, e1, Id::call); e = new CallExp(loc, e, arguments); e = e->semantic(sc); return e; } } // If there was an error processing any argument, or the call, // return an error without trying to resolve the function call. if (arguments && arguments->dim) { for (size_t k = 0; k < arguments->dim; k++) { Expression *checkarg = (*arguments)[k]; if (checkarg->op == TOKerror) return checkarg; } } if (e1->op == TOKerror) return e1; // If there was an error processing any template argument, // return an error without trying to resolve the template. if (tiargs && tiargs->dim) { for (size_t k = 0; k < tiargs->dim; k++) { Object *o = (*tiargs)[k]; if (isError(o)) return new ErrorExp(); } } if (e1->op == TOKdotvar && t1->ty == Tfunction || e1->op == TOKdottd) { DotVarExp *dve; DotTemplateExp *dte; AggregateDeclaration *ad; UnaExp *ue = (UnaExp *)(e1); Expression *ue1 = ue->e1; Expression *ue1old = ue1; // need for 'right this' check VarDeclaration *v; if (ue1->op == TOKvar && (v = ((VarExp *)ue1)->var->isVarDeclaration()) != NULL && v->needThis()) { ue->e1 = new TypeExp(ue1->loc, ue1->type); ue1 = NULL; } Dsymbol *s; if (e1->op == TOKdotvar) { dve = (DotVarExp *)(e1); s = dve->var; } else { dte = (DotTemplateExp *)(e1); s = dte->td; } // Do overload resolution f = resolveFuncCall(loc, sc, s, tiargs, ue1 ? ue1->type : NULL, arguments); if (!f) return new ErrorExp(); ad = f->toParent2()->isAggregateDeclaration(); if (f->needThis()) { ue->e1 = getRightThis(loc, sc, ad, ue->e1, f); if (ue->e1->op == TOKerror) return ue->e1; ethis = ue->e1; tthis = ue->e1->type; } /* Cannot call public functions from inside invariant * (because then the invariant would have infinite recursion) */ if (sc->func && sc->func->isInvariantDeclaration() && ue->e1->op == TOKthis && f->addPostInvariant() ) { error("cannot call public/export function %s from invariant", f->toChars()); return new ErrorExp(); } checkDeprecated(sc, f); #if DMDV2 checkPurity(sc, f); checkSafety(sc, f); #endif accessCheck(loc, sc, ue->e1, f); if (!f->needThis()) { VarExp *ve = new VarExp(loc, f); if ((ue->e1)->op == TOKtype) // just a FQN e1 = ve; else // things like (new Foo).bar() e1 = new CommaExp(loc, ue->e1, ve); e1->type = f->type; } else { checkRightThis(sc, ue1old); if (e1->op == TOKdotvar) { dve->var = f; e1->type = f->type; } else { e1 = new DotVarExp(loc, dte->e1, f); e1 = e1->semantic(sc); if (e1->op == TOKerror) return new ErrorExp(); ue = (UnaExp *)e1; } #if 0 printf("ue->e1 = %s\n", ue->e1->toChars()); printf("f = %s\n", f->toChars()); printf("t = %s\n", t->toChars()); printf("e1 = %s\n", e1->toChars()); printf("e1->type = %s\n", e1->type->toChars()); #endif // See if we need to adjust the 'this' pointer AggregateDeclaration *ad = f->isThis(); ClassDeclaration *cd = ue->e1->type->isClassHandle(); if (ad && cd && ad->isClassDeclaration() && ad != cd && ue->e1->op != TOKsuper) { ue->e1 = ue->e1->castTo(sc, ad->type); //new CastExp(loc, ue->e1, ad->type); ue->e1 = ue->e1->semantic(sc); } } t1 = e1->type; } else if (e1->op == TOKsuper) { // Base class constructor call ClassDeclaration *cd = NULL; if (sc->func && sc->func->isThis()) cd = sc->func->isThis()->isClassDeclaration(); if (!cd || !cd->baseClass || !sc->func->isCtorDeclaration()) { error("super class constructor call must be in a constructor"); return new ErrorExp(); } else { if (!cd->baseClass->ctor) { error("no super class constructor for %s", cd->baseClass->toChars()); return new ErrorExp(); } else { if (!sc->intypeof) { if (sc->noctor || sc->callSuper & CSXlabel) error("constructor calls not allowed in loops or after labels"); if (sc->callSuper & (CSXsuper_ctor | CSXthis_ctor)) error("multiple constructor calls"); if ((sc->callSuper & CSXreturn) && !(sc->callSuper & CSXany_ctor)) error("an earlier return statement skips constructor"); sc->callSuper |= CSXany_ctor | CSXsuper_ctor; } tthis = cd->type->addMod(sc->func->type->mod); f = resolveFuncCall(loc, sc, cd->baseClass->ctor, NULL, tthis, arguments, 0); if (!f) return new ErrorExp(); accessCheck(loc, sc, NULL, f); checkDeprecated(sc, f); #if DMDV2 checkPurity(sc, f); checkSafety(sc, f); #endif e1 = new DotVarExp(e1->loc, e1, f); e1 = e1->semantic(sc); t1 = e1->type; } } } else if (e1->op == TOKthis) { // same class constructor call AggregateDeclaration *cd = NULL; if (sc->func && sc->func->isThis()) cd = sc->func->isThis()->isAggregateDeclaration(); if (!cd || !sc->func->isCtorDeclaration()) { error("constructor call must be in a constructor"); return new ErrorExp(); } else { if (!sc->intypeof) { if (sc->noctor || sc->callSuper & CSXlabel) error("constructor calls not allowed in loops or after labels"); if (sc->callSuper & (CSXsuper_ctor | CSXthis_ctor)) error("multiple constructor calls"); if ((sc->callSuper & CSXreturn) && !(sc->callSuper & CSXany_ctor)) error("an earlier return statement skips constructor"); sc->callSuper |= CSXany_ctor | CSXthis_ctor; } tthis = cd->type->addMod(sc->func->type->mod); f = resolveFuncCall(loc, sc, cd->ctor, NULL, tthis, arguments, 0); if (!f) return new ErrorExp(); checkDeprecated(sc, f); #if DMDV2 checkPurity(sc, f); checkSafety(sc, f); #endif e1 = new DotVarExp(e1->loc, e1, f); e1 = e1->semantic(sc); t1 = e1->type; // BUG: this should really be done by checking the static // call graph if (f == sc->func) { error("cyclic constructor call"); return new ErrorExp(); } } } else if (e1->op == TOKoverloadset) { OverExp *eo = (OverExp *)e1; FuncDeclaration *f = NULL; Dsymbol *s = NULL; for (size_t i = 0; i < eo->vars->a.dim; i++) { s = eo->vars->a[i]; FuncDeclaration *f2 = resolveFuncCall(loc, sc, s, tiargs, tthis, arguments, 1); if (f2) { if (f) /* Error if match in more than one overload set, * even if one is a 'better' match than the other. */ ScopeDsymbol::multiplyDefined(loc, f, f2); else f = f2; } } if (!f) { /* No overload matches */ error("no overload matches for %s", s->toChars()); return new ErrorExp(); } if (ethis) e1 = new DotVarExp(loc, ethis, f); else e1 = new VarExp(loc, f); goto Lagain; } else if (!t1) { error("function expected before (), not '%s'", e1->toChars()); return new ErrorExp(); } else if (t1->ty != Tfunction) { TypeFunction *tf; const char *p; if (e1->op == TOKfunction) { // function literal that direct called is always inferred. assert(((FuncExp *)e1)->fd); f = ((FuncExp *)e1)->fd; tf = (TypeFunction *)f->type; p = "function literal"; f->checkNestedReference(sc, loc); } else if (t1->ty == Tdelegate) { TypeDelegate *td = (TypeDelegate *)t1; assert(td->next->ty == Tfunction); tf = (TypeFunction *)(td->next); p = "delegate"; } else if (t1->ty == Tpointer && ((TypePointer *)t1)->next->ty == Tfunction) { tf = (TypeFunction *)(((TypePointer *)t1)->next); p = "function pointer"; } else if (e1->op == TOKtemplate) { TemplateExp *te = (TemplateExp *)e1; f = resolveFuncCall(loc, sc, te->td, tiargs, NULL, arguments); if (!f) { if (tierror) tierror->error("errors instantiating template"); // give better error message return new ErrorExp(); } if (f->needThis()) { if (hasThis(sc)) { // Supply an implicit 'this', as in // this.ident e1 = new DotTemplateExp(loc, (new ThisExp(loc))->semantic(sc), te->td); goto Lagain; } else if (isNeedThisScope(sc, f)) { error("need 'this' for '%s' of type '%s'", f->toChars(), f->type->toChars()); return new ErrorExp(); } } e1 = new VarExp(loc, f); goto Lagain; } else { error("function expected before (), not %s of type %s", e1->toChars(), e1->type->toChars()); return new ErrorExp(); } if (sc->func && !tf->purity && !(sc->flags & SCOPEdebug) && !sc->needctfe) { if (sc->func->setImpure()) error("pure function '%s' cannot call impure %s '%s'", sc->func->toPrettyChars(), p, e1->toChars()); } if (sc->func && tf->trust <= TRUSTsystem && !sc->needctfe) { if (sc->func->setUnsafe()) error("safe function '%s' cannot call system %s '%s'", sc->func->toPrettyChars(), p, e1->toChars()); } if (!tf->callMatch(NULL, arguments)) { OutBuffer buf; buf.writeByte('('); if (arguments) { HdrGenState hgs; argExpTypesToCBuffer(&buf, arguments, &hgs); buf.writeByte(')'); if (tthis) tthis->modToBuffer(&buf); } else buf.writeByte(')'); //printf("tf = %s, args = %s\n", tf->deco, (*arguments)[0]->type->deco); ::error(loc, "%s %s %s is not callable using argument types %s", p, e1->toChars(), Parameter::argsTypesToChars(tf->parameters, tf->varargs), buf.toChars()); return new ErrorExp(); } if (t1->ty == Tpointer) { Expression *e = new PtrExp(loc, e1); e->type = tf; e1 = e; } t1 = tf; } else if (e1->op == TOKvar) { // Do overload resolution VarExp *ve = (VarExp *)e1; f = ve->var->isFuncDeclaration(); assert(f); if (ve->hasOverloads) f = resolveFuncCall(loc, sc, f, tiargs, NULL, arguments, 2); else { f = f->toAliasFunc(); TypeFunction *tf = (TypeFunction *)f->type; if (!tf->callMatch(NULL, arguments)) { OutBuffer buf; buf.writeByte('('); if (arguments && arguments->dim) { HdrGenState hgs; argExpTypesToCBuffer(&buf, arguments, &hgs); } buf.writeByte(')'); //printf("tf = %s, args = %s\n", tf->deco, (*arguments)[0]->type->deco); ::error(loc, "%s %s is not callable using argument types %s", e1->toChars(), Parameter::argsTypesToChars(tf->parameters, tf->varargs), buf.toChars()); return new ErrorExp(); } } if (!f) return new ErrorExp(); if (f->needThis()) { if (hasThis(sc)) { // Supply an implicit 'this', as in // this.ident e1 = new DotVarExp(loc, (new ThisExp(loc))->semantic(sc), ve->var); goto Lagain; } else if (isNeedThisScope(sc, f)) { error("need 'this' for '%s' of type '%s'", f->toChars(), f->type->toChars()); return new ErrorExp(); } } checkDeprecated(sc, f); #if DMDV2 checkPurity(sc, f); checkSafety(sc, f); #endif f->checkNestedReference(sc, loc); accessCheck(loc, sc, NULL, f); ethis = NULL; tthis = NULL; if (ve->hasOverloads) { e1 = new VarExp(ve->loc, f, 0); e1->type = f->type; } t1 = f->type; } assert(t1->ty == Tfunction); TypeFunction *tf = (TypeFunction *)(t1); if (!arguments) arguments = new Expressions(); int olderrors = global.errors; type = functionParameters(loc, sc, tf, tthis, arguments, f); if (olderrors != global.errors) return new ErrorExp(); if (!type) { error("forward reference to inferred return type of function call %s", toChars()); return new ErrorExp(); } if (f && f->tintro) { Type *t = type; int offset = 0; TypeFunction *tf = (TypeFunction *)f->tintro; if (tf->next->isBaseOf(t, &offset) && offset) { type = tf->next; return castTo(sc, t); } } return this; } int CallExp::isLvalue() { Type *tb = e1->type->toBasetype(); if (tb->ty == Tdelegate || tb->ty == Tpointer) tb = tb->nextOf(); if (tb->ty == Tfunction && ((TypeFunction *)tb)->isref) { if (e1->op == TOKdotvar) if (((DotVarExp *)e1)->var->isCtorDeclaration()) return 0; return 1; // function returns a reference } return 0; } Expression *CallExp::toLvalue(Scope *sc, Expression *e) { if (isLvalue()) return this; return Expression::toLvalue(sc, e); } Expression *CallExp::addDtorHook(Scope *sc) { /* Only need to add dtor hook if it's a type that needs destruction. * Use same logic as VarDeclaration::callScopeDtor() */ if (e1->type && e1->type->ty == Tfunction) { TypeFunction *tf = (TypeFunction *)e1->type; if (tf->isref) return this; } Type *tv = type->toBasetype(); while (tv->ty == Tsarray) { TypeSArray *ta = (TypeSArray *)tv; tv = tv->nextOf()->toBasetype(); } if (tv->ty == Tstruct) { TypeStruct *ts = (TypeStruct *)tv; StructDeclaration *sd = ts->sym; if (sd->dtor) { /* Type needs destruction, so declare a tmp * which the back end will recognize and call dtor on */ Identifier *idtmp = Lexer::uniqueId("__tmpfordtor"); VarDeclaration *tmp = new VarDeclaration(loc, type, idtmp, new ExpInitializer(loc, this)); tmp->storage_class |= STCctfe; Expression *ae = new DeclarationExp(loc, tmp); Expression *e = new CommaExp(loc, ae, new VarExp(loc, tmp)); e = e->semantic(sc); return e; } } Lnone: return this; } void CallExp::toCBuffer(OutBuffer *buf, HdrGenState *hgs) { if (e1->op == TOKtype) /* Avoid parens around type to prevent forbidden cast syntax: * (sometype)(arg1) * This is ok since types in constructor calls * can never depend on parens anyway */ e1->toCBuffer(buf, hgs); else expToCBuffer(buf, hgs, e1, precedence[op]); buf->writeByte('('); argsToCBuffer(buf, arguments, hgs); buf->writeByte(')'); } /************************************************************/ AddrExp::AddrExp(Loc loc, Expression *e) : UnaExp(loc, TOKaddress, sizeof(AddrExp), e) { } Expression *AddrExp::semantic(Scope *sc) { #if LOGSEMANTIC printf("AddrExp::semantic('%s')\n", toChars()); #endif if (!type) { UnaExp::semantic(sc); Expression *olde1 = e1; if (e1->type == Type::terror) return new ErrorExp(); int wasCond = e1->op == TOKquestion; if (e1->op == TOKdotti) { DotTemplateInstanceExp* dti = (DotTemplateInstanceExp *)e1; TemplateInstance *ti = dti->ti; if (!ti->semanticRun) { //assert(ti->needsTypeInference(sc)); ti->semantic(sc); if (!ti->inst) // if template failed to expand return new ErrorExp; Dsymbol *s = ti->inst->toAlias(); FuncDeclaration *f = s->isFuncDeclaration(); assert(f); e1 = new DotVarExp(e1->loc, dti->e1, f); e1 = e1->semantic(sc); } } else if (e1->op == TOKimport) { TemplateInstance *ti = ((ScopeExp *)e1)->sds->isTemplateInstance(); if (ti && !ti->semanticRun) { //assert(ti->needsTypeInference(sc)); ti->semantic(sc); if (!ti->inst) // if template failed to expand return new ErrorExp; Dsymbol *s = ti->inst->toAlias(); FuncDeclaration *f = s->isFuncDeclaration(); assert(f); e1 = new VarExp(e1->loc, f); e1 = e1->semantic(sc); } } e1 = e1->toLvalue(sc, NULL); if (e1->op == TOKerror) return e1; if (!e1->type) { error("cannot take address of %s", e1->toChars()); return new ErrorExp(); } if (!e1->type->deco) { /* No deco means semantic() was not run on the type. * We have to run semantic() on the symbol to get the right type: * auto x = &bar; * pure: int bar() { return 1;} * otherwise the 'pure' is missing from the type assigned to x. */ if (e1->op == TOKvar) { VarExp *ve = (VarExp *)e1; Declaration *d = ve->var; error("forward reference to %s %s", d->kind(), d->toChars()); } else error("forward reference to %s", e1->toChars()); return new ErrorExp(); } type = e1->type->pointerTo(); // See if this should really be a delegate if (e1->op == TOKdotvar) { DotVarExp *dve = (DotVarExp *)e1; FuncDeclaration *f = dve->var->isFuncDeclaration(); if (f) { f = f->toAliasFunc(); // FIXME, should see overlods - Bugzilla 1983 if (!dve->hasOverloads) f->tookAddressOf++; Expression *e; if ( f->needThis()) e = new DelegateExp(loc, dve->e1, f, dve->hasOverloads); else // It is a function pointer. Convert &v.f() --> (v, &V.f()) e = new CommaExp(loc, dve->e1, new AddrExp(loc, new VarExp(loc, f))); e = e->semantic(sc); return e; } } else if (e1->op == TOKvar) { VarExp *ve = (VarExp *)e1; VarDeclaration *v = ve->var->isVarDeclaration(); if (v) { if (!v->canTakeAddressOf()) { error("cannot take address of %s", e1->toChars()); return new ErrorExp(); } if (sc->func && !sc->intypeof && !v->isDataseg()) { if (sc->func->setUnsafe()) { error("cannot take address of %s %s in @safe function %s", v->isParameter() ? "parameter" : "local", v->toChars(), sc->func->toChars()); } } } FuncDeclaration *f = ve->var->isFuncDeclaration(); if (f) { #if IN_LLVM if (f->isIntrinsic()) { error("cannot take the address of intrinsic function %s", e1->toChars()); return this; } #endif if (!ve->hasOverloads || /* Because nested functions cannot be overloaded, * mark here that we took its address because castTo() * may not be called with an exact match. */ f->isNested()) f->tookAddressOf++; if (f->isNested()) { if (f->isFuncLiteralDeclaration()) { if (!f->FuncDeclaration::isNested()) { /* Supply a 'null' for a this pointer if no this is available */ Expression *e = new DelegateExp(loc, new NullExp(loc, Type::tnull), f, ve->hasOverloads); e = e->semantic(sc); return e; } } Expression *e = new DelegateExp(loc, e1, f, ve->hasOverloads); e = e->semantic(sc); return e; } if (f->needThis() && hasThis(sc)) { /* Should probably supply 'this' after overload resolution, * not before. */ Expression *ethis = new ThisExp(loc); Expression *e = new DelegateExp(loc, ethis, f, ve->hasOverloads); e = e->semantic(sc); return e; } } } else if (wasCond) { /* a ? b : c was transformed to *(a ? &b : &c), but we still * need to do safety checks */ assert(e1->op == TOKstar); PtrExp *pe = (PtrExp *)e1; assert(pe->e1->op == TOKquestion); CondExp *ce = (CondExp *)pe->e1; assert(ce->e1->op == TOKaddress); assert(ce->e2->op == TOKaddress); // Re-run semantic on the address expressions only ce->e1->type = NULL; ce->e1 = ce->e1->semantic(sc); ce->e2->type = NULL; ce->e2 = ce->e2->semantic(sc); } return optimize(WANTvalue); } return this; } void AddrExp::checkEscape() { e1->checkEscapeRef(); } /************************************************************/ PtrExp::PtrExp(Loc loc, Expression *e) : UnaExp(loc, TOKstar, sizeof(PtrExp), e) { // if (e->type) // type = ((TypePointer *)e->type)->next; } PtrExp::PtrExp(Loc loc, Expression *e, Type *t) : UnaExp(loc, TOKstar, sizeof(PtrExp), e) { type = t; } Expression *PtrExp::semantic(Scope *sc) { #if LOGSEMANTIC printf("PtrExp::semantic('%s')\n", toChars()); #endif if (!type) { Expression *e = op_overload(sc); if (e) return e; Type *tb = e1->type->toBasetype(); switch (tb->ty) { case Tpointer: type = ((TypePointer *)tb)->next; break; case Tsarray: case Tarray: deprecation("using * on an array is deprecated; use *(%s).ptr instead", e1->toChars()); type = ((TypeArray *)tb)->next; e1 = e1->castTo(sc, type->pointerTo()); break; default: error("can only * a pointer, not a '%s'", e1->type->toChars()); case Terror: return new ErrorExp(); } if (!rvalue()) return new ErrorExp(); } return this; } void PtrExp::checkEscapeRef() { e1->checkEscape(); } int PtrExp::isLvalue() { return 1; } Expression *PtrExp::toLvalue(Scope *sc, Expression *e) { return this; } int PtrExp::checkModifiable(Scope *sc, int flag) { if (e1->op == TOKsymoff) { SymOffExp *se = (SymOffExp *)e1; return se->var->checkModify(loc, sc, type, NULL, flag); } else if (e1->op == TOKaddress) { AddrExp *ae = (AddrExp *)e1; return ae->e1->checkModifiable(sc, flag); } return 1; } #if DMDV2 Expression *PtrExp::modifiableLvalue(Scope *sc, Expression *e) { //printf("PtrExp::modifiableLvalue() %s, type %s\n", toChars(), type->toChars()); return Expression::modifiableLvalue(sc, e); } #endif void PtrExp::toCBuffer(OutBuffer *buf, HdrGenState *hgs) { buf->writeByte('*'); expToCBuffer(buf, hgs, e1, precedence[op]); } /************************************************************/ NegExp::NegExp(Loc loc, Expression *e) : UnaExp(loc, TOKneg, sizeof(NegExp), e) { } Expression *NegExp::semantic(Scope *sc) { Expression *e; #if LOGSEMANTIC printf("NegExp::semantic('%s')\n", toChars()); #endif if (!type) { e = op_overload(sc); if (e) return e; e1->checkNoBool(); if (!e1->isArrayOperand()) e1->checkArithmetic(); type = e1->type; } return this; } /************************************************************/ UAddExp::UAddExp(Loc loc, Expression *e) : UnaExp(loc, TOKuadd, sizeof(UAddExp), e) { } Expression *UAddExp::semantic(Scope *sc) { Expression *e; #if LOGSEMANTIC printf("UAddExp::semantic('%s')\n", toChars()); #endif assert(!type); e = op_overload(sc); if (e) return e; e1->checkNoBool(); e1->checkArithmetic(); return e1; } /************************************************************/ ComExp::ComExp(Loc loc, Expression *e) : UnaExp(loc, TOKtilde, sizeof(ComExp), e) { } Expression *ComExp::semantic(Scope *sc) { Expression *e; if (!type) { e = op_overload(sc); if (e) return e; e1->checkNoBool(); if (!e1->isArrayOperand()) e1 = e1->checkIntegral(); type = e1->type; } return this; } /************************************************************/ NotExp::NotExp(Loc loc, Expression *e) : UnaExp(loc, TOKnot, sizeof(NotExp), e) { } Expression *NotExp::semantic(Scope *sc) { if (!type) { // Note there is no operator overload UnaExp::semantic(sc); e1 = resolveProperties(sc, e1); e1 = e1->checkToBoolean(sc); if (e1->type == Type::terror) return e1; type = Type::tboolean; } return this; } int NotExp::isBit() { return TRUE; } /************************************************************/ BoolExp::BoolExp(Loc loc, Expression *e, Type *t) : UnaExp(loc, TOKtobool, sizeof(BoolExp), e) { type = t; } Expression *BoolExp::semantic(Scope *sc) { if (!type) { // Note there is no operator overload UnaExp::semantic(sc); e1 = resolveProperties(sc, e1); e1 = e1->checkToBoolean(sc); if (e1->type == Type::terror) return e1; type = Type::tboolean; } return this; } int BoolExp::isBit() { return TRUE; } /************************************************************/ DeleteExp::DeleteExp(Loc loc, Expression *e) : UnaExp(loc, TOKdelete, sizeof(DeleteExp), e) { } Expression *DeleteExp::semantic(Scope *sc) { Type *tb; UnaExp::semantic(sc); e1 = resolveProperties(sc, e1); e1 = e1->modifiableLvalue(sc, NULL); if (e1->op == TOKerror) return e1; type = Type::tvoid; tb = e1->type->toBasetype(); switch (tb->ty) { case Tclass: { TypeClass *tc = (TypeClass *)tb; ClassDeclaration *cd = tc->sym; if (cd->isCOMinterface()) { /* Because COM classes are deleted by IUnknown.Release() */ error("cannot delete instance of COM interface %s", cd->toChars()); } break; } case Tpointer: tb = ((TypePointer *)tb)->next->toBasetype(); if (tb->ty == Tstruct) { TypeStruct *ts = (TypeStruct *)tb; StructDeclaration *sd = ts->sym; FuncDeclaration *f = sd->aggDelete; FuncDeclaration *fd = sd->dtor; if (!f && !fd) break; /* Construct: * ea = copy e1 to a tmp to do side effects only once * eb = call destructor * ec = call deallocator */ Expression *ea = NULL; Expression *eb = NULL; Expression *ec = NULL; VarDeclaration *v; if (fd && f) { Identifier *id = Lexer::idPool("__tmp"); v = new VarDeclaration(loc, e1->type, id, new ExpInitializer(loc, e1)); v->semantic(sc); v->parent = sc->parent; ea = new DeclarationExp(loc, v); ea->type = v->type; } if (fd) { Expression *e = ea ? new VarExp(loc, v) : e1; e = new DotVarExp(Loc(), e, fd, 0); eb = new CallExp(loc, e); eb = eb->semantic(sc); } if (f) { Type *tpv = Type::tvoid->pointerTo(); Expression *e = ea ? new VarExp(loc, v) : e1->castTo(sc, tpv); e = new CallExp(loc, new VarExp(loc, f), e); ec = e->semantic(sc); } ea = combine(ea, eb); ea = combine(ea, ec); assert(ea); return ea; } break; case Tarray: /* BUG: look for deleting arrays of structs with dtors. */ break; default: if (e1->op == TOKindex) { IndexExp *ae = (IndexExp *)(e1); Type *tb1 = ae->e1->type->toBasetype(); if (tb1->ty == Taarray) break; } error("cannot delete type %s", e1->type->toChars()); return new ErrorExp(); } if (e1->op == TOKindex) { IndexExp *ae = (IndexExp *)(e1); Type *tb1 = ae->e1->type->toBasetype(); if (tb1->ty == Taarray) error("delete aa[key] deprecated, use aa.remove(key)"); } return this; } Expression *DeleteExp::checkToBoolean(Scope *sc) { error("delete does not give a boolean result"); return new ErrorExp(); } void DeleteExp::toCBuffer(OutBuffer *buf, HdrGenState *hgs) { buf->writestring("delete "); expToCBuffer(buf, hgs, e1, precedence[op]); } /************************************************************/ CastExp::CastExp(Loc loc, Expression *e, Type *t) : UnaExp(loc, TOKcast, sizeof(CastExp), e) { to = t; this->mod = ~0; } #if DMDV2 /* For cast(const) and cast(immutable) */ CastExp::CastExp(Loc loc, Expression *e, unsigned mod) : UnaExp(loc, TOKcast, sizeof(CastExp), e) { to = NULL; this->mod = mod; } #endif Expression *CastExp::syntaxCopy() { return to ? new CastExp(loc, e1->syntaxCopy(), to->syntaxCopy()) : new CastExp(loc, e1->syntaxCopy(), mod); } Expression *CastExp::semantic(Scope *sc) { #if LOGSEMANTIC printf("CastExp::semantic('%s')\n", toChars()); #endif //static int x; assert(++x < 10); if (type) return this; UnaExp::semantic(sc); e1 = resolveProperties(sc, e1); if (e1->type) // if not a tuple { if (!to) { /* Handle cast(const) and cast(immutable), etc. */ to = e1->type->castMod(mod); } else to = to->semantic(loc, sc); if (to == Type::terror) return new ErrorExp(); if (to->ty == Ttuple) { error("cannot cast %s to tuple type %s", e1->toChars(), to->toChars()); return new ErrorExp(); } if (e1->type->ty == Terror) return new ErrorExp(); if (!to->equals(e1->type)) { Expression *e = op_overload(sc); if (e) { return e->implicitCastTo(sc, to); } } if (e1->op == TOKtemplate) { error("cannot cast template %s to type %s", e1->toChars(), to->toChars()); return new ErrorExp(); } Type *t1b = e1->type->toBasetype(); Type *tob = to->toBasetype(); if (tob->ty == Tstruct && !tob->equals(t1b) ) { /* Look to replace: * cast(S)t * with: * S(t) */ // Rewrite as to.call(e1) Expression *e = new TypeExp(loc, to); e = new CallExp(loc, e, e1); e = e->trySemantic(sc); if (e) return e; } // Struct casts are possible only when the sizes match // Same with static array -> static array if (tob->ty == Tstruct || t1b->ty == Tstruct || (tob->ty == Tsarray && t1b->ty == Tsarray)) { size_t fromsize = t1b->size(loc); size_t tosize = tob->size(loc); if (fromsize != tosize) { error("cannot cast from %s to %s", e1->type->toChars(), to->toChars()); return new ErrorExp(); } } // Look for casting to a vector type if (tob->ty == Tvector && t1b->ty != Tvector) { return new VectorExp(loc, e1, to); } if (tob->isintegral() && t1b->ty == Tarray) { error("cannot cast %s to integral type %s", e1->toChars(), to->toChars()); return new ErrorExp(); } if (tob->ty == Tpointer && t1b->ty == Tdelegate) deprecation("casting from %s to %s is deprecated", e1->type->toChars(), to->toChars()); } else if (!to) { error("cannot cast tuple"); return new ErrorExp(); } if (!e1->type) { error("cannot cast %s", e1->toChars()); return new ErrorExp(); } // Check for unsafe casts if (sc->func && !sc->intypeof) { // Disallow unsafe casts Type *tob = to->toBasetype(); Type *t1b = e1->type->toBasetype(); // Implicit conversions are always safe if (t1b->implicitConvTo(tob)) goto Lsafe; if (!t1b->isMutable() && tob->isMutable()) goto Lunsafe; if (t1b->isShared() && !tob->isShared()) // Cast away shared goto Lunsafe; if (!tob->hasPointers()) goto Lsafe; if (tob->ty == Tclass && t1b->ty == Tclass) { ClassDeclaration *cdfrom = t1b->isClassHandle(); ClassDeclaration *cdto = tob->isClassHandle(); int offset; if (!cdfrom->isBaseOf(cdto, &offset)) goto Lunsafe; if (cdfrom->isCPPinterface() || cdto->isCPPinterface()) goto Lunsafe; goto Lsafe; } if (tob->ty == Tarray && t1b->ty == Tarray) { Type* tobn = tob->nextOf()->toBasetype(); Type* t1bn = t1b->nextOf()->toBasetype(); if (!tobn->hasPointers() && MODimplicitConv(t1bn->mod, tobn->mod)) goto Lsafe; } if (tob->ty == Tpointer && t1b->ty == Tpointer) { Type* tobn = tob->nextOf()->toBasetype(); Type* t1bn = t1b->nextOf()->toBasetype(); if (!tobn->hasPointers() && tobn->ty != Tfunction && t1bn->ty != Tfunction && tobn->size() <= t1bn->size() && MODimplicitConv(t1bn->mod, tobn->mod)) goto Lsafe; } Lunsafe: if (sc->func->setUnsafe()) { error("cast from %s to %s not allowed in safe code", e1->type->toChars(), to->toChars()); return new ErrorExp(); } } Lsafe: Expression *e = e1->castTo(sc, to); return e; } void CastExp::checkEscape() { Type *tb = type->toBasetype(); if (tb->ty == Tarray && e1->op == TOKvar && e1->type->toBasetype()->ty == Tsarray) { VarExp *ve = (VarExp *)e1; VarDeclaration *v = ve->var->isVarDeclaration(); if (v) { if (!v->isDataseg() && !v->isParameter()) error("escaping reference to local %s", v->toChars()); } } } void CastExp::toCBuffer(OutBuffer *buf, HdrGenState *hgs) { buf->writestring("cast("); #if DMDV1 to->toCBuffer(buf, NULL, hgs); #else if (to) to->toCBuffer(buf, NULL, hgs); else { MODtoBuffer(buf, mod); } #endif buf->writeByte(')'); expToCBuffer(buf, hgs, e1, precedence[op]); } /************************************************************/ VectorExp::VectorExp(Loc loc, Expression *e, Type *t) : UnaExp(loc, TOKvector, sizeof(VectorExp), e) { assert(t->ty == Tvector); to = (TypeVector *)t; dim = ~0; } Expression *VectorExp::syntaxCopy() { return new VectorExp(loc, e1->syntaxCopy(), to->syntaxCopy()); } Expression *VectorExp::semantic(Scope *sc) { #if LOGSEMANTIC printf("VectorExp::semantic('%s')\n", toChars()); #endif if (type) return this; e1 = e1->semantic(sc); type = to->semantic(loc, sc); if (e1->op == TOKerror || type->ty == Terror) return e1; Type *tb = type->toBasetype(); assert(tb->ty == Tvector); TypeVector *tv = (TypeVector *)tb; Type *te = tv->elementType(); dim = tv->size(loc) / te->size(loc); return this; } void VectorExp::toCBuffer(OutBuffer *buf, HdrGenState *hgs) { buf->writestring("cast("); to->toCBuffer(buf, NULL, hgs); buf->writeByte(')'); expToCBuffer(buf, hgs, e1, precedence[op]); } /************************************************************/ SliceExp::SliceExp(Loc loc, Expression *e1, Expression *lwr, Expression *upr) : UnaExp(loc, TOKslice, sizeof(SliceExp), e1) { this->upr = upr; this->lwr = lwr; lengthVar = NULL; } Expression *SliceExp::syntaxCopy() { Expression *lwr = NULL; if (this->lwr) lwr = this->lwr->syntaxCopy(); Expression *upr = NULL; if (this->upr) upr = this->upr->syntaxCopy(); SliceExp *se = new SliceExp(loc, e1->syntaxCopy(), lwr, upr); se->lengthVar = this->lengthVar; // bug7871 return se; } Expression *SliceExp::semantic(Scope *sc) { Expression *e; AggregateDeclaration *ad; //FuncDeclaration *fd; ScopeDsymbol *sym; #if LOGSEMANTIC printf("SliceExp::semantic('%s')\n", toChars()); #endif if (type) return this; Lagain: UnaExp::semantic(sc); e1 = resolveProperties(sc, e1); if (e1->op == TOKtype && e1->type->ty != Ttuple) { if (lwr || upr) { error("cannot slice type '%s'", e1->toChars()); return new ErrorExp(); } e = new TypeExp(loc, e1->type->arrayOf()); return e->semantic(sc); } if (!lwr && !upr) { if (e1->op == TOKarrayliteral) { // Convert [a,b,c][] to [a,b,c] Type *t1b = e1->type->toBasetype(); Expression *e = e1; if (t1b->ty == Tsarray) { e = e->copy(); e->type = t1b->nextOf()->arrayOf(); } return e; } if (e1->op == TOKslice) { // Convert e[][] to e[] SliceExp *se = (SliceExp *)e1; if (!se->lwr && !se->upr) return se; } } e = this; Type *t = e1->type->toBasetype(); if (t->ty == Tpointer) { if (!lwr || !upr) { error("need upper and lower bound to slice pointer"); return new ErrorExp(); } } else if (t->ty == Tarray) { } else if (t->ty == Tsarray) { } else if (t->ty == Tclass) { ad = ((TypeClass *)t)->sym; goto L1; } else if (t->ty == Tstruct) { ad = ((TypeStruct *)t)->sym; L1: if (search_function(ad, Id::slice)) { // Rewrite as e1.slice(lwr, upr) SliceExp *se = resolveOpDollar(sc, this); Expressions *a = new Expressions(); assert(!se->lwr || se->upr); if (se->lwr) { a->push(se->lwr); a->push(se->upr); } e = new DotIdExp(loc, se->e1, Id::slice); e = new CallExp(loc, e, a); e = e->semantic(sc); return e; } if (ad->aliasthis && e1->type != att1) { if (!att1 && e1->type->checkAliasThisRec()) att1 = e1->type; e1 = resolveAliasThis(sc, e1); goto Lagain; } goto Lerror; } else if (t->ty == Ttuple) { if (!lwr && !upr) return e1; if (!lwr || !upr) { error("need upper and lower bound to slice tuple"); goto Lerror; } } else if (t == Type::terror) goto Lerr; else goto Lerror; { Scope *sc2 = sc; if (t->ty == Tsarray || t->ty == Tarray || t->ty == Ttuple) { sym = new ArrayScopeSymbol(sc, this); sym->loc = loc; sym->parent = sc->scopesym; sc2 = sc->push(sym); } if (lwr) { if (t->ty == Ttuple) lwr = lwr->ctfeSemantic(sc2); else lwr = lwr->semantic(sc2); lwr = resolveProperties(sc2, lwr); lwr = lwr->implicitCastTo(sc2, Type::tsize_t); if (lwr->type == Type::terror) goto Lerr; } if (upr) { if (t->ty == Ttuple) upr = upr->ctfeSemantic(sc2); else upr = upr->semantic(sc2); upr = resolveProperties(sc2, upr); upr = upr->implicitCastTo(sc2, Type::tsize_t); if (upr->type == Type::terror) goto Lerr; } if (sc2 != sc) sc2->pop(); } if (t->ty == Ttuple) { lwr = lwr->ctfeInterpret(); upr = upr->ctfeInterpret(); uinteger_t i1 = lwr->toUInteger(); uinteger_t i2 = upr->toUInteger(); size_t length; TupleExp *te; TypeTuple *tup; if (e1->op == TOKtuple) // slicing an expression tuple { te = (TupleExp *)e1; length = te->exps->dim; } else if (e1->op == TOKtype) // slicing a type tuple { tup = (TypeTuple *)t; length = Parameter::dim(tup->arguments); } else assert(0); if (i1 <= i2 && i2 <= length) { size_t j1 = (size_t) i1; size_t j2 = (size_t) i2; if (e1->op == TOKtuple) { Expressions *exps = new Expressions; exps->setDim(j2 - j1); for (size_t i = 0; i < j2 - j1; i++) { Expression *e = (*te->exps)[j1 + i]; (*exps)[i] = e; } e = new TupleExp(loc, te->e0, exps); } else { Parameters *args = new Parameters; args->reserve(j2 - j1); for (size_t i = j1; i < j2; i++) { Parameter *arg = Parameter::getNth(tup->arguments, i); args->push(arg); } e = new TypeExp(e1->loc, new TypeTuple(args)); } e = e->semantic(sc); } else { error("string slice [%llu .. %llu] is out of bounds", i1, i2); goto Lerr; } return e; } type = t->nextOf()->arrayOf(); // Allow typedef[] -> typedef[] if (type->equals(t)) type = e1->type; return e; Lerror: if (e1->op == TOKerror) return e1; char *s; if (t->ty == Tvoid) s = e1->toChars(); else s = t->toChars(); error("%s cannot be sliced with []", s); Lerr: e = new ErrorExp(); return e; } void SliceExp::checkEscape() { e1->checkEscape(); } void SliceExp::checkEscapeRef() { e1->checkEscapeRef(); } int SliceExp::checkModifiable(Scope *sc, int flag) { //printf("SliceExp::checkModifiable %s\n", toChars()); if (e1->type->ty == Tsarray || (e1->op == TOKindex && e1->type->ty != Tarray) || e1->op == TOKslice) { return e1->checkModifiable(sc, flag); } return 1; } int SliceExp::isLvalue() { /* slice expression is rvalue in default, but * conversion to reference of static array is only allowed. */ return (type && type->toBasetype()->ty == Tsarray); } Expression *SliceExp::toLvalue(Scope *sc, Expression *e) { //printf("SliceExp::toLvalue(%s) type = %s\n", toChars(), type ? type->toChars() : NULL); return (type && type->toBasetype()->ty == Tsarray) ? this : Expression::toLvalue(sc, e); } Expression *SliceExp::modifiableLvalue(Scope *sc, Expression *e) { error("slice expression %s is not a modifiable lvalue", toChars()); return this; } int SliceExp::isBool(int result) { return e1->isBool(result); } void SliceExp::toCBuffer(OutBuffer *buf, HdrGenState *hgs) { expToCBuffer(buf, hgs, e1, precedence[op]); buf->writeByte('['); if (upr || lwr) { if (lwr) expToCBuffer(buf, hgs, lwr, PREC_assign); else buf->writeByte('0'); buf->writestring(".."); if (upr) expToCBuffer(buf, hgs, upr, PREC_assign); else buf->writestring("length"); // BUG: should be array.length } buf->writeByte(']'); } /********************** ArrayLength **************************************/ ArrayLengthExp::ArrayLengthExp(Loc loc, Expression *e1) : UnaExp(loc, TOKarraylength, sizeof(ArrayLengthExp), e1) { } Expression *ArrayLengthExp::semantic(Scope *sc) { #if LOGSEMANTIC printf("ArrayLengthExp::semantic('%s')\n", toChars()); #endif if (!type) { UnaExp::semantic(sc); e1 = resolveProperties(sc, e1); type = Type::tsize_t; } return this; } Expression *opAssignToOp(Loc loc, enum TOK op, Expression *e1, Expression *e2) { Expression *e; switch (op) { case TOKaddass: e = new AddExp(loc, e1, e2); break; case TOKminass: e = new MinExp(loc, e1, e2); break; case TOKmulass: e = new MulExp(loc, e1, e2); break; case TOKdivass: e = new DivExp(loc, e1, e2); break; case TOKmodass: e = new ModExp(loc, e1, e2); break; case TOKandass: e = new AndExp(loc, e1, e2); break; case TOKorass: e = new OrExp (loc, e1, e2); break; case TOKxorass: e = new XorExp(loc, e1, e2); break; case TOKshlass: e = new ShlExp(loc, e1, e2); break; case TOKshrass: e = new ShrExp(loc, e1, e2); break; case TOKushrass: e = new UshrExp(loc, e1, e2); break; default: assert(0); } return e; } /********************* * Rewrite: * array.length op= e2 * as: * array.length = array.length op e2 * or: * auto tmp = &array; * (*tmp).length = (*tmp).length op e2 */ Expression *ArrayLengthExp::rewriteOpAssign(BinExp *exp) { Expression *e; assert(exp->e1->op == TOKarraylength); ArrayLengthExp *ale = (ArrayLengthExp *)exp->e1; if (ale->e1->op == TOKvar) { e = opAssignToOp(exp->loc, exp->op, ale, exp->e2); e = new AssignExp(exp->loc, ale->syntaxCopy(), e); } else { /* auto tmp = &array; * (*tmp).length = (*tmp).length op e2 */ Identifier *id = Lexer::uniqueId("__arraylength"); ExpInitializer *ei = new ExpInitializer(ale->loc, new AddrExp(ale->loc, ale->e1)); VarDeclaration *tmp = new VarDeclaration(ale->loc, ale->e1->type->pointerTo(), id, ei); Expression *e1 = new ArrayLengthExp(ale->loc, new PtrExp(ale->loc, new VarExp(ale->loc, tmp))); Expression *elvalue = e1->syntaxCopy(); e = opAssignToOp(exp->loc, exp->op, e1, exp->e2); e = new AssignExp(exp->loc, elvalue, e); e = new CommaExp(exp->loc, new DeclarationExp(ale->loc, tmp), e); } return e; } void ArrayLengthExp::toCBuffer(OutBuffer *buf, HdrGenState *hgs) { expToCBuffer(buf, hgs, e1, PREC_primary); buf->writestring(".length"); } /*********************** ArrayExp *************************************/ // e1 [ i1, i2, i3, ... ] ArrayExp::ArrayExp(Loc loc, Expression *e1, Expressions *args) : UnaExp(loc, TOKarray, sizeof(ArrayExp), e1) { arguments = args; lengthVar = NULL; currentDimension = 0; } Expression *ArrayExp::syntaxCopy() { ArrayExp *ae = new ArrayExp(loc, e1->syntaxCopy(), arraySyntaxCopy(arguments)); ae->lengthVar = this->lengthVar; // bug7871 return ae; } Expression *ArrayExp::semantic(Scope *sc) { Expression *e; Type *t1; #if LOGSEMANTIC printf("ArrayExp::semantic('%s')\n", toChars()); #endif UnaExp::semantic(sc); e1 = resolveProperties(sc, e1); if (e1->op == TOKerror) return e1; t1 = e1->type->toBasetype(); if (t1->ty != Tclass && t1->ty != Tstruct) { // Convert to IndexExp if (arguments->dim != 1) { error("only one index allowed to index %s", t1->toChars()); goto Lerr; } e = new IndexExp(loc, e1, (*arguments)[0]); return e->semantic(sc); } e = op_overload(sc); if (!e) { error("no [] operator overload for type %s", e1->type->toChars()); goto Lerr; } return e; Lerr: return new ErrorExp(); } int ArrayExp::isLvalue() { if (type && type->toBasetype()->ty == Tvoid) return 0; return 1; } Expression *ArrayExp::toLvalue(Scope *sc, Expression *e) { if (type && type->toBasetype()->ty == Tvoid) error("voids have no value"); return this; } void ArrayExp::toCBuffer(OutBuffer *buf, HdrGenState *hgs) { expToCBuffer(buf, hgs, e1, PREC_primary); buf->writeByte('['); argsToCBuffer(buf, arguments, hgs); buf->writeByte(']'); } /************************* DotExp ***********************************/ DotExp::DotExp(Loc loc, Expression *e1, Expression *e2) : BinExp(loc, TOKdotexp, sizeof(DotExp), e1, e2) { } Expression *DotExp::semantic(Scope *sc) { #if LOGSEMANTIC printf("DotExp::semantic('%s')\n", toChars()); if (type) printf("\ttype = %s\n", type->toChars()); #endif e1 = e1->semantic(sc); e2 = e2->semantic(sc); if (e2->op == TOKimport) { ScopeExp *se = (ScopeExp *)e2; TemplateDeclaration *td = se->sds->isTemplateDeclaration(); if (td) { Expression *e = new DotTemplateExp(loc, e1, td); e = e->semantic(sc); return e; } } if (!type) type = e2->type; return this; } void DotExp::toCBuffer(OutBuffer *buf, HdrGenState *hgs) { expToCBuffer(buf, hgs, e1, PREC_primary); buf->writeByte('.'); expToCBuffer(buf, hgs, e2, PREC_primary); } /************************* CommaExp ***********************************/ CommaExp::CommaExp(Loc loc, Expression *e1, Expression *e2) : BinExp(loc, TOKcomma, sizeof(CommaExp), e1, e2) { } Expression *CommaExp::semantic(Scope *sc) { if (!type) { BinExp::semanticp(sc); e1 = e1->addDtorHook(sc); type = e2->type; } return this; } void CommaExp::checkEscape() { e2->checkEscape(); } void CommaExp::checkEscapeRef() { e2->checkEscapeRef(); } int CommaExp::isLvalue() { return e2->isLvalue(); } Expression *CommaExp::toLvalue(Scope *sc, Expression *e) { e2 = e2->toLvalue(sc, NULL); return this; } int CommaExp::checkModifiable(Scope *sc, int flag) { return e2->checkModifiable(sc, flag); } Expression *CommaExp::modifiableLvalue(Scope *sc, Expression *e) { e2 = e2->modifiableLvalue(sc, e); return this; } int CommaExp::isBool(int result) { return e2->isBool(result); } Expression *CommaExp::addDtorHook(Scope *sc) { e2 = e2->addDtorHook(sc); return this; } /************************** IndexExp **********************************/ // e1 [ e2 ] IndexExp::IndexExp(Loc loc, Expression *e1, Expression *e2) : BinExp(loc, TOKindex, sizeof(IndexExp), e1, e2) { //printf("IndexExp::IndexExp('%s')\n", toChars()); lengthVar = NULL; modifiable = 0; // assume it is an rvalue } Expression *IndexExp::syntaxCopy() { IndexExp *ie = new IndexExp(loc, e1->syntaxCopy(), e2->syntaxCopy()); ie->lengthVar = this->lengthVar; // bug7871 return ie; } Expression *IndexExp::semantic(Scope *sc) { Expression *e; Type *t1; ScopeDsymbol *sym; #if LOGSEMANTIC printf("IndexExp::semantic('%s')\n", toChars()); #endif if (type) return this; if (!e1->type) e1 = e1->semantic(sc); assert(e1->type); // semantic() should already be run on it if (e1->op == TOKtype && e1->type->ty != Ttuple) { e2 = e2->semantic(sc); e2 = resolveProperties(sc, e2); Type *nt; if (e2->op == TOKtype) nt = new TypeAArray(e1->type, e2->type); else nt = new TypeSArray(e1->type, e2); e = new TypeExp(loc, nt); return e->semantic(sc); } if (e1->op == TOKerror) goto Lerr; e = this; // Note that unlike C we do not implement the int[ptr] t1 = e1->type->toBasetype(); if (t1->ty == Tsarray || t1->ty == Tarray || t1->ty == Ttuple) { // Create scope for 'length' variable sym = new ArrayScopeSymbol(sc, this); sym->loc = loc; sym->parent = sc->scopesym; sc = sc->push(sym); } if (t1->ty == Ttuple) e2 = e2->ctfeSemantic(sc); else e2 = e2->semantic(sc); e2 = resolveProperties(sc, e2); if (e2->type == Type::terror) goto Lerr; if (e2->type->ty == Ttuple && ((TupleExp *)e2)->exps->dim == 1) // bug 4444 fix e2 = (*((TupleExp *)e2)->exps)[0]; if (t1->ty == Tsarray || t1->ty == Tarray || t1->ty == Ttuple) sc = sc->pop(); switch (t1->ty) { case Tpointer: e2 = e2->implicitCastTo(sc, Type::tsize_t); e2 = e2->optimize(WANTvalue); if (e2->op == TOKint64 && e2->toInteger() == 0) ; else if (sc->func->setUnsafe()) { error("safe function '%s' cannot index pointer '%s'", sc->func->toPrettyChars(), e1->toChars()); return new ErrorExp(); } e->type = ((TypeNext *)t1)->next; break; case Tarray: e2 = e2->implicitCastTo(sc, Type::tsize_t); e->type = ((TypeNext *)t1)->next; break; case Tsarray: { e2 = e2->implicitCastTo(sc, Type::tsize_t); TypeSArray *tsa = (TypeSArray *)t1; e->type = t1->nextOf(); break; } case Taarray: { TypeAArray *taa = (TypeAArray *)t1; /* We can skip the implicit conversion if they differ only by * constness (Bugzilla 2684, see also bug 2954b) */ if (!arrayTypeCompatibleWithoutCasting(e2->loc, e2->type, taa->index)) { e2 = e2->implicitCastTo(sc, taa->index); // type checking } type = taa->next; break; } case Ttuple: { e2 = e2->implicitCastTo(sc, Type::tsize_t); e2 = e2->ctfeInterpret(); uinteger_t index = e2->toUInteger(); size_t length; TupleExp *te; TypeTuple *tup; if (e1->op == TOKtuple) { te = (TupleExp *)e1; length = te->exps->dim; } else if (e1->op == TOKtype) { tup = (TypeTuple *)t1; length = Parameter::dim(tup->arguments); } else assert(0); if (index < length) { if (e1->op == TOKtuple) { e = (*te->exps)[(size_t)index]; e = combine(te->e0, e); } else e = new TypeExp(e1->loc, Parameter::getNth(tup->arguments, (size_t)index)->type); } else { error("array index [%llu] is outside array bounds [0 .. %llu]", index, (ulonglong)length); e = e1; } break; } default: if (e1->op == TOKerror) goto Lerr; error("%s must be an array or pointer type, not %s", e1->toChars(), e1->type->toChars()); case Terror: goto Lerr; } return e; Lerr: return new ErrorExp(); } int IndexExp::isLvalue() { return 1; } Expression *IndexExp::toLvalue(Scope *sc, Expression *e) { // if (type && type->toBasetype()->ty == Tvoid) // error("voids have no value"); return this; } int IndexExp::checkModifiable(Scope *sc, int flag) { if (e1->type->ty == Tsarray || (e1->op == TOKindex && e1->type->ty != Tarray) || e1->op == TOKslice) { return e1->checkModifiable(sc, flag); } return 1; } Expression *IndexExp::modifiableLvalue(Scope *sc, Expression *e) { //printf("IndexExp::modifiableLvalue(%s)\n", toChars()); modifiable = 1; Type *t1 = e1->type->toBasetype(); if (t1->ty == Taarray) { TypeAArray *taa = (TypeAArray *)t1; Type *t2b = e2->type->toBasetype(); if (t2b->ty == Tarray && t2b->nextOf()->isMutable()) error("associative arrays can only be assigned values with immutable keys, not %s", e2->type->toChars()); e1 = e1->modifiableLvalue(sc, e1); return toLvalue(sc, e); } return Expression::modifiableLvalue(sc, e); } void IndexExp::toCBuffer(OutBuffer *buf, HdrGenState *hgs) { expToCBuffer(buf, hgs, e1, PREC_primary); buf->writeByte('['); expToCBuffer(buf, hgs, e2, PREC_assign); buf->writeByte(']'); } /************************* PostExp ***********************************/ PostExp::PostExp(enum TOK op, Loc loc, Expression *e) : BinExp(loc, op, sizeof(PostExp), e, new IntegerExp(loc, 1, Type::tint32)) { } Expression *PostExp::semantic(Scope *sc) { Expression *e = this; #if LOGSEMANTIC printf("PostExp::semantic('%s')\n", toChars()); #endif if (!type) { BinExp::semantic(sc); e1 = resolveProperties(sc, e1); e = op_overload(sc); if (e) return e; if (e1->op == TOKslice) { const char *s = op == TOKplusplus ? "increment" : "decrement"; error("cannot post-%s array slice '%s', use pre-%s instead", s, e1->toChars(), s); return new ErrorExp(); } e1 = e1->optimize(WANTvalue); if (e1->op != TOKarraylength) e1 = e1->modifiableLvalue(sc, e1); Type *t1 = e1->type->toBasetype(); if (t1->ty == Tclass || t1->ty == Tstruct || e1->op == TOKarraylength) { /* Check for operator overloading, * but rewrite in terms of ++e instead of e++ */ /* If e1 is not trivial, take a reference to it */ Expression *de = NULL; if (e1->op != TOKvar && e1->op != TOKarraylength) { // ref v = e1; Identifier *id = Lexer::uniqueId("__postref"); ExpInitializer *ei = new ExpInitializer(loc, e1); VarDeclaration *v = new VarDeclaration(loc, e1->type, id, ei); v->storage_class |= STCref | STCforeach; de = new DeclarationExp(loc, v); e1 = new VarExp(e1->loc, v); } /* Rewrite as: * auto tmp = e1; ++e1; tmp */ Identifier *id = Lexer::uniqueId("__pitmp"); ExpInitializer *ei = new ExpInitializer(loc, e1); VarDeclaration *tmp = new VarDeclaration(loc, e1->type, id, ei); Expression *ea = new DeclarationExp(loc, tmp); Expression *eb = e1->syntaxCopy(); eb = new PreExp(op == TOKplusplus ? TOKpreplusplus : TOKpreminusminus, loc, eb); Expression *ec = new VarExp(loc, tmp); // Combine de,ea,eb,ec if (de) ea = new CommaExp(loc, de, ea); e = new CommaExp(loc, ea, eb); e = new CommaExp(loc, e, ec); e = e->semantic(sc); return e; } e = this; e1->checkScalar(); e1->checkNoBool(); if (e1->type->ty == Tpointer) e = scaleFactor(sc); else e2 = e2->castTo(sc, e1->type); e->type = e1->type; } return e; } void PostExp::toCBuffer(OutBuffer *buf, HdrGenState *hgs) { expToCBuffer(buf, hgs, e1, precedence[op]); buf->writestring(Token::toChars(op)); } /************************* PreExp ***********************************/ PreExp::PreExp(enum TOK op, Loc loc, Expression *e) : UnaExp(loc, op, sizeof(PreExp), e) { } Expression *PreExp::semantic(Scope *sc) { Expression *e; e = op_overload(sc); if (e) return e; // Rewrite as e1+=1 or e1-=1 if (op == TOKpreplusplus) e = new AddAssignExp(loc, e1, new IntegerExp(loc, 1, Type::tint32)); else e = new MinAssignExp(loc, e1, new IntegerExp(loc, 1, Type::tint32)); return e->semantic(sc); } void PreExp::toCBuffer(OutBuffer *buf, HdrGenState *hgs) { buf->writestring(Token::toChars(op)); expToCBuffer(buf, hgs, e1, precedence[op]); } /************************************************************/ /* op can be TOKassign, TOKconstruct, or TOKblit */ AssignExp::AssignExp(Loc loc, Expression *e1, Expression *e2) : BinExp(loc, TOKassign, sizeof(AssignExp), e1, e2) { ismemset = 0; } Expression *AssignExp::semantic(Scope *sc) { Expression *e1old = e1; #if LOGSEMANTIC printf("AssignExp::semantic('%s')\n", toChars()); #endif //printf("e1->op = %d, '%s'\n", e1->op, Token::toChars(e1->op)); //printf("e2->op = %d, '%s'\n", e2->op, Token::toChars(e2->op)); if (type) return this; if (e2->op == TOKcomma) { /* Rewrite to get rid of the comma from rvalue */ AssignExp *ea = new AssignExp(loc, e1, ((CommaExp *)e2)->e2); ea->op = op; Expression *e = new CommaExp(loc, ((CommaExp *)e2)->e1, ea); return e->semantic(sc); } /* Look for operator overloading of a[i]=value. * Do it before semantic() otherwise the a[i] will have been * converted to a.opIndex() already. */ if (e1->op == TOKarray) { ArrayExp *ae = (ArrayExp *)e1; AggregateDeclaration *ad = NULL; Identifier *id = Id::index; ae->e1 = ae->e1->semantic(sc); ae->e1 = resolveProperties(sc, ae->e1); Expression *e1 = ae->e1; Type *t1 = ae->e1->type->toBasetype(); if (t1->ty == Tstruct) { ad = ((TypeStruct *)t1)->sym; goto L1; } else if (t1->ty == Tclass) { ad = ((TypeClass *)t1)->sym; L1: // Rewrite (a[i] = value) to (a.opIndexAssign(value, i)) if (search_function(ad, Id::indexass)) { // Deal with $ ae = resolveOpDollar(sc, ae); Expressions *a = (Expressions *)ae->arguments->copy(); a->insert(0, e2); Expression *e = new DotIdExp(loc, e1, Id::indexass); e = new CallExp(loc, e, a); e = e->semantic(sc); return e; } } // No opIndexAssign found yet, but there might be an alias this to try. if (ad && ad->aliasthis && t1 != att1) { if (!att1 && t1->checkAliasThisRec()) att1 = t1; e1 = resolveAliasThis(sc, e1); t1 = e1->type->toBasetype(); if (t1->ty == Tstruct) { ad = ((TypeStruct *)t1)->sym; goto L1; } else if (t1->ty == Tclass) { ad = ((TypeClass *)t1)->sym; goto L1; } } } /* Look for operator overloading of a[i..j]=value. * Do it before semantic() otherwise the a[i..j] will have been * converted to a.opSlice() already. */ if (e1->op == TOKslice) { SliceExp *ae = (SliceExp *)e1; AggregateDeclaration *ad = NULL; Identifier *id = Id::index; ae->e1 = ae->e1->semantic(sc); ae->e1 = resolveProperties(sc, ae->e1); Expression *e1 = ae->e1; Type *t1 = ae->e1->type->toBasetype(); if (t1->ty == Tstruct) { ad = ((TypeStruct *)t1)->sym; goto L2; } else if (t1->ty == Tclass) { ad = ((TypeClass *)t1)->sym; L2: // Rewrite (a[i..j] = value) to (a.opSliceAssign(value, i, j)) if (search_function(ad, Id::sliceass)) { ae = resolveOpDollar(sc, ae); Expressions *a = new Expressions(); a->push(e2); assert(!ae->lwr || ae->upr); if (ae->lwr) { a->push(ae->lwr); a->push(ae->upr); } Expression *e = new DotIdExp(loc, e1, Id::sliceass); e = new CallExp(loc, e, a); e = e->semantic(sc); return e; } } // No opSliceAssign found yet, but there might be an alias this to try. if (ad && ad->aliasthis && t1 != att1) { if (!att1 && t1->checkAliasThisRec()) att1 = t1; e1 = resolveAliasThis(sc, e1); t1 = e1->type->toBasetype(); if (t1->ty == Tstruct) { ad = ((TypeStruct *)t1)->sym; goto L2; } else if (t1->ty == Tclass) { ad = ((TypeClass *)t1)->sym; goto L2; } } } /* With UFCS, e.f = value * Could mean: * .f(e, value) * or: * .f(e) = value */ if (e1->op == TOKdotti) { DotTemplateInstanceExp *dti = (DotTemplateInstanceExp *)e1; Expression *e = dti->semanticY(sc, 1); if (!e) return resolveUFCSProperties(sc, e1, e2); e1 = e; } else if (e1->op == TOKdot) { DotIdExp *die = (DotIdExp *)e1; Expression *e = die->semanticY(sc, 1); if (!e) return resolveUFCSProperties(sc, e1, e2); e1 = e; } e1 = e1->semantic(sc); if (e1->op == TOKerror) return new ErrorExp(); /* We have f = value. * Could mean: * f(value) * or: * f() = value */ TemplateDeclaration *td; Objects *tiargs; FuncDeclaration *fd; Type *tthis; if (e1->op == TOKdotti) { DotTemplateInstanceExp* dti = (DotTemplateInstanceExp *)e1; td = dti->getTempdecl(sc); dti->ti->semanticTiargs(sc); tiargs = dti->ti->tiargs; tthis = dti->e1->type; goto L3; } else if (e1->op == TOKdottd) { DotTemplateExp *dte = (DotTemplateExp *)e1; td = dte->td; tiargs = NULL; tthis = dte->e1->type; goto L3; } else if (e1->op == TOKtemplate) { td = ((TemplateExp *)e1)->td; tiargs = NULL; tthis = NULL; L3: { e2 = e2->semantic(sc); if (e2->op == TOKerror) return new ErrorExp(); e2 = resolveProperties(sc, e2); assert(td); Expressions a; a.push(e2); fd = resolveFuncCall(loc, sc, td, tiargs, tthis, &a, 1); if (fd && fd->type) goto Lsetter; fd = resolveFuncCall(loc, sc, td, tiargs, tthis, NULL, 1); if (fd && fd->type) goto Lgetter; } goto Leprop; } else if (e1->op == TOKdotvar && e1->type->toBasetype()->ty == Tfunction) { DotVarExp *dve = (DotVarExp *)e1; fd = dve->var->isFuncDeclaration(); tthis = dve->e1->type; goto L4; } else if (e1->op == TOKvar && e1->type->toBasetype()->ty == Tfunction) { fd = ((VarExp *)e1)->var->isFuncDeclaration(); tthis = NULL; L4: { e2 = e2->semantic(sc); if (e2->op == TOKerror) return new ErrorExp(); e2 = resolveProperties(sc, e2); assert(fd); FuncDeclaration *f = fd; Expressions a; a.push(e2); fd = resolveFuncCall(loc, sc, f, NULL, tthis, &a, 1); if (fd && fd->type) goto Lsetter; fd = resolveFuncCall(loc, sc, f, NULL, tthis, NULL, 1); if (fd && fd->type) goto Lgetter; goto Leprop; } Expression *e; TypeFunction *tf; Lsetter: assert(fd->type->ty == Tfunction); tf = (TypeFunction *)fd->type; if (!tf->isproperty && global.params.enforcePropertySyntax) goto Leprop; e = new CallExp(loc, e1, e2); return e->semantic(sc); Lgetter: assert(fd->type->ty == Tfunction); tf = (TypeFunction *)fd->type; if (!tf->isref) goto Leprop; if (!tf->isproperty && global.params.enforcePropertySyntax) goto Leprop; e = new CallExp(loc, e1); e = new AssignExp(loc, e, e2); return e->semantic(sc); Leprop: ::error(e1->loc, "not a property %s", e1->toChars()); return new ErrorExp(); } e1 = checkRightThis(sc, e1); assert(e1->type); Type *t1 = e1->type->toBasetype(); e2 = e2->inferType(t1); e2 = e2->semantic(sc); if (e2->op == TOKerror) return new ErrorExp(); e2 = resolveProperties(sc, e2); if (!e2->rvalue()) return new ErrorExp(); /* Rewrite tuple assignment as a tuple of assignments. */ Ltupleassign: if (e1->op == TOKtuple && e2->op == TOKtuple) { TupleExp *tup1 = (TupleExp *)e1; TupleExp *tup2 = (TupleExp *)e2; size_t dim = tup1->exps->dim; if (dim != tup2->exps->dim) { error("mismatched tuple lengths, %d and %d", (int)dim, (int)tup2->exps->dim); return new ErrorExp(); } else { Expressions *exps = new Expressions; exps->setDim(dim); Expression *e0 = combine(tup1->e0, tup2->e0); for (size_t i = 0; i < dim; i++) { Expression *ex1 = (*tup1->exps)[i]; Expression *ex2 = (*tup2->exps)[i]; (*exps)[i] = new AssignExp(loc, ex1, ex2); } Expression *e = new TupleExp(loc, e0, exps); e = e->semantic(sc); return e; } } if (e1->op == TOKtuple) { if (TupleDeclaration *td = isAliasThisTuple(e2)) { assert(e1->type->ty == Ttuple); TypeTuple *tt = (TypeTuple *)e1->type; Identifier *id = Lexer::uniqueId("__tup"); ExpInitializer *ei = new ExpInitializer(e2->loc, e2); VarDeclaration *v = new VarDeclaration(e2->loc, NULL, id, ei); v->storage_class = STCctfe | STCref | STCforeach; Expression *e0 = new DeclarationExp(e2->loc, v); Expression *ev = new VarExp(e2->loc, v); ev->type = e2->type; Expressions *iexps = new Expressions(); iexps->push(ev); for (size_t u = 0; u < iexps->dim ; u++) { Lexpand: Expression *e = (*iexps)[u]; Parameter *arg = Parameter::getNth(tt->arguments, u); //printf("[%d] iexps->dim = %d, ", u, iexps->dim); //printf("e = (%s %s, %s), ", Token::tochars[e->op], e->toChars(), e->type->toChars()); //printf("arg = (%s, %s)\n", arg->toChars(), arg->type->toChars()); if (!e->type->implicitConvTo(arg->type)) { // expand initializer to tuple if (expandAliasThisTuples(iexps, u) != -1) goto Lexpand; goto Lnomatch; } } e2 = new TupleExp(e2->loc, e0, iexps); e2 = e2->semantic(sc); goto Ltupleassign; Lnomatch: ; } } // Determine if this is an initialization of a reference int refinit = 0; if (op == TOKconstruct && e1->op == TOKvar) { VarExp *ve = (VarExp *)e1; VarDeclaration *v = ve->var->isVarDeclaration(); if (v->storage_class & (STCout | STCref)) refinit = 1; } /* If it is an assignment from a 'foreign' type, * check for operator overloading. */ if (t1->ty == Tstruct) { StructDeclaration *sd = ((TypeStruct *)t1)->sym; if (op == TOKassign) { Expression *e = op_overload(sc); if (e && e1->op == TOKindex && ((IndexExp *)e1)->e1->type->toBasetype()->ty == Taarray) { // Deal with AAs (Bugzilla 2451) // Rewrite as: // e1 = (typeof(aa.value) tmp = void, tmp = e2, tmp); Type * aaValueType = ((TypeAArray *)((IndexExp*)e1)->e1->type->toBasetype())->next; Identifier *id = Lexer::uniqueId("__aatmp"); VarDeclaration *v = new VarDeclaration(loc, aaValueType, id, new VoidInitializer(Loc())); v->storage_class |= STCctfe; v->semantic(sc); v->parent = sc->parent; Expression *de = new DeclarationExp(loc, v); VarExp *ve = new VarExp(loc, v); AssignExp *ae = new AssignExp(loc, ve, e2); e = ae->op_overload(sc); e2 = new CommaExp(loc, new CommaExp(loc, de, e), ve); e2 = e2->semantic(sc); e1 = e1->optimize(WANTvalue); e1 = e1->modifiableLvalue(sc, e1); e2 = e2->implicitCastTo(sc, e1->type); type = e1->type; assert(type); e = this; } if (e) { /* See if we need to set ctorinit, i.e. track * assignments to fields. An assignment to a field counts even * if done through an opAssign overload. */ e1->checkModifiable(sc); return e; } } else if (op == TOKconstruct && !refinit) { Type *t2 = e2->type->toBasetype(); if (t2->ty == Tstruct && sd == ((TypeStruct *)t2)->sym && sd->cpctor) { /* We have a copy constructor for this */ if (e2->op == TOKquestion) { /* Write as: * a ? e1 = b : e1 = c; */ CondExp *econd = (CondExp *)e2; AssignExp *ea1 = new AssignExp(econd->e1->loc, e1, econd->e1); ea1->op = op; AssignExp *ea2 = new AssignExp(econd->e1->loc, e1, econd->e2); ea2->op = op; Expression *e = new CondExp(loc, econd->econd, ea1, ea2); return e->semantic(sc); } else if (e2->isLvalue()) { /* Write as: * e1.cpctor(e2); */ if (!e2->type->implicitConvTo(e1->type)) error("conversion error from %s to %s", e2->type->toChars(), e1->type->toChars()); Expression *e = new DotVarExp(loc, e1, sd->cpctor, 0); e = new CallExp(loc, e, e2); return e->semantic(sc); } else if (e2->op == TOKcall) { /* The struct value returned from the function is transferred * so should not call the destructor on it. */ valueNoDtor(e2); } } } } else if (t1->ty == Tclass) { // Disallow assignment operator overloads for same type if (op == TOKassign && !e2->implicitConvTo(e1->type)) { Expression *e = op_overload(sc); if (e) return e; } } if (t1->ty == Tsarray && !refinit) { Type *t2 = e2->type->toBasetype(); if (e1->op == TOKindex && ((IndexExp *)e1)->e1->type->toBasetype()->ty == Taarray) { // Assignment to an AA of fixed-length arrays. // Convert T[n][U] = T[] into T[n][U] = T[n] e2 = e2->implicitCastTo(sc, e1->type); if (e2->type == Type::terror) return e2; } else { // Convert e2 to e2[], unless e2-> e1[0] if (e2->op != TOKarrayliteral && t2->ty == Tsarray && !t2->implicitConvTo(t1->nextOf())) { e2 = new SliceExp(e2->loc, e2, NULL, NULL); e2 = e2->semantic(sc); } else if (global.params.warnings && !global.gag && op == TOKassign && e2->op != TOKarrayliteral && e2->op != TOKstring) { // Disallow sa = da (Converted to sa[] = da[]) // Disallow sa = e (Converted to sa[] = e) const char* e1str = e1->toChars(); const char* e2str = e2->toChars(); if (e2->op == TOKslice || e2->implicitConvTo(t1->nextOf())) warning("explicit element-wise assignment (%s)[] = %s is better than %s = %s", e1str, e2str, e1str, e2str); else warning("explicit element-wise assignment (%s)[] = (%s)[] is better than %s = %s", e1str, e2str, e1str, e2str); // Convert e2 to e2[] to avoid duplicated error message. if (t2->ty == Tarray) { Expression *e = new SliceExp(e2->loc, e2, NULL, NULL); e2 = e->semantic(sc); } } // Convert e1 to e1[] Expression *e = new SliceExp(e1->loc, e1, NULL, NULL); e1 = e->semantic(sc); t1 = e1->type->toBasetype(); } } if (e1->op == TOKarraylength) { // e1 is not an lvalue, but we let code generator handle it ArrayLengthExp *ale = (ArrayLengthExp *)e1; ale->e1 = ale->e1->modifiableLvalue(sc, e1); checkDefCtor(ale->loc, ale->e1->type->toBasetype()->nextOf()); } else if (e1->op == TOKslice) { Type *tn = e1->type->nextOf(); if (op == TOKassign && e1->checkModifiable(sc) == 1 && !tn->isMutable()) { error("slice %s is not mutable", e1->toChars()); return new ErrorExp(); } } else { // Try to do a decent error message with the expression // before it got constant folded if (e1->op != TOKvar) e1 = e1->optimize(WANTvalue); if (op == TOKassign) e1 = e1->modifiableLvalue(sc, e1old); } Type *t2 = e2->type->toBasetype(); // If it is a array, get the element type. Note that it may be // multi-dimensional. Type *telem = t1; while (telem->ty == Tarray) telem = telem->nextOf(); // Check for block assignment. If it is of type void[], void[][], etc, // '= null' is the only allowable block assignment (Bug 7493) if (e1->op == TOKslice && t1->nextOf() && (telem->ty != Tvoid || e2->op == TOKnull) && e2->implicitConvTo(t1->nextOf()) ) { // memset ismemset = 1; // make it easy for back end to tell what this is e2 = e2->implicitCastTo(sc, t1->nextOf()); } else if (t1->ty == Tsarray) { /* Should have already converted e1 => e1[] * unless it is an AA */ if (!(e1->op == TOKindex && t2->ty == Tsarray && ((IndexExp *)e1)->e1->type->toBasetype()->ty == Taarray)) { assert(op == TOKconstruct); } //error("cannot assign to static array %s", e1->toChars()); } // Check element-wise assignment. else if (e1->op == TOKslice && (t2->ty == Tarray || t2->ty == Tsarray) && t2->nextOf()->implicitConvTo(t1->nextOf())) { SliceExp *se1 = (SliceExp *)e1; Type *tx1 = se1->e1->type->toBasetype(); if (se1->lwr == NULL && tx1->ty == Tsarray) { Type *tx2 = t2; if (e2->op == TOKslice && ((SliceExp *)e2)->lwr == NULL) tx2 = ((SliceExp *)e2)->e1->type->toBasetype(); uinteger_t dim1, dim2; if (e2->op == TOKarrayliteral) { dim2 = ((ArrayLiteralExp *)e2)->elements->dim; goto Lsa; } if (tx2->ty == Tsarray) { // sa1[] = sa2[]; // sa1[] = sa2; // sa1[] = [ ... ]; dim2 = ((TypeSArray *)tx2)->dim->toInteger(); Lsa: dim1 = ((TypeSArray *)tx1)->dim->toInteger(); if (dim1 != dim2) { error("mismatched array lengths, %d and %d", (int)dim1, (int)dim2); return new ErrorExp(); } } } if (op != TOKblit && (e2->op == TOKslice && ((UnaExp *)e2)->e1->isLvalue() || e2->op == TOKcast && ((UnaExp *)e2)->e1->isLvalue() || e2->op != TOKslice && e2->isLvalue())) { checkPostblit(e2->loc, t2->nextOf()); } if (global.params.warnings && !global.gag && op == TOKassign && e2->op != TOKslice && e2->op != TOKassign && e2->op != TOKarrayliteral && e2->op != TOKstring && !(e2->op == TOKadd || e2->op == TOKmin || e2->op == TOKmul || e2->op == TOKdiv || e2->op == TOKmod || e2->op == TOKxor || e2->op == TOKand || e2->op == TOKor || #if DMDV2 e2->op == TOKpow || #endif e2->op == TOKtilde || e2->op == TOKneg)) { const char* e1str = e1->toChars(); const char* e2str = e2->toChars(); warning("explicit element-wise assignment %s = (%s)[] is better than %s = %s", e1str, e2str, e1str, e2str); } if (op == TOKconstruct) e2 = e2->castTo(sc, e1->type->constOf()); else e2 = e2->implicitCastTo(sc, e1->type->constOf()); } else { if (global.params.warnings && !global.gag && op == TOKassign && t1->ty == Tarray && t2->ty == Tsarray && e2->op != TOKslice && //e2->op != TOKarrayliteral && t2->implicitConvTo(t1)) { // Disallow ar[] = sa (Converted to ar[] = sa[]) // Disallow da = sa (Converted to da = sa[]) const char* e1str = e1->toChars(); const char* e2str = e2->toChars(); warning("explicit %s assignment %s = (%s)[] is better than %s = %s", e1->op == TOKslice ? "element-wise" : "slice", e1str, e2str, e1str, e2str); } e2 = e2->implicitCastTo(sc, e1->type); } if (e2->op == TOKerror) return new ErrorExp(); /* Look for array operations */ if (e1->op == TOKslice && !ismemset && (e2->op == TOKadd || e2->op == TOKmin || e2->op == TOKmul || e2->op == TOKdiv || e2->op == TOKmod || e2->op == TOKxor || e2->op == TOKand || e2->op == TOKor || #if DMDV2 e2->op == TOKpow || #endif e2->op == TOKtilde || e2->op == TOKneg)) { type = e1->type; return arrayOp(sc); } if (e1->op == TOKvar && (((VarExp *)e1)->var->storage_class & STCscope) && op == TOKassign) { error("cannot rebind scope variables"); } if (e1->op == TOKvar && ((VarExp*)e1)->var->ident == Id::ctfe) { error("cannot modify compiler-generated variable __ctfe"); } type = e1->type; assert(type); return reorderSettingAAElem(sc); } Expression *AssignExp::checkToBoolean(Scope *sc) { // Things like: // if (a = b) ... // are usually mistakes. error("assignment cannot be used as a condition, perhaps == was meant?"); return new ErrorExp(); } /************************************************************/ ConstructExp::ConstructExp(Loc loc, Expression *e1, Expression *e2) : AssignExp(loc, e1, e2) { op = TOKconstruct; } /************************************************************/ AddAssignExp::AddAssignExp(Loc loc, Expression *e1, Expression *e2) : BinAssignExp(loc, TOKaddass, sizeof(AddAssignExp), e1, e2) { } /************************************************************/ MinAssignExp::MinAssignExp(Loc loc, Expression *e1, Expression *e2) : BinAssignExp(loc, TOKminass, sizeof(MinAssignExp), e1, e2) { } /************************************************************/ CatAssignExp::CatAssignExp(Loc loc, Expression *e1, Expression *e2) : BinAssignExp(loc, TOKcatass, sizeof(CatAssignExp), e1, e2) { } Expression *CatAssignExp::semantic(Scope *sc) { //printf("CatAssignExp::semantic() %s\n", toChars()); Expression *e = op_overload(sc); if (e) return e; if (e1->op == TOKslice) { SliceExp *se = (SliceExp *)e1; if (se->e1->type->toBasetype()->ty == Tsarray) { error("cannot append to static array %s", se->e1->type->toChars()); return new ErrorExp(); } } e1 = e1->modifiableLvalue(sc, e1); if (e1->op == TOKerror) return e1; Type *tb1 = e1->type->toBasetype(); Type *tb1next = tb1->nextOf(); e2 = e2->inferType(tb1next); if (!e2->rvalue()) return new ErrorExp(); Type *tb2 = e2->type->toBasetype(); if ((tb1->ty == Tarray) && (tb2->ty == Tarray || tb2->ty == Tsarray) && (e2->implicitConvTo(e1->type) #if DMDV2 || (tb2->nextOf()->implicitConvTo(tb1next) && (tb2->nextOf()->size(Loc()) == tb1next->size(Loc()) || tb1next->ty == Tchar || tb1next->ty == Twchar || tb1next->ty == Tdchar)) #endif ) ) { // Append array checkPostblit(e1->loc, tb1next); e2 = e2->castTo(sc, e1->type); type = e1->type; } else if ((tb1->ty == Tarray) && e2->implicitConvTo(tb1next) ) { // Append element checkPostblit(e2->loc, tb2); e2 = e2->castTo(sc, tb1next); type = e1->type; } else if (tb1->ty == Tarray && (tb1next->ty == Tchar || tb1next->ty == Twchar) && e2->type->ty != tb1next->ty && e2->implicitConvTo(Type::tdchar) ) { // Append dchar to char[] or wchar[] e2 = e2->castTo(sc, Type::tdchar); type = e1->type; /* Do not allow appending wchar to char[] because if wchar happens * to be a surrogate pair, nothing good can result. */ } else { if (tb1 != Type::terror && tb2 != Type::terror) error("cannot append type %s to type %s", tb2->toChars(), tb1->toChars()); return new ErrorExp(); } return reorderSettingAAElem(sc); } /************************************************************/ MulAssignExp::MulAssignExp(Loc loc, Expression *e1, Expression *e2) : BinAssignExp(loc, TOKmulass, sizeof(MulAssignExp), e1, e2) { } /************************************************************/ DivAssignExp::DivAssignExp(Loc loc, Expression *e1, Expression *e2) : BinAssignExp(loc, TOKdivass, sizeof(DivAssignExp), e1, e2) { } /************************************************************/ ModAssignExp::ModAssignExp(Loc loc, Expression *e1, Expression *e2) : BinAssignExp(loc, TOKmodass, sizeof(ModAssignExp), e1, e2) { } /************************************************************/ ShlAssignExp::ShlAssignExp(Loc loc, Expression *e1, Expression *e2) : BinAssignExp(loc, TOKshlass, sizeof(ShlAssignExp), e1, e2) { } /************************************************************/ ShrAssignExp::ShrAssignExp(Loc loc, Expression *e1, Expression *e2) : BinAssignExp(loc, TOKshrass, sizeof(ShrAssignExp), e1, e2) { } /************************************************************/ UshrAssignExp::UshrAssignExp(Loc loc, Expression *e1, Expression *e2) : BinAssignExp(loc, TOKushrass, sizeof(UshrAssignExp), e1, e2) { } /************************************************************/ AndAssignExp::AndAssignExp(Loc loc, Expression *e1, Expression *e2) : BinAssignExp(loc, TOKandass, sizeof(AndAssignExp), e1, e2) { } /************************************************************/ OrAssignExp::OrAssignExp(Loc loc, Expression *e1, Expression *e2) : BinAssignExp(loc, TOKorass, sizeof(OrAssignExp), e1, e2) { } /************************************************************/ XorAssignExp::XorAssignExp(Loc loc, Expression *e1, Expression *e2) : BinAssignExp(loc, TOKxorass, sizeof(XorAssignExp), e1, e2) { } /***************** PowAssignExp *******************************************/ PowAssignExp::PowAssignExp(Loc loc, Expression *e1, Expression *e2) : BinAssignExp(loc, TOKpowass, sizeof(PowAssignExp), e1, e2) { } Expression *PowAssignExp::semantic(Scope *sc) { Expression *e; if (type) return this; e = op_overload(sc); if (e) return e; assert(e1->type && e2->type); if (e1->op == TOKslice) { // T[] ^^= ... e = typeCombine(sc); if (e->op == TOKerror) return e; // Check element types are arithmetic Type *tb1 = e1->type->nextOf()->toBasetype(); Type *tb2 = e2->type->toBasetype(); if (tb2->ty == Tarray || tb2->ty == Tsarray) tb2 = tb2->nextOf()->toBasetype(); if ( (tb1->isintegral() || tb1->isfloating()) && (tb2->isintegral() || tb2->isfloating())) { type = e1->type; return arrayOp(sc); } } else { e1 = e1->modifiableLvalue(sc, e1); e = reorderSettingAAElem(sc); if (e != this) return e; } if ( (e1->type->isintegral() || e1->type->isfloating()) && (e2->type->isintegral() || e2->type->isfloating())) { if (e1->op == TOKvar) { // Rewrite: e1 = e1 ^^ e2 e = new PowExp(loc, e1->syntaxCopy(), e2); e = new AssignExp(loc, e1, e); } else { // Rewrite: ref tmp = e1; tmp = tmp ^^ e2 Identifier *id = Lexer::uniqueId("__powtmp"); VarDeclaration *v = new VarDeclaration(e1->loc, e1->type, id, new ExpInitializer(loc, e1)); v->storage_class |= STCref | STCforeach; Expression *de = new DeclarationExp(e1->loc, v); VarExp *ve = new VarExp(e1->loc, v); e = new PowExp(loc, ve, e2); e = new AssignExp(loc, new VarExp(e1->loc, v), e); e = new CommaExp(loc, de, e); } e = e->semantic(sc); if (e->type->toBasetype()->ty == Tvector) return incompatibleTypes(); return e; } return incompatibleTypes(); } /************************* AddExp *****************************/ AddExp::AddExp(Loc loc, Expression *e1, Expression *e2) : BinExp(loc, TOKadd, sizeof(AddExp), e1, e2) { } Expression *AddExp::semantic(Scope *sc) { Expression *e; #if LOGSEMANTIC printf("AddExp::semantic('%s')\n", toChars()); #endif if (!type) { BinExp::semanticp(sc); e = op_overload(sc); if (e) return e; Type *tb1 = e1->type->toBasetype(); Type *tb2 = e2->type->toBasetype(); if ((tb1->ty == Tarray || tb1->ty == Tsarray) && (tb2->ty == Tarray || tb2->ty == Tsarray) && tb1->nextOf()->equals(tb2->nextOf()) ) { type = e1->type; e = this; } else if (tb1->ty == Tpointer && e2->type->isintegral() || tb2->ty == Tpointer && e1->type->isintegral()) e = scaleFactor(sc); else if (tb1->ty == Tpointer && tb2->ty == Tpointer) { return incompatibleTypes(); } else { typeCombine(sc); Type *tb1 = e1->type->toBasetype(); if (tb1->ty == Tvector && !tb1->isscalar()) { return incompatibleTypes(); } if ((tb1->isreal() && e2->type->isimaginary()) || (tb1->isimaginary() && e2->type->isreal())) { switch (type->toBasetype()->ty) { case Tfloat32: case Timaginary32: type = Type::tcomplex32; break; case Tfloat64: case Timaginary64: type = Type::tcomplex64; break; case Tfloat80: case Timaginary80: type = Type::tcomplex80; break; default: assert(0); } } e = this; } return e; } return this; } /************************************************************/ MinExp::MinExp(Loc loc, Expression *e1, Expression *e2) : BinExp(loc, TOKmin, sizeof(MinExp), e1, e2) { } Expression *MinExp::semantic(Scope *sc) { Expression *e; #if LOGSEMANTIC printf("MinExp::semantic('%s')\n", toChars()); #endif if (type) return this; BinExp::semanticp(sc); e = op_overload(sc); if (e) return e; e = this; Type *t1 = e1->type->toBasetype(); Type *t2 = e2->type->toBasetype(); if (t1->ty == Tpointer) { if (t2->ty == Tpointer) { // Need to divide the result by the stride // Replace (ptr - ptr) with (ptr - ptr) / stride d_int64 stride; Expression *e; typeCombine(sc); // make sure pointer types are compatible type = Type::tptrdiff_t; stride = t2->nextOf()->size(); if (stride == 0) { e = new IntegerExp(loc, 0, Type::tptrdiff_t); } else { e = new DivExp(loc, this, new IntegerExp(Loc(), stride, Type::tptrdiff_t)); e->type = Type::tptrdiff_t; } return e; } else if (t2->isintegral()) e = scaleFactor(sc); else { error("can't subtract %s from pointer", t2->toChars()); return new ErrorExp(); } } else if (t2->ty == Tpointer) { type = e2->type; error("can't subtract pointer from %s", e1->type->toChars()); return new ErrorExp(); } else { typeCombine(sc); t1 = e1->type->toBasetype(); t2 = e2->type->toBasetype(); if (t1->ty == Tvector && !t1->isscalar()) { return incompatibleTypes(); } if ((t1->isreal() && t2->isimaginary()) || (t1->isimaginary() && t2->isreal())) { switch (type->ty) { case Tfloat32: case Timaginary32: type = Type::tcomplex32; break; case Tfloat64: case Timaginary64: type = Type::tcomplex64; break; case Tfloat80: case Timaginary80: type = Type::tcomplex80; break; default: assert(0); } } } return e; } /************************* CatExp *****************************/ CatExp::CatExp(Loc loc, Expression *e1, Expression *e2) : BinExp(loc, TOKcat, sizeof(CatExp), e1, e2) { } Expression *CatExp::semantic(Scope *sc) { Expression *e; //printf("CatExp::semantic() %s\n", toChars()); if (!type) { BinExp::semanticp(sc); e = op_overload(sc); if (e) return e; Type *tb1 = e1->type->toBasetype(); Type *tb2 = e2->type->toBasetype(); /* BUG: Should handle things like: * char c; * c ~ ' ' * ' ' ~ c; */ #if 0 e1->type->print(); e2->type->print(); #endif Type *tb1next = tb1->nextOf(); Type *tb2next = tb2->nextOf(); if (tb1next && tb2next && (tb1next->implicitConvTo(tb2next) >= MATCHconst || tb2next->implicitConvTo(tb1next) >= MATCHconst) ) { /* Here to avoid the case of: * void*[] a = [cast(void*)1]; * void*[] b = [cast(void*)2]; * a ~ b; * becoming: * a ~ [cast(void*)b]; */ } else if ((tb1->ty == Tsarray || tb1->ty == Tarray) && e2->implicitConvTo(tb1next) >= MATCHconvert && tb2->ty != Tvoid) { checkPostblit(e2->loc, tb2); e2 = e2->implicitCastTo(sc, tb1next); type = tb1next->arrayOf(); if (tb2->ty == Tarray || tb2->ty == Tsarray) { // Make e2 into [e2] e2 = new ArrayLiteralExp(e2->loc, e2); e2->type = type; } return this; } else if ((tb2->ty == Tsarray || tb2->ty == Tarray) && e1->implicitConvTo(tb2next) >= MATCHconvert && tb1->ty != Tvoid) { checkPostblit(e1->loc, tb1); e1 = e1->implicitCastTo(sc, tb2next); type = tb2next->arrayOf(); if (tb1->ty == Tarray || tb1->ty == Tsarray) { // Make e1 into [e1] e1 = new ArrayLiteralExp(e1->loc, e1); e1->type = type; } return this; } if ((tb1->ty == Tsarray || tb1->ty == Tarray) && (tb2->ty == Tsarray || tb2->ty == Tarray) && (tb1next->mod || tb2next->mod) && (tb1next->mod != tb2next->mod) ) { Type *t1 = tb1next->mutableOf()->constOf()->arrayOf(); Type *t2 = tb2next->mutableOf()->constOf()->arrayOf(); if (e1->op == TOKstring && !((StringExp *)e1)->committed) e1->type = t1; else e1 = e1->castTo(sc, t1); if (e2->op == TOKstring && !((StringExp *)e2)->committed) e2->type = t2; else e2 = e2->castTo(sc, t2); } typeCombine(sc); type = type->toHeadMutable(); Type *tb = type->toBasetype(); if (tb->ty == Tsarray) type = tb->nextOf()->arrayOf(); if (type->ty == Tarray && tb1next && tb2next && tb1next->mod != tb2next->mod) { type = type->nextOf()->toHeadMutable()->arrayOf(); } if (tb->nextOf()) { checkPostblit(loc, tb->nextOf()); } #if 0 e1->type->print(); e2->type->print(); type->print(); print(); #endif Type *t1 = e1->type->toBasetype(); Type *t2 = e2->type->toBasetype(); if (e1->op == TOKstring && e2->op == TOKstring) e = optimize(WANTvalue); else if ((t1->ty == Tarray || t1->ty == Tsarray) && (t2->ty == Tarray || t2->ty == Tsarray)) { e = this; } else { //printf("(%s) ~ (%s)\n", e1->toChars(), e2->toChars()); incompatibleTypes(); return new ErrorExp(); } e->type = e->type->semantic(loc, sc); return e; } return this; } /************************************************************/ MulExp::MulExp(Loc loc, Expression *e1, Expression *e2) : BinExp(loc, TOKmul, sizeof(MulExp), e1, e2) { } Expression *MulExp::semantic(Scope *sc) { Expression *e; #if 0 printf("MulExp::semantic() %s\n", toChars()); #endif if (type) { return this; } BinExp::semanticp(sc); e = op_overload(sc); if (e) return e; typeCombine(sc); if (!e1->isArrayOperand()) e1->checkArithmetic(); if (!e2->isArrayOperand()) e2->checkArithmetic(); if (type->isfloating()) { Type *t1 = e1->type; Type *t2 = e2->type; if (t1->isreal()) { type = t2; } else if (t2->isreal()) { type = t1; } else if (t1->isimaginary()) { if (t2->isimaginary()) { Expression *e; switch (t1->toBasetype()->ty) { case Timaginary32: type = Type::tfloat32; break; case Timaginary64: type = Type::tfloat64; break; case Timaginary80: type = Type::tfloat80; break; default: assert(0); } // iy * iv = -yv e1->type = type; e2->type = type; e = new NegExp(loc, this); e = e->semantic(sc); return e; } else type = t2; // t2 is complex } else if (t2->isimaginary()) { type = t1; // t1 is complex } } else if (type->toBasetype()->ty == Tvector && ((TypeVector *)type->toBasetype())->elementType()->size(loc) != 2) { // Only short[8] and ushort[8] work with multiply return incompatibleTypes(); } return this; } /************************************************************/ DivExp::DivExp(Loc loc, Expression *e1, Expression *e2) : BinExp(loc, TOKdiv, sizeof(DivExp), e1, e2) { } Expression *DivExp::semantic(Scope *sc) { Expression *e; if (type) return this; BinExp::semanticp(sc); e = op_overload(sc); if (e) return e; typeCombine(sc); if (!e1->isArrayOperand()) e1->checkArithmetic(); if (!e2->isArrayOperand()) e2->checkArithmetic(); if (type->isfloating()) { Type *t1 = e1->type; Type *t2 = e2->type; if (t1->isreal()) { type = t2; if (t2->isimaginary()) { Expression *e; // x/iv = i(-x/v) e2->type = t1; e = new NegExp(loc, this); e = e->semantic(sc); return e; } } else if (t2->isreal()) { type = t1; } else if (t1->isimaginary()) { if (t2->isimaginary()) { switch (t1->toBasetype()->ty) { case Timaginary32: type = Type::tfloat32; break; case Timaginary64: type = Type::tfloat64; break; case Timaginary80: type = Type::tfloat80; break; default: assert(0); } } else type = t2; // t2 is complex } else if (t2->isimaginary()) { type = t1; // t1 is complex } } else if (type->toBasetype()->ty == Tvector) { incompatibleTypes(); return new ErrorExp(); } return this; } /************************************************************/ ModExp::ModExp(Loc loc, Expression *e1, Expression *e2) : BinExp(loc, TOKmod, sizeof(ModExp), e1, e2) { } Expression *ModExp::semantic(Scope *sc) { Expression *e; if (type) return this; BinExp::semanticp(sc); e = op_overload(sc); if (e) return e; typeCombine(sc); if (!e1->isArrayOperand()) e1->checkArithmetic(); if (!e2->isArrayOperand()) e2->checkArithmetic(); if (type->toBasetype()->ty == Tvector) { incompatibleTypes(); return new ErrorExp(); } if (type->isfloating()) { type = e1->type; if (e2->type->iscomplex()) { error("cannot perform modulo complex arithmetic"); return new ErrorExp(); } } return this; } /************************************************************/ PowExp::PowExp(Loc loc, Expression *e1, Expression *e2) : BinExp(loc, TOKpow, sizeof(PowExp), e1, e2) { } Expression *PowExp::semantic(Scope *sc) { Expression *e; if (type) return this; //printf("PowExp::semantic() %s\n", toChars()); BinExp::semanticp(sc); e = op_overload(sc); if (e) return e; assert(e1->type && e2->type); typeCombine(sc); if (e1->op == TOKslice) { // Check element types are arithmetic Type *tb1 = e1->type->nextOf()->toBasetype(); Type *tb2 = e2->type->toBasetype(); if (tb2->ty == Tarray || tb2->ty == Tsarray) tb2 = tb2->nextOf()->toBasetype(); if ( (tb1->isintegral() || tb1->isfloating()) && (tb2->isintegral() || tb2->isfloating())) { type = e1->type; return this; } } if ( (e1->type->isintegral() || e1->type->isfloating()) && (e2->type->isintegral() || e2->type->isfloating())) { // For built-in numeric types, there are several cases. // TODO: backend support, especially for e1 ^^ 2. bool wantSqrt = false; // First, attempt to fold the expression. e = optimize(WANTvalue); if (e->op != TOKpow) { e = e->semantic(sc); return e; } // Determine if we're raising to an integer power. sinteger_t intpow = 0; if (e2->op == TOKint64 && ((sinteger_t)e2->toInteger() == 2 || (sinteger_t)e2->toInteger() == 3)) intpow = e2->toInteger(); else if (e2->op == TOKfloat64 && (e2->toReal() == (sinteger_t)(e2->toReal()))) intpow = (sinteger_t)(e2->toReal()); // Deal with x^^2, x^^3 immediately, since they are of practical importance. if (intpow == 2 || intpow == 3) { // Replace x^^2 with (tmp = x, tmp*tmp) // Replace x^^3 with (tmp = x, tmp*tmp*tmp) Identifier *idtmp = Lexer::uniqueId("__powtmp"); VarDeclaration *tmp = new VarDeclaration(loc, e1->type->toBasetype(), idtmp, new ExpInitializer(Loc(), e1)); tmp->storage_class = STCctfe; Expression *ve = new VarExp(loc, tmp); Expression *ae = new DeclarationExp(loc, tmp); /* Note that we're reusing ve. This should be ok. */ Expression *me = new MulExp(loc, ve, ve); if (intpow == 3) me = new MulExp(loc, me, ve); e = new CommaExp(loc, ae, me); e = e->semantic(sc); return e; } static int importMathChecked = 0; static bool importMath = false; if (!importMathChecked) { importMathChecked = 1; for (size_t i = 0; i < Module::amodules.dim; i++) { Module *mi = Module::amodules[i]; //printf("\t[%d] %s\n", i, mi->toChars()); if (mi->ident == Id::math && mi->parent->ident == Id::std && !mi->parent->parent) { importMath = true; goto L1; } } error("must import std.math to use ^^ operator"); return new ErrorExp(); L1: ; } else { if (!importMath) { error("must import std.math to use ^^ operator"); return new ErrorExp(); } } e = new IdentifierExp(loc, Id::empty); e = new DotIdExp(loc, e, Id::std); e = new DotIdExp(loc, e, Id::math); if (e2->op == TOKfloat64 && e2->toReal() == 0.5) { // Replace e1 ^^ 0.5 with .std.math.sqrt(x) e = new CallExp(loc, new DotIdExp(loc, e, Id::_sqrt), e1); } else { // Replace e1 ^^ e2 with .std.math.pow(e1, e2) e = new CallExp(loc, new DotIdExp(loc, e, Id::_pow), e1, e2); } e = e->semantic(sc); return e; } return incompatibleTypes(); } /************************************************************/ ShlExp::ShlExp(Loc loc, Expression *e1, Expression *e2) : BinExp(loc, TOKshl, sizeof(ShlExp), e1, e2) { } Expression *ShlExp::semantic(Scope *sc) { Expression *e; //printf("ShlExp::semantic(), type = %p\n", type); if (!type) { BinExp::semanticp(sc); e = op_overload(sc); if (e) return e; e1 = e1->checkIntegral(); e2 = e2->checkIntegral(); if (e1->type->toBasetype()->ty == Tvector || e2->type->toBasetype()->ty == Tvector) return incompatibleTypes(); e1 = e1->integralPromotions(sc); #if IN_LLVM e2 = e2->castTo(sc, e1->type); #else e2 = e2->castTo(sc, Type::tshiftcnt); #endif type = e1->type; } return this; } /************************************************************/ ShrExp::ShrExp(Loc loc, Expression *e1, Expression *e2) : BinExp(loc, TOKshr, sizeof(ShrExp), e1, e2) { } Expression *ShrExp::semantic(Scope *sc) { Expression *e; if (!type) { BinExp::semanticp(sc); e = op_overload(sc); if (e) return e; e1 = e1->checkIntegral(); e2 = e2->checkIntegral(); if (e1->type->toBasetype()->ty == Tvector || e2->type->toBasetype()->ty == Tvector) return incompatibleTypes(); e1 = e1->integralPromotions(sc); #if IN_LLVM e2 = e2->castTo(sc, e1->type); #else e2 = e2->castTo(sc, Type::tshiftcnt); #endif type = e1->type; } return this; } /************************************************************/ UshrExp::UshrExp(Loc loc, Expression *e1, Expression *e2) : BinExp(loc, TOKushr, sizeof(UshrExp), e1, e2) { } Expression *UshrExp::semantic(Scope *sc) { Expression *e; if (!type) { BinExp::semanticp(sc); e = op_overload(sc); if (e) return e; e1 = e1->checkIntegral(); e2 = e2->checkIntegral(); if (e1->type->toBasetype()->ty == Tvector || e2->type->toBasetype()->ty == Tvector) return incompatibleTypes(); e1 = e1->integralPromotions(sc); #if IN_LLVM e2 = e2->castTo(sc, e1->type); #else e2 = e2->castTo(sc, Type::tshiftcnt); #endif type = e1->type; } return this; } /************************************************************/ AndExp::AndExp(Loc loc, Expression *e1, Expression *e2) : BinExp(loc, TOKand, sizeof(AndExp), e1, e2) { } Expression *AndExp::semantic(Scope *sc) { Expression *e; if (!type) { BinExp::semanticp(sc); e = op_overload(sc); if (e) return e; if (e1->type->toBasetype()->ty == Tbool && e2->type->toBasetype()->ty == Tbool) { type = e1->type; e = this; } else { typeCombine(sc); if (!e1->isArrayOperand()) e1->checkIntegral(); if (!e2->isArrayOperand()) e2->checkIntegral(); } } return this; } /************************************************************/ OrExp::OrExp(Loc loc, Expression *e1, Expression *e2) : BinExp(loc, TOKor, sizeof(OrExp), e1, e2) { } Expression *OrExp::semantic(Scope *sc) { Expression *e; if (!type) { BinExp::semanticp(sc); e = op_overload(sc); if (e) return e; if (e1->type->toBasetype()->ty == Tbool && e2->type->toBasetype()->ty == Tbool) { type = e1->type; e = this; } else { typeCombine(sc); if (!e1->isArrayOperand()) e1->checkIntegral(); if (!e2->isArrayOperand()) e2->checkIntegral(); } } return this; } /************************************************************/ XorExp::XorExp(Loc loc, Expression *e1, Expression *e2) : BinExp(loc, TOKxor, sizeof(XorExp), e1, e2) { } Expression *XorExp::semantic(Scope *sc) { Expression *e; if (!type) { BinExp::semanticp(sc); e = op_overload(sc); if (e) return e; if (e1->type->toBasetype()->ty == Tbool && e2->type->toBasetype()->ty == Tbool) { type = e1->type; e = this; } else { typeCombine(sc); if (!e1->isArrayOperand()) e1->checkIntegral(); if (!e2->isArrayOperand()) e2->checkIntegral(); } } return this; } /************************************************************/ OrOrExp::OrOrExp(Loc loc, Expression *e1, Expression *e2) : BinExp(loc, TOKoror, sizeof(OrOrExp), e1, e2) { } Expression *OrOrExp::semantic(Scope *sc) { unsigned cs1; // same as for AndAnd e1 = e1->semantic(sc); e1 = resolveProperties(sc, e1); e1 = e1->checkToPointer(); e1 = e1->checkToBoolean(sc); cs1 = sc->callSuper; if (sc->flags & SCOPEstaticif) { /* If in static if, don't evaluate e2 if we don't have to. */ e1 = e1->optimize(WANTflags); if (e1->isBool(TRUE)) { return new IntegerExp(loc, 1, Type::tboolean); } } e2 = e2->semantic(sc); sc->mergeCallSuper(loc, cs1); e2 = resolveProperties(sc, e2); e2 = e2->checkToPointer(); if (e2->type->ty == Tvoid) type = Type::tvoid; else { e2 = e2->checkToBoolean(sc); type = Type::tboolean; } if (e2->op == TOKtype || e2->op == TOKimport) { error("%s is not an expression", e2->toChars()); return new ErrorExp(); } if (e1->op == TOKerror) return e1; if (e2->op == TOKerror) return e2; return this; } Expression *OrOrExp::checkToBoolean(Scope *sc) { e2 = e2->checkToBoolean(sc); return this; } int OrOrExp::isBit() { return TRUE; } /************************************************************/ AndAndExp::AndAndExp(Loc loc, Expression *e1, Expression *e2) : BinExp(loc, TOKandand, sizeof(AndAndExp), e1, e2) { } Expression *AndAndExp::semantic(Scope *sc) { unsigned cs1; // same as for OrOr e1 = e1->semantic(sc); e1 = resolveProperties(sc, e1); e1 = e1->checkToPointer(); e1 = e1->checkToBoolean(sc); cs1 = sc->callSuper; if (sc->flags & SCOPEstaticif) { /* If in static if, don't evaluate e2 if we don't have to. */ e1 = e1->optimize(WANTflags); if (e1->isBool(FALSE)) { return new IntegerExp(loc, 0, Type::tboolean); } } e2 = e2->semantic(sc); sc->mergeCallSuper(loc, cs1); e2 = resolveProperties(sc, e2); e2 = e2->checkToPointer(); if (e2->type->ty == Tvoid) type = Type::tvoid; else { e2 = e2->checkToBoolean(sc); type = Type::tboolean; } if (e2->op == TOKtype || e2->op == TOKimport) { error("%s is not an expression", e2->toChars()); return new ErrorExp(); } if (e1->op == TOKerror) return e1; if (e2->op == TOKerror) return e2; return this; } Expression *AndAndExp::checkToBoolean(Scope *sc) { e2 = e2->checkToBoolean(sc); return this; } int AndAndExp::isBit() { return TRUE; } /************************************************************/ InExp::InExp(Loc loc, Expression *e1, Expression *e2) : BinExp(loc, TOKin, sizeof(InExp), e1, e2) { } Expression *InExp::semantic(Scope *sc) { Expression *e; if (type) return this; BinExp::semanticp(sc); e = op_overload(sc); if (e) return e; //type = Type::tboolean; Type *t2b = e2->type->toBasetype(); switch (t2b->ty) { case Taarray: { TypeAArray *ta = (TypeAArray *)t2b; #if DMDV2 // Special handling for array keys if (!arrayTypeCompatible(e1->loc, e1->type, ta->index)) #endif { // Convert key to type of key e1 = e1->implicitCastTo(sc, ta->index); } // Return type is pointer to value type = ta->nextOf()->pointerTo(); break; } default: error("rvalue of in expression must be an associative array, not %s", e2->type->toChars()); case Terror: return new ErrorExp(); } return this; } int InExp::isBit() { return FALSE; } /************************************************************/ /* This deletes the key e1 from the associative array e2 */ RemoveExp::RemoveExp(Loc loc, Expression *e1, Expression *e2) : BinExp(loc, TOKremove, sizeof(RemoveExp), e1, e2) { type = Type::tboolean; } void RemoveExp::toCBuffer(OutBuffer *buf, HdrGenState *hgs) { expToCBuffer(buf, hgs, e1, PREC_primary); buf->writestring(".remove("); expToCBuffer(buf, hgs, e2, PREC_assign); buf->writestring(")"); } /************************************************************/ CmpExp::CmpExp(enum TOK op, Loc loc, Expression *e1, Expression *e2) : BinExp(loc, op, sizeof(CmpExp), e1, e2) { } Expression *CmpExp::semantic(Scope *sc) { Expression *e; #if LOGSEMANTIC printf("CmpExp::semantic('%s')\n", toChars()); #endif if (type) return this; BinExp::semanticp(sc); Type *t1 = e1->type->toBasetype(); Type *t2 = e2->type->toBasetype(); if (t1->ty == Tclass && e2->op == TOKnull || t2->ty == Tclass && e1->op == TOKnull) { error("do not use null when comparing class types"); return new ErrorExp(); } e = op_overload(sc); if (e) { if (!e->type->isscalar() && e->type->equals(e1->type)) { error("recursive opCmp expansion"); e = new ErrorExp(); } else if (e->op == TOKcall) { e = new CmpExp(op, loc, e, new IntegerExp(loc, 0, Type::tint32)); e = e->semantic(sc); } return e; } /* Disallow comparing T[]==T and T==T[] */ if (e1->op == TOKslice && t1->ty == Tarray && e2->implicitConvTo(t1->nextOf()) || e2->op == TOKslice && t2->ty == Tarray && e1->implicitConvTo(t2->nextOf())) { incompatibleTypes(); return new ErrorExp(); } Expression *eb1 = e1; Expression *eb2 = e2; e = typeCombine(sc); if (e->op == TOKerror) return e; type = Type::tboolean; // Special handling for array comparisons t1 = e1->type->toBasetype(); t2 = e2->type->toBasetype(); if ((t1->ty == Tarray || t1->ty == Tsarray || t1->ty == Tpointer) && (t2->ty == Tarray || t2->ty == Tsarray || t2->ty == Tpointer)) { Type *t1next = t1->nextOf(); Type *t2next = t2->nextOf(); if (t1next->implicitConvTo(t2next) < MATCHconst && t2next->implicitConvTo(t1next) < MATCHconst && (t1next->ty != Tvoid && t2next->ty != Tvoid)) error("array comparison type mismatch, %s vs %s", t1next->toChars(), t2next->toChars()); e = this; } else if (t1->ty == Tstruct || t2->ty == Tstruct || (t1->ty == Tclass && t2->ty == Tclass)) { if (t2->ty == Tstruct) error("need member function opCmp() for %s %s to compare", t2->toDsymbol(sc)->kind(), t2->toChars()); else error("need member function opCmp() for %s %s to compare", t1->toDsymbol(sc)->kind(), t1->toChars()); e = new ErrorExp(); } else if (t1->iscomplex() || t2->iscomplex()) { error("compare not defined for complex operands"); e = new ErrorExp(); } else if (t1->ty == Tvector) return incompatibleTypes(); else { if (!e1->rvalue() || !e2->rvalue()) return new ErrorExp(); e = this; } //printf("CmpExp: %s, type = %s\n", e->toChars(), e->type->toChars()); return e; } int CmpExp::isBit() { return TRUE; } /************************************************************/ EqualExp::EqualExp(enum TOK op, Loc loc, Expression *e1, Expression *e2) : BinExp(loc, op, sizeof(EqualExp), e1, e2) { assert(op == TOKequal || op == TOKnotequal); } int needDirectEq(Type *t1, Type *t2) { assert(t1->ty == Tarray || t1->ty == Tsarray); assert(t2->ty == Tarray || t2->ty == Tsarray); Type *t1n = t1->nextOf()->toBasetype(); Type *t2n = t2->nextOf()->toBasetype(); if (((t1n->ty == Tchar || t1n->ty == Twchar || t1n->ty == Tdchar) && (t2n->ty == Tchar || t2n->ty == Twchar || t2n->ty == Tdchar)) || (t1n->ty == Tvoid || t2n->ty == Tvoid)) { return FALSE; } if (t1n->constOf() != t2n->constOf()) return TRUE; Type *t = t1n; while (t->toBasetype()->nextOf()) t = t->nextOf()->toBasetype(); if (t->ty != Tstruct) return FALSE; return ((TypeStruct *)t)->sym->hasIdentityEquals; } Expression *EqualExp::semantic(Scope *sc) { Expression *e; //printf("EqualExp::semantic('%s')\n", toChars()); if (type) return this; BinExp::semanticp(sc); /* Before checking for operator overloading, check to see if we're * comparing the addresses of two statics. If so, we can just see * if they are the same symbol. */ if (e1->op == TOKaddress && e2->op == TOKaddress) { AddrExp *ae1 = (AddrExp *)e1; AddrExp *ae2 = (AddrExp *)e2; if (ae1->e1->op == TOKvar && ae2->e1->op == TOKvar) { VarExp *ve1 = (VarExp *)ae1->e1; VarExp *ve2 = (VarExp *)ae2->e1; if (ve1->var == ve2->var /*|| ve1->var->toSymbol() == ve2->var->toSymbol()*/) { // They are the same, result is 'true' for ==, 'false' for != e = new IntegerExp(loc, (op == TOKequal), Type::tboolean); return e; } } } Type *t1 = e1->type->toBasetype(); Type *t2 = e2->type->toBasetype(); if (t1->ty == Tclass && e2->op == TOKnull || t2->ty == Tclass && e1->op == TOKnull) { error("use '%s' instead of '%s' when comparing with null", Token::toChars(op == TOKequal ? TOKidentity : TOKnotidentity), Token::toChars(op)); return new ErrorExp(); } if ((t1->ty == Tarray || t1->ty == Tsarray) && (t2->ty == Tarray || t2->ty == Tsarray)) { if (needDirectEq(t1, t2)) { /* Rewrite as: * _ArrayEq(e1, e2) */ Expression *eq = new IdentifierExp(loc, Id::_ArrayEq); Expressions *args = new Expressions(); args->push(e1); args->push(e2); e = new CallExp(loc, eq, args); if (op == TOKnotequal) e = new NotExp(loc, e); e = e->trySemantic(sc); // for better error message if (!e) { error("cannot compare %s and %s", t1->toChars(), t2->toChars()); return new ErrorExp(); } return e; } } //if (e2->op != TOKnull) { e = op_overload(sc); if (e) { if (e->op == TOKcall && op == TOKnotequal) { e = new NotExp(e->loc, e); e = e->semantic(sc); } return e; } } /* Disallow comparing T[]==T and T==T[] */ if (e1->op == TOKslice && t1->ty == Tarray && e2->implicitConvTo(t1->nextOf()) || e2->op == TOKslice && t2->ty == Tarray && e1->implicitConvTo(t2->nextOf())) { incompatibleTypes(); return new ErrorExp(); } if (t1->ty == Tstruct && t2->ty == Tstruct) { StructDeclaration *sd = ((TypeStruct *)t1)->sym; if (sd == ((TypeStruct *)t2)->sym) { if (sd->needOpEquals()) { this->e1 = new DotIdExp(loc, e1, Id::tupleof); this->e2 = new DotIdExp(loc, e2, Id::tupleof); e = this; } else { e = new IdentityExp(op == TOKequal ? TOKidentity : TOKnotidentity, loc, e1, e2); } e = e->semantic(sc); return e; } } if (e1->op == TOKtuple && e2->op == TOKtuple) { TupleExp *tup1 = (TupleExp *)e1; TupleExp *tup2 = (TupleExp *)e2; size_t dim = tup1->exps->dim; Expression *e = NULL; if (dim != tup2->exps->dim) { error("mismatched tuple lengths, %d and %d", (int)dim, (int)tup2->exps->dim); return new ErrorExp(); } if (dim == 0) { // zero-length tuple comparison should always return true or false. e = new IntegerExp(loc, (op == TOKequal), Type::tboolean); } else { for (size_t i = 0; i < dim; i++) { Expression *ex1 = (*tup1->exps)[i]; Expression *ex2 = (*tup2->exps)[i]; Expression *eeq = new EqualExp(op, loc, ex1, ex2); if (!e) e = eeq; else if (op == TOKequal) e = new AndAndExp(loc, e, eeq); else e = new OrOrExp(loc, e, eeq); } } assert(e); e = combine(combine(tup1->e0, tup2->e0), e); return e->semantic(sc); } e = typeCombine(sc); if (e->op == TOKerror) return e; type = Type::tboolean; // Special handling for array comparisons if (!arrayTypeCompatible(loc, e1->type, e2->type)) { if (e1->type != e2->type && e1->type->isfloating() && e2->type->isfloating()) { // Cast both to complex e1 = e1->castTo(sc, Type::tcomplex80); e2 = e2->castTo(sc, Type::tcomplex80); } } if (e1->type->toBasetype()->ty == Tvector) return incompatibleTypes(); return e; } int EqualExp::isBit() { return TRUE; } /************************************************************/ IdentityExp::IdentityExp(enum TOK op, Loc loc, Expression *e1, Expression *e2) : BinExp(loc, op, sizeof(IdentityExp), e1, e2) { } Expression *IdentityExp::semantic(Scope *sc) { if (type) return this; BinExp::semanticp(sc); type = Type::tboolean; Expression *e = typeCombine(sc); if (e->op == TOKerror) return e; if (e1->type != e2->type && e1->type->isfloating() && e2->type->isfloating()) { // Cast both to complex e1 = e1->castTo(sc, Type::tcomplex80); e2 = e2->castTo(sc, Type::tcomplex80); } if (e1->type->toBasetype()->ty == Tvector) return incompatibleTypes(); return this; } int IdentityExp::isBit() { return TRUE; } /****************************************************************/ CondExp::CondExp(Loc loc, Expression *econd, Expression *e1, Expression *e2) : BinExp(loc, TOKquestion, sizeof(CondExp), e1, e2) { this->econd = econd; } Expression *CondExp::syntaxCopy() { return new CondExp(loc, econd->syntaxCopy(), e1->syntaxCopy(), e2->syntaxCopy()); } Expression *CondExp::semantic(Scope *sc) { Type *t1; Type *t2; unsigned cs0; unsigned cs1; #if LOGSEMANTIC printf("CondExp::semantic('%s')\n", toChars()); #endif if (type) return this; econd = econd->semantic(sc); econd = resolveProperties(sc, econd); econd = econd->checkToPointer(); econd = econd->checkToBoolean(sc); cs0 = sc->callSuper; e1 = e1->semantic(sc); e1 = resolveProperties(sc, e1); cs1 = sc->callSuper; sc->callSuper = cs0; e2 = e2->semantic(sc); e2 = resolveProperties(sc, e2); sc->mergeCallSuper(loc, cs1); // If either operand is void, the result is void t1 = e1->type; t2 = e2->type; if (t1->ty == Tvoid || t2->ty == Tvoid) type = Type::tvoid; else if (t1 == t2) type = t1; else { typeCombine(sc); switch (e1->type->toBasetype()->ty) { case Tcomplex32: case Tcomplex64: case Tcomplex80: e2 = e2->castTo(sc, e1->type); break; } switch (e2->type->toBasetype()->ty) { case Tcomplex32: case Tcomplex64: case Tcomplex80: e1 = e1->castTo(sc, e2->type); break; } if (type->toBasetype()->ty == Tarray) { e1 = e1->castTo(sc, type); e2 = e2->castTo(sc, type); } } #if 0 printf("res: %s\n", type->toChars()); printf("e1 : %s\n", e1->type->toChars()); printf("e2 : %s\n", e2->type->toChars()); #endif return this; } int CondExp::isLvalue() { return e1->isLvalue() && e2->isLvalue(); } Expression *CondExp::toLvalue(Scope *sc, Expression *ex) { PtrExp *e; // convert (econd ? e1 : e2) to *(econd ? &e1 : &e2) e = new PtrExp(loc, this, type); e1 = e1->addressOf(sc); e2 = e2->addressOf(sc); typeCombine(sc); type = e2->type; return e; } int CondExp::checkModifiable(Scope *sc, int flag) { return e1->checkModifiable(sc, flag) && e2->checkModifiable(sc, flag); } Expression *CondExp::modifiableLvalue(Scope *sc, Expression *e) { //error("conditional expression %s is not a modifiable lvalue", toChars()); e1 = e1->modifiableLvalue(sc, e1); e2 = e2->modifiableLvalue(sc, e1); return toLvalue(sc, this); } void CondExp::checkEscape() { e1->checkEscape(); e2->checkEscape(); } void CondExp::checkEscapeRef() { e1->checkEscapeRef(); e2->checkEscapeRef(); } Expression *CondExp::checkToBoolean(Scope *sc) { e1 = e1->checkToBoolean(sc); e2 = e2->checkToBoolean(sc); return this; } void CondExp::toCBuffer(OutBuffer *buf, HdrGenState *hgs) { expToCBuffer(buf, hgs, econd, PREC_oror); buf->writestring(" ? "); expToCBuffer(buf, hgs, e1, PREC_expr); buf->writestring(" : "); expToCBuffer(buf, hgs, e2, PREC_cond); } /************************************************************/ #if IN_LLVM // Strictly LDC specific stuff GEPExp::GEPExp(Loc loc, Expression* e, Identifier* id, unsigned idx) : UnaExp(loc, TOKgep, sizeof(GEPExp), e) { index = idx; ident = id; } void GEPExp::toCBuffer(OutBuffer *buf, HdrGenState *hgs) { expToCBuffer(buf, hgs, e1, PREC_primary); buf->writeByte('.'); buf->writestring(ident->toChars()); } Expression* GEPExp::toLvalue(Scope* sc, Expression* e) { // GEP's are always lvalues, at least in the "LLVM sense" ... return this; } #endif /****************************************************************/ DefaultInitExp::DefaultInitExp(Loc loc, enum TOK subop, int size) : Expression(loc, TOKdefault, size) { this->subop = subop; } void DefaultInitExp::toCBuffer(OutBuffer *buf, HdrGenState *hgs) { buf->writestring(Token::toChars(subop)); } /****************************************************************/ FileInitExp::FileInitExp(Loc loc) : DefaultInitExp(loc, TOKfile, sizeof(FileInitExp)) { } Expression *FileInitExp::semantic(Scope *sc) { //printf("FileInitExp::semantic()\n"); type = Type::tstring; return this; } Expression *FileInitExp::resolveLoc(Loc loc, Scope *sc) { //printf("FileInitExp::resolve() %s\n", toChars()); const char *s = loc.filename ? loc.filename : sc->module->ident->toChars(); Expression *e = new StringExp(loc, (char *)s); e = e->semantic(sc); e = e->castTo(sc, type); return e; } /****************************************************************/ LineInitExp::LineInitExp(Loc loc) : DefaultInitExp(loc, TOKline, sizeof(LineInitExp)) { } Expression *LineInitExp::semantic(Scope *sc) { type = Type::tint32; return this; } Expression *LineInitExp::resolveLoc(Loc loc, Scope *sc) { Expression *e = new IntegerExp(loc, loc.linnum, Type::tint32); e = e->castTo(sc, type); return e; } /****************************************************************/ ModuleInitExp::ModuleInitExp(Loc loc) : DefaultInitExp(loc, TOKmodulestring, sizeof(ModuleInitExp)) { } Expression *ModuleInitExp::semantic(Scope *sc) { //printf("ModuleInitExp::semantic()\n"); type = Type::tstring; return this; } Expression *ModuleInitExp::resolveLoc(Loc loc, Scope *sc) { const char *s; if (sc->callsc) s = sc->callsc->module->toPrettyChars(); else s = sc->module->toPrettyChars(); Expression *e = new StringExp(loc, (char *)s); e = e->semantic(sc); e = e->castTo(sc, type); return e; } /****************************************************************/ FuncInitExp::FuncInitExp(Loc loc) : DefaultInitExp(loc, TOKfuncstring, sizeof(FuncInitExp)) { } Expression *FuncInitExp::semantic(Scope *sc) { //printf("FuncInitExp::semantic()\n"); type = Type::tstring; if (sc->func) return this->resolveLoc(Loc(), sc); return this; } Expression *FuncInitExp::resolveLoc(Loc loc, Scope *sc) { const char *s; if (sc->callsc && sc->callsc->func) s = sc->callsc->func->Dsymbol::toPrettyChars(); else if (sc->func) s = sc->func->Dsymbol::toPrettyChars(); else s = ""; Expression *e = new StringExp(loc, (char *)s); e = e->semantic(sc); e = e->castTo(sc, type); return e; } /****************************************************************/ PrettyFuncInitExp::PrettyFuncInitExp(Loc loc) : DefaultInitExp(loc, TOKprettyfunc, sizeof(PrettyFuncInitExp)) { } Expression *PrettyFuncInitExp::semantic(Scope *sc) { //printf("PrettyFuncInitExp::semantic()\n"); type = Type::tstring; if (sc->func) return this->resolveLoc(Loc(), sc); return this; } Expression *PrettyFuncInitExp::resolveLoc(Loc loc, Scope *sc) { FuncDeclaration *fd; if (sc->callsc && sc->callsc->func) fd = sc->callsc->func; else fd = sc->func; const char *s; if (fd) { const char *funcStr = fd->Dsymbol::toPrettyChars(); HdrGenState hgs; OutBuffer buf; functionToCBuffer2((TypeFunction *)fd->type, &buf, &hgs, 0, funcStr); buf.writebyte(0); s = (const char *)buf.extractData(); } else { s = ""; } Expression *e = new StringExp(loc, (char *)s); e = e->semantic(sc); e = e->castTo(sc, type); return e; } /************************************** * Runs semantic on ae->arguments. Declares temporary variables * if '$' was used. */ ArrayExp *resolveOpDollar(Scope *sc, ArrayExp *ae) { assert(!ae->lengthVar); for (size_t i = 0; i < ae->arguments->dim; i++) { // Create scope for '$' variable for this dimension ArrayScopeSymbol *sym = new ArrayScopeSymbol(sc, ae); sym->loc = ae->loc; sym->parent = sc->scopesym; sc = sc->push(sym); ae->lengthVar = NULL; // Create it only if required ae->currentDimension = i; // Dimension for $, if required Expression *e = (*ae->arguments)[i]; e = e->semantic(sc); e = resolveProperties(sc, e); if (!e->type) ae->error("%s has no value", e->toChars()); if (ae->lengthVar) { // If $ was used, declare it now Expression *de = new DeclarationExp(ae->loc, ae->lengthVar); e = new CommaExp(Loc(), de, e); e = e->semantic(sc); } (*ae->arguments)[i] = e; sc = sc->pop(); } return ae; } /************************************** * Runs semantic on se->lwr and se->upr. Declares a temporary variable * if '$' was used. */ SliceExp *resolveOpDollar(Scope *sc, SliceExp *se) { assert(!se->lengthVar); assert(!se->lwr || se->upr); if (!se->lwr) return se; // create scope for '$' ArrayScopeSymbol *sym = new ArrayScopeSymbol(sc, se); sym->loc = se->loc; sym->parent = sc->scopesym; sc = sc->push(sym); for (size_t i = 0; i < 2; ++i) { Expression *e = i == 0 ? se->lwr : se->upr; e = e->semantic(sc); e = resolveProperties(sc, e); if (!e->type) se->error("%s has no value", e->toChars()); i == 0 ? se->lwr : se->upr = e; } if (se->lengthVar) { // If $ was used, declare it now Expression *de = new DeclarationExp(se->loc, se->lengthVar); se->lwr = new CommaExp(Loc(), de, se->lwr); se->lwr = se->lwr->semantic(sc); } sc = sc->pop(); return se; } Expression *BinExp::reorderSettingAAElem(Scope *sc) { if (this->e1->op != TOKindex) return this; IndexExp *ie = (IndexExp *)e1; Type *t1 = ie->e1->type->toBasetype(); if (t1->ty != Taarray) return this; /* Check recursive conversion */ VarDeclaration *var; bool isrefvar = (e2->op == TOKvar && (var = ((VarExp *)e2)->var->isVarDeclaration()) != NULL && (var->storage_class & STCref)); if (isrefvar) return this; /* Fix evaluation order of setting AA element. (Bugzilla 3825) * Rewrite: * aa[key] op= val; * as: * ref __aatmp = aa; * ref __aakey = key; * ref __aaval = val; * __aatmp[__aakey] op= __aaval; // assignment */ Expression *ec = NULL; if (ie->e1->hasSideEffect()) { Identifier *id = Lexer::uniqueId("__aatmp"); VarDeclaration *vd = new VarDeclaration(ie->e1->loc, ie->e1->type, id, new ExpInitializer(ie->e1->loc, ie->e1)); vd->storage_class |= STCref | STCforeach; Expression *de = new DeclarationExp(ie->e1->loc, vd); ec = de; ie->e1 = new VarExp(ie->e1->loc, vd); } if (ie->e2->hasSideEffect()) { Identifier *id = Lexer::uniqueId("__aakey"); VarDeclaration *vd = new VarDeclaration(ie->e2->loc, ie->e2->type, id, new ExpInitializer(ie->e2->loc, ie->e2)); vd->storage_class |= STCref | STCforeach; Expression *de = new DeclarationExp(ie->e2->loc, vd); ec = ec ? new CommaExp(loc, ec, de) : de; ie->e2 = new VarExp(ie->e2->loc, vd); } { Identifier *id = Lexer::uniqueId("__aaval"); VarDeclaration *vd = new VarDeclaration(loc, this->e2->type, id, new ExpInitializer(this->e2->loc, this->e2)); vd->storage_class |= STCref | STCforeach; Expression *de = new DeclarationExp(this->e2->loc, vd); ec = ec ? new CommaExp(loc, ec, de) : de; this->e2 = new VarExp(this->e2->loc, vd); } ec = new CommaExp(loc, ec, this); return ec->semantic(sc); }