// Compiler implementation of the D programming language // Copyright (c) 1999-2012 by Digital Mars // All Rights Reserved // written by Walter Bright // http://www.digitalmars.com // License for redistribution is by either the Artistic License // in artistic.txt, or the GNU General Public License in gnu.txt. // See the included readme.txt for details. #include #include #include "mars.h" #include "init.h" #include "declaration.h" #include "attrib.h" #include "expression.h" #include "scope.h" #include "mtype.h" #include "aggregate.h" #include "identifier.h" #include "id.h" #include "module.h" #include "statement.h" #include "template.h" #include "hdrgen.h" #ifdef IN_GCC #include "d-dmd-gcc.h" #endif /********************************* FuncDeclaration ****************************/ FuncDeclaration::FuncDeclaration(Loc loc, Loc endloc, Identifier *id, StorageClass storage_class, Type *type) : Declaration(id) { //printf("FuncDeclaration(id = '%s', type = %p)\n", id->toChars(), type); //printf("storage_class = x%x\n", storage_class); this->storage_class = storage_class; this->type = type; if (type) this->storage_class &= ~(STC_TYPECTOR | STC_FUNCATTR); this->loc = loc; this->endloc = endloc; fthrows = NULL; frequire = NULL; fdrequire = NULL; fdensure = NULL; fdrequireParams = NULL; fdensureParams = NULL; outId = NULL; vresult = NULL; returnLabel = NULL; scout = NULL; fensure = NULL; fbody = NULL; localsymtab = NULL; vthis = NULL; v_arguments = NULL; #ifdef IN_GCC v_argptr = NULL; v_arguments_var = NULL; #endif v_argsave = NULL; parameters = NULL; labtab = NULL; overnext = NULL; vtblIndex = -1; hasReturnExp = 0; naked = 0; inlineStatusExp = ILSuninitialized; inlineStatusStmt = ILSuninitialized; inlineNest = 0; isArrayOp = 0; semanticRun = PASSinit; semantic3Errors = 0; #if DMDV1 nestedFrameRef = 0; #endif fes = NULL; introducing = 0; tintro = NULL; /* The type given for "infer the return type" is a TypeFunction with * NULL for the return type. */ inferRetType = (type && type->nextOf() == NULL); storage_class2 = 0; hasReturnExp = 0; nrvo_can = 1; nrvo_var = NULL; #if IN_DMD shidden = NULL; #endif #if DMDV2 builtin = BUILTINunknown; tookAddressOf = 0; flags = 0; #endif #if IN_LLVM // LDC isArrayOp = false; allowInlining = false; availableExternally = true; // assume this unless proven otherwise // function types in ldc don't merge if the context parameter differs // so we actually don't care about the function declaration, but only // what kind of context parameter it has. // however, this constructor is usually called from the parser, which // unfortunately doesn't provide the information needed to get to the // aggregate type. So we have to stick with the FuncDeclaration and // just be sure we don't actually rely on the symbol it points to, // but rather just the type of its context parameter. // this means some function might have a function type pointing to // another function declaration if (type) { assert(type->ty == Tfunction && "invalid function type"); TypeFunction* tf = (TypeFunction*)type; if (tf->funcdecl == NULL) tf->funcdecl = this; } #endif } Dsymbol *FuncDeclaration::syntaxCopy(Dsymbol *s) { FuncDeclaration *f; //printf("FuncDeclaration::syntaxCopy('%s')\n", toChars()); if (s) f = (FuncDeclaration *)s; else f = new FuncDeclaration(loc, endloc, ident, storage_class, type->syntaxCopy()); f->outId = outId; f->frequire = frequire ? frequire->syntaxCopy() : NULL; f->fensure = fensure ? fensure->syntaxCopy() : NULL; f->fbody = fbody ? fbody->syntaxCopy() : NULL; assert(!fthrows); // deprecated #if IN_LLVM f->intrinsicName = intrinsicName; #endif return f; } #if IN_LLVM static Parameters *outToRef(Parameters* params) { Parameters *result = Parameter::arraySyntaxCopy(params); size_t dim = Parameter::dim(result); for (size_t i = 0; i < dim; i++) { Parameter *p = Parameter::getNth(result, i); if (p->storageClass & STCout) { p->storageClass &= ~STCout; p->storageClass |= STCref; } } return result; } #endif // Do the semantic analysis on the external interface to the function. void FuncDeclaration::semantic(Scope *sc) { TypeFunction *f; AggregateDeclaration *ad; StructDeclaration *sd; ClassDeclaration *cd; InterfaceDeclaration *id; Dsymbol *pd; bool doesoverride; #if 0 printf("FuncDeclaration::semantic(sc = %p, this = %p, '%s', linkage = %d)\n", sc, this, toPrettyChars(), sc->linkage); if (isFuncLiteralDeclaration()) printf("\tFuncLiteralDeclaration()\n"); printf("sc->parent = %s, parent = %s\n", sc->parent->toChars(), parent ? parent->toChars() : ""); printf("type: %p, %s\n", type, type->toChars()); #endif if (semanticRun != PASSinit && isFuncLiteralDeclaration()) { /* Member functions that have return types that are * forward references can have semantic() run more than * once on them. * See test\interface2.d, test20 */ return; } parent = sc->parent; Dsymbol *parent = toParent(); if (semanticRun >= PASSsemanticdone) { if (!parent->isClassDeclaration()) { return; } // need to re-run semantic() in order to set the class's vtbl[] } else { assert(semanticRun <= PASSsemantic); semanticRun = PASSsemantic; } if (scope) { sc = scope; scope = NULL; } unsigned dprogress_save = Module::dprogress; foverrides.setDim(0); // reset in case semantic() is being retried for this function storage_class |= sc->stc & ~STCref; ad = isThis(); if (ad) storage_class |= ad->storage_class & (STC_TYPECTOR | STCsynchronized); //printf("function storage_class = x%llx, sc->stc = x%llx, %x\n", storage_class, sc->stc, Declaration::isFinal()); if (!originalType) originalType = type; if (!type->deco) { sc = sc->push(); sc->stc |= storage_class & STCdisable; // forward to function type TypeFunction *tf = (TypeFunction *)type; if (tf->isref) sc->stc |= STCref; if (tf->isnothrow) sc->stc |= STCnothrow; if (tf->isproperty) sc->stc |= STCproperty; if (tf->purity == PUREfwdref) sc->stc |= STCpure; if (tf->trust == TRUSTsafe) sc->stc |= STCsafe; if (tf->trust == TRUSTsystem) sc->stc |= STCsystem; if (tf->trust == TRUSTtrusted) sc->stc |= STCtrusted; if (isCtorDeclaration()) sc->flags |= SCOPEctor; /* Apply const, immutable, wild and shared storage class * to the function type. Do this before type semantic. */ StorageClass stc = storage_class; if (type->isImmutable()) stc |= STCimmutable; if (type->isConst()) stc |= STCconst; if (type->isShared() || storage_class & STCsynchronized) stc |= STCshared; if (type->isWild()) stc |= STCwild; switch (stc & STC_TYPECTOR) { case STCimmutable: case STCimmutable | STCconst: case STCimmutable | STCconst | STCshared: case STCimmutable | STCshared: case STCimmutable | STCwild: case STCimmutable | STCconst | STCwild: case STCimmutable | STCconst | STCshared | STCwild: case STCimmutable | STCshared | STCwild: // Don't use toInvariant(), as that will do a merge() type = type->makeInvariant(); break; case STCconst: case STCconst | STCwild: type = type->makeConst(); break; case STCshared | STCconst: case STCshared | STCconst | STCwild: type = type->makeSharedConst(); break; case STCshared: type = type->makeShared(); break; case STCwild: type = type->makeWild(); break; case STCshared | STCwild: type = type->makeSharedWild(); break; case 0: break; default: assert(0); } type = type->semantic(loc, sc); sc = sc->pop(); } storage_class &= ~STCref; if (type->ty != Tfunction) { error("%s must be a function instead of %s", toChars(), type->toChars()); return; } f = (TypeFunction *)(type); size_t nparams = Parameter::dim(f->parameters); linkage = sc->linkage; protection = sc->protection; /* Purity and safety can be inferred for some functions by examining * the function body. */ if (fbody && (isFuncLiteralDeclaration() || parent->isTemplateInstance())) { if (f->purity == PUREimpure) // purity not specified flags |= FUNCFLAGpurityInprocess; if (f->trust == TRUSTdefault) flags |= FUNCFLAGsafetyInprocess; if (!f->isnothrow) flags |= FUNCFLAGnothrowInprocess; } if (storage_class & STCscope) error("functions cannot be scope"); if (isAbstract() && !isVirtual()) error("non-virtual functions cannot be abstract"); if (isOverride() && !isVirtual()) error("cannot override a non-virtual function"); if ((f->isConst() || f->isImmutable()) && !isThis()) error("without 'this' cannot be const/immutable"); if (isAbstract() && isFinal()) error("cannot be both final and abstract"); #if 0 if (isAbstract() && fbody) error("abstract functions cannot have bodies"); #endif #if 0 if (isStaticConstructor() || isStaticDestructor()) { if (!isStatic() || type->nextOf()->ty != Tvoid) error("static constructors / destructors must be static void"); if (f->arguments && f->arguments->dim) error("static constructors / destructors must have empty parameter list"); // BUG: check for invalid storage classes } #endif sd = parent->isStructDeclaration(); if (sd) { if (isCtorDeclaration()) { goto Ldone; } #if 0 // Verify no constructors, destructors, etc. if (isCtorDeclaration() //||isDtorDeclaration() //|| isInvariantDeclaration() //|| isUnitTestDeclaration() ) { error("special member functions not allowed for %ss", sd->kind()); } if (!sd->inv) sd->inv = isInvariantDeclaration(); if (!sd->aggNew) sd->aggNew = isNewDeclaration(); if (isDelete()) { if (sd->aggDelete) error("multiple delete's for struct %s", sd->toChars()); sd->aggDelete = (DeleteDeclaration *)(this); } #endif } id = parent->isInterfaceDeclaration(); if (id) { storage_class |= STCabstract; if (isCtorDeclaration() || #if DMDV2 isPostBlitDeclaration() || #endif isDtorDeclaration() || isInvariantDeclaration() || isUnitTestDeclaration() || isNewDeclaration() || isDelete()) error("constructors, destructors, postblits, invariants, unittests, new and delete functions are not allowed in interface %s", id->toChars()); if (fbody && isVirtual()) error("function body is not abstract in interface %s", id->toChars()); } /* Contracts can only appear without a body when they are virtual interface functions */ if (!fbody && (fensure || frequire) && !(id && isVirtual())) error("in and out contracts require function body"); cd = parent->isClassDeclaration(); if (cd) { int vi; CtorDeclaration *ctor; DtorDeclaration *dtor; InvariantDeclaration *inv; if (isCtorDeclaration()) { // ctor = (CtorDeclaration *)this; // if (!cd->ctor) // cd->ctor = ctor; goto Ldone; } #if 0 dtor = isDtorDeclaration(); if (dtor) { if (cd->dtor) error("multiple destructors for class %s", cd->toChars()); cd->dtor = dtor; } inv = isInvariantDeclaration(); if (inv) { cd->inv = inv; } if (isNewDeclaration()) { if (!cd->aggNew) cd->aggNew = (NewDeclaration *)(this); } if (isDelete()) { if (cd->aggDelete) error("multiple delete's for class %s", cd->toChars()); cd->aggDelete = (DeleteDeclaration *)(this); } #endif if (storage_class & STCabstract) cd->isabstract = 1; // if static function, do not put in vtbl[] if (!isVirtual()) { //printf("\tnot virtual\n"); goto Ldone; } // Suppress further errors if the return type is an error if (type->nextOf() == Type::terror) goto Ldone; /* Find index of existing function in base class's vtbl[] to override * (the index will be the same as in cd's current vtbl[]) */ vi = cd->baseClass ? findVtblIndex((Dsymbols*)&cd->baseClass->vtbl, cd->baseClass->vtbl.dim) : -1; doesoverride = FALSE; switch (vi) { case -1: Lintro: /* Didn't find one, so * This is an 'introducing' function which gets a new * slot in the vtbl[]. */ // Verify this doesn't override previous final function if (cd->baseClass) { Dsymbol *s = cd->baseClass->search(loc, ident, 0); if (s) { FuncDeclaration *f = s->isFuncDeclaration(); f = f->overloadExactMatch(type, getModule()); if (f && f->isFinal() && f->prot() != PROTprivate) error("cannot override final function %s", f->toPrettyChars()); } } if (isFinal()) { // Don't check here, as it may override an interface function //if (isOverride()) //error("is marked as override, but does not override any function"); cd->vtblFinal.push(this); } else { // Append to end of vtbl[] //printf("\tintroducing function\n"); introducing = 1; vi = cd->vtbl.dim; cd->vtbl.push(this); vtblIndex = vi; } break; case -2: // can't determine because of fwd refs cd->sizeok = SIZEOKfwd; // can't finish due to forward reference Module::dprogress = dprogress_save; return; default: { FuncDeclaration *fdv = (FuncDeclaration *)cd->baseClass->vtbl[vi]; // This function is covariant with fdv if (fdv->isFinal()) error("cannot override final function %s", fdv->toPrettyChars()); doesoverride = TRUE; #if DMDV2 if (!isOverride()) warning(loc, "overrides base class function %s, but is not marked with 'override'", fdv->toPrettyChars()); #endif FuncDeclaration *fdc = ((Dsymbol *)cd->vtbl.data[vi])->isFuncDeclaration(); if (fdc->toParent() == parent) { // fdc overrides fdv exactly, then this introduces new function. if (fdc->type->mod == fdv->type->mod && this->type->mod != fdv->type->mod) goto Lintro; // If both are mixins, then error. // If either is not, the one that is not overrides the other. if (this->parent->isClassDeclaration() && fdc->parent->isClassDeclaration()) error("multiple overrides of same function"); // if (this is mixin) && (fdc is not mixin) then fdc overrides else if (!this->parent->isClassDeclaration() && fdc->parent->isClassDeclaration()) break; else if (!this->parent->isClassDeclaration() // if both are mixins then error #if DMDV2 && !isPostBlitDeclaration() #endif ) error("multiple overrides of same function"); } cd->vtbl[vi] = this; vtblIndex = vi; /* Remember which functions this overrides */ foverrides.push(fdv); /* This works by whenever this function is called, * it actually returns tintro, which gets dynamically * cast to type. But we know that tintro is a base * of type, so we could optimize it by not doing a * dynamic cast, but just subtracting the isBaseOf() * offset if the value is != null. */ if (fdv->tintro) tintro = fdv->tintro; else if (!type->equals(fdv->type)) { /* Only need to have a tintro if the vptr * offsets differ */ int offset; if (fdv->type->nextOf()->isBaseOf(type->nextOf(), &offset)) { tintro = fdv->type; } } break; } } /* Go through all the interface bases. * If this function is covariant with any members of those interface * functions, set the tintro. */ for (int i = 0; i < cd->interfaces_dim; i++) { BaseClass *b = cd->interfaces[i]; vi = findVtblIndex((Dsymbols *)&b->base->vtbl, b->base->vtbl.dim); switch (vi) { case -1: break; case -2: cd->sizeok = SIZEOKfwd; // can't finish due to forward reference Module::dprogress = dprogress_save; return; default: { FuncDeclaration *fdv = (FuncDeclaration *)b->base->vtbl[vi]; Type *ti = NULL; /* Remember which functions this overrides */ foverrides.push(fdv); #if DMDV2 /* Should we really require 'override' when implementing * an interface function? */ //if (!isOverride()) //warning(loc, "overrides base class function %s, but is not marked with 'override'", fdv->toPrettyChars()); #endif if (fdv->tintro) ti = fdv->tintro; else if (!type->equals(fdv->type)) { /* Only need to have a tintro if the vptr * offsets differ */ unsigned errors = global.errors; global.gag++; // suppress printing of error messages int offset; int baseOf = fdv->type->nextOf()->isBaseOf(type->nextOf(), &offset); global.gag--; // suppress printing of error messages if (errors != global.errors) { // any error in isBaseOf() is a forward reference error, so we bail out global.errors = errors; cd->sizeok = SIZEOKfwd; // can't finish due to forward reference Module::dprogress = dprogress_save; return; } if (baseOf) { ti = fdv->type; } } if (ti) { if (tintro) { if (!tintro->nextOf()->equals(ti->nextOf()) && !tintro->nextOf()->isBaseOf(ti->nextOf(), NULL) && !ti->nextOf()->isBaseOf(tintro->nextOf(), NULL)) { error("incompatible covariant types %s and %s", tintro->toChars(), ti->toChars()); } } tintro = ti; } goto L2; } } } if (!doesoverride && isOverride()) { Dsymbol *s = cd->search_correct(ident); if (s) error("does not override any function, did you mean '%s'", s->toPrettyChars()); else error("does not override any function"); } L2: ; /* Go through all the interface bases. * Disallow overriding any final functions in the interface(s). */ for (int i = 0; i < cd->interfaces_dim; i++) { BaseClass *b = cd->interfaces[i]; if (b->base) { Dsymbol *s = search_function(b->base, ident); if (s) { FuncDeclaration *f = s->isFuncDeclaration(); if (f) { f = f->overloadExactMatch(type, getModule()); if (f && f->isFinal() && f->prot() != PROTprivate) error("cannot override final function %s.%s", b->base->toChars(), f->toPrettyChars()); } } } } } else if (isOverride() && !parent->isTemplateInstance()) error("override only applies to class member functions"); /* Do not allow template instances to add virtual functions * to a class. */ if (isVirtual()) { TemplateInstance *ti = parent->isTemplateInstance(); if (ti) { // Take care of nested templates while (1) { TemplateInstance *ti2 = ti->tempdecl->parent->isTemplateInstance(); if (!ti2) break; ti = ti2; } // If it's a member template ClassDeclaration *cd = ti->tempdecl->isClassMember(); if (cd) { error("cannot use template to add virtual function to class '%s'", cd->toChars()); } } } if (isMain()) { // Check parameters to see if they are either () or (char[][] args) switch (nparams) { case 0: break; case 1: { Parameter *arg0 = Parameter::getNth(f->parameters, 0); if (arg0->type->ty != Tarray || arg0->type->nextOf()->ty != Tarray || arg0->type->nextOf()->nextOf()->ty != Tchar || arg0->storageClass & (STCout | STCref | STClazy)) goto Lmainerr; break; } default: goto Lmainerr; } if (!f->nextOf()) error("must return int or void"); else if (f->nextOf()->ty != Tint32 && f->nextOf()->ty != Tvoid) error("must return int or void, not %s", f->nextOf()->toChars()); if (f->varargs) { Lmainerr: error("parameters must be main() or main(string[] args)"); } } if (ident == Id::assign && (sd || cd)) { // Disallow identity assignment operator. // opAssign(...) if (nparams == 0) { if (f->varargs == 1) goto Lassignerr; } else { Parameter *arg0 = Parameter::getNth(f->parameters, 0); Type *t0 = arg0->type->toBasetype(); Type *tb = sd ? sd->type : cd->type; if (arg0->type->implicitConvTo(tb) || (sd && t0->ty == Tpointer && t0->nextOf()->implicitConvTo(tb)) ) { if (nparams == 1) goto Lassignerr; Parameter *arg1 = Parameter::getNth(f->parameters, 1); if (arg1->defaultArg) goto Lassignerr; } } } if (isVirtual() && semanticRun != PASSsemanticdone) { /* Rewrite contracts as nested functions, then call them. * Doing it as nested functions means that overriding functions * can call them. */ if (frequire) { #if IN_LLVM /* In LDC, we can't rely on the codegen hacks DMD has to be able * to just magically call the contract function parameterless with * the parameters being picked up from the outer stack frame. * * Thus, we actually pass all the function parameters to the * __require call, rewriting out parameters to ref ones because * they have already been zeroed in the outer function. * * Also initialize fdrequireParams here - it will get filled in * in semantic3. */ fdrequireParams = new Expressions(); Parameters *params = outToRef(((TypeFunction*)type)->parameters); TypeFunction *tf = new TypeFunction(params, Type::tvoid, 0, LINKd); #else /* in { ... } * becomes: * void __require() { ... } * __require(); */ TypeFunction *tf = new TypeFunction(NULL, Type::tvoid, 0, LINKd); #endif Loc loc = frequire->loc; FuncDeclaration *fd = new FuncDeclaration(loc, loc, Id::require, STCundefined, tf); fd->fbody = frequire; Statement *s1 = new ExpStatement(loc, fd); #if IN_LLVM Expression *e = new CallExp(loc, new VarExp(loc, fd, 0), fdrequireParams); #else Expression *e = new CallExp(loc, new VarExp(loc, fd, 0), (Expressions *)NULL); #endif Statement *s2 = new ExpStatement(loc, e); frequire = new CompoundStatement(loc, s1, s2); fdrequire = fd; } if (!outId && f->nextOf() && f->nextOf()->toBasetype()->ty != Tvoid) outId = Id::result; // provide a default #if IN_LLVM /* We need to initialize fdensureParams here and not in the block below * to have the parameter available when calling a base class ensure(), * even if this functions doesn't have an out contract. */ fdensureParams = new Expressions(); if (outId) fdensureParams->push(new IdentifierExp(loc, outId)); #endif if (fensure) { #if IN_LLVM /* Same as for in contracts, see above. */ Parameters *arguments = outToRef(((TypeFunction*)type)->parameters); #else /* out (result) { ... } * becomes: * tret __ensure(ref tret result) { ... } * __ensure(result); */ Parameters *arguments = new Parameters(); #endif Loc loc = fensure->loc; Parameter *a = NULL; if (outId) { a = new Parameter(STCref | STCconst, f->nextOf(), outId, NULL); arguments->insert(0, a); } TypeFunction *tf = new TypeFunction(arguments, Type::tvoid, 0, LINKd); FuncDeclaration *fd = new FuncDeclaration(loc, loc, Id::ensure, STCundefined, tf); fd->fbody = fensure; Statement *s1 = new ExpStatement(loc, fd); #if IN_LLVM Expression *e = new CallExp(loc, new VarExp(loc, fd, 0), fdensureParams); #else Expression *eresult = NULL; if (outId) eresult = new IdentifierExp(loc, outId); Expression *e = new CallExp(loc, new VarExp(loc, fd, 0), eresult); #endif Statement *s2 = new ExpStatement(loc, e); fensure = new CompoundStatement(loc, s1, s2); fdensure = fd; } } Ldone: Module::dprogress++; //LDC relies on semanticRun variable not being reset here if(semanticRun < PASSsemanticdone) semanticRun = PASSsemanticdone; /* Save scope for possible later use (if we need the * function internals) */ scope = new Scope(*sc); scope->setNoFree(); return; Lassignerr: if (sd) { sd->hasIdentityAssign = 1; // don't need to generate it goto Ldone; } error("identity assignment operator overload is illegal"); } void FuncDeclaration::semantic2(Scope *sc) { } // Do the semantic analysis on the internals of the function. void FuncDeclaration::semantic3(Scope *sc) { TypeFunction *f; VarDeclaration *argptr = NULL; VarDeclaration *_arguments = NULL; int nerrors = global.errors; if (!parent) { if (global.errors) return; //printf("FuncDeclaration::semantic3(%s '%s', sc = %p)\n", kind(), toChars(), sc); assert(0); } //printf("FuncDeclaration::semantic3('%s.%s', %p, sc = %p, loc = %s)\n", parent->toChars(), toChars(), this, sc, loc.toChars()); //fflush(stdout); //printf("storage class = x%x %x\n", sc->stc, storage_class); //{ static int x; if (++x == 2) *(char*)0=0; } //printf("\tlinkage = %d\n", sc->linkage); //printf(" sc->incontract = %d\n", sc->incontract); if (semanticRun >= PASSsemantic3) return; semanticRun = PASSsemantic3; semantic3Errors = 0; #if IN_LLVM if (!global.params.useAvailableExternally) availableExternally = false; #endif if (!type || type->ty != Tfunction) return; f = (TypeFunction *)(type); #if 0 // Check the 'throws' clause if (fthrows) { for (int i = 0; i < fthrows->dim; i++) { Type *t = (*fthrows)[i]; t = t->semantic(loc, sc); if (!t->isClassHandle()) error("can only throw classes, not %s", t->toChars()); } } #endif if (!fbody && inferRetType && !type->nextOf()) { error("has no function body with return type inference"); return; } if (frequire) { for (int i = 0; i < foverrides.dim; i++) { FuncDeclaration *fdv = foverrides[i]; if (fdv->fbody && !fdv->frequire) { error("cannot have an in contract when overriden function %s does not have an in contract", fdv->toPrettyChars()); break; } } } frequire = mergeFrequire(frequire); fensure = mergeFensure(fensure); if (fbody || frequire || fensure) { /* Symbol table into which we place parameters and nested functions, * solely to diagnose name collisions. */ localsymtab = new DsymbolTable(); // Establish function scope ScopeDsymbol *ss = new ScopeDsymbol(); ss->parent = sc->scopesym; Scope *sc2 = sc->push(ss); sc2->func = this; sc2->parent = this; sc2->callSuper = 0; sc2->sbreak = NULL; sc2->scontinue = NULL; sc2->sw = NULL; sc2->fes = fes; sc2->linkage = LINKd; sc2->stc &= ~(STCauto | STCscope | STCstatic | STCabstract | STCdeprecated | STCoverride | STC_TYPECTOR | STCfinal | STCtls | STCgshared | STCref | STCproperty | STCsafe | STCtrusted | STCsystem); sc2->protection = PROTpublic; sc2->explicitProtection = 0; sc2->structalign = STRUCTALIGN_DEFAULT; sc2->incontract = 0; #if !IN_LLVM sc2->tf = NULL; #else sc2->enclosingFinally = NULL; sc2->enclosingScopeExit = NULL; #endif sc2->noctor = 0; // Declare 'this' AggregateDeclaration *ad = isThis(); if (ad) { if (isFuncLiteralDeclaration() && isNested() && !sc->intypeof) { error("function literals cannot be class members"); return; } else assert(!isNested() || sc->intypeof); // can't be both member and nested } vthis = declareThis(sc2, ad); // Declare hidden variable _arguments[] and _argptr if (f->varargs == 1) { #if TARGET_NET varArgs(sc2, f, argptr, _arguments); #else Type *t; #if !IN_GCC && !IN_LLVM if (global.params.is64bit) { // Declare save area for varargs registers Type *t = new TypeIdentifier(loc, Id::va_argsave_t); t = t->semantic(loc, sc); if (t == Type::terror) { error("must import core.vararg to use variadic functions"); return; } else { v_argsave = new VarDeclaration(loc, t, Id::va_argsave, NULL); v_argsave->semantic(sc2); sc2->insert(v_argsave); v_argsave->parent = this; } } #endif if (f->linkage == LINKd) { // Declare _arguments[] v_arguments = new VarDeclaration(0, Type::typeinfotypelist->type, Id::_arguments_typeinfo, NULL); v_arguments->storage_class = STCparameter; v_arguments->semantic(sc2); sc2->insert(v_arguments); v_arguments->parent = this; //t = Type::typeinfo->type->constOf()->arrayOf(); t = Type::typeinfo->type->arrayOf(); _arguments = new VarDeclaration(0, t, Id::_arguments, NULL); _arguments->semantic(sc2); sc2->insert(_arguments); _arguments->parent = this; } if (f->linkage == LINKd || (f->parameters && Parameter::dim(f->parameters))) { // Declare _argptr #ifdef IN_GCC t = d_gcc_builtin_va_list_d_type; #else t = Type::tvoid->pointerTo(); #endif argptr = new VarDeclaration(0, t, Id::_argptr, NULL); argptr->semantic(sc2); sc2->insert(argptr); argptr->parent = this; } #endif } #if IN_LLVM // Make sure semantic analysis has been run on argument types. This is // e.g. needed for TypeTuple!(int, int) to be picked up as two int // parameters by the Parameter functions. if (f->parameters) { for (size_t i = 0; i < Parameter::dim(f->parameters); i++) { Parameter *arg = (Parameter *)Parameter::getNth(f->parameters, i); Type* nw = arg->type->semantic(0, sc); if (arg->type != nw) { arg->type = nw; // Examine this index again. // This is important if it turned into a tuple. // In particular, the empty tuple should be handled or the // next parameter will be skipped. // FIXME: Maybe we only need to do this for tuples, // and can add tuple.length after decrement? i--; } } } #endif #if 0 // Propagate storage class from tuple parameters to their element-parameters. if (f->parameters) { for (size_t i = 0; i < f->parameters->dim; i++) { Parameter *arg = (*f->parameters)[i]; //printf("[%d] arg->type->ty = %d %s\n", i, arg->type->ty, arg->type->toChars()); if (arg->type->ty == Ttuple) { TypeTuple *t = (TypeTuple *)arg->type; size_t dim = Parameter::dim(t->arguments); for (size_t j = 0; j < dim; j++) { Parameter *narg = Parameter::getNth(t->arguments, j); narg->storageClass = arg->storageClass; } } } } #endif /* Declare all the function parameters as variables * and install them in parameters[] */ size_t nparams = Parameter::dim(f->parameters); if (nparams) { /* parameters[] has all the tuples removed, as the back end * doesn't know about tuples */ parameters = new VarDeclarations(); parameters->reserve(nparams); for (size_t i = 0; i < nparams; i++) { Parameter *arg = Parameter::getNth(f->parameters, i); Identifier *id = arg->ident; if (!id) { /* Generate identifier for un-named parameter, * because we need it later on. */ arg->ident = id = Identifier::generateId("_param_", i); } Type *vtype = arg->type; //if (isPure()) //vtype = vtype->addMod(MODconst); VarDeclaration *v = new VarDeclaration(loc, vtype, id, NULL); //printf("declaring parameter %s of type %s\n", v->toChars(), v->type->toChars()); v->storage_class |= STCparameter; if (f->varargs == 2 && i + 1 == nparams) v->storage_class |= STCvariadic; v->storage_class |= arg->storageClass & (STCin | STCout | STCref | STClazy | STCfinal | STC_TYPECTOR | STCnodtor); v->semantic(sc2); if (!sc2->insert(v)) error("parameter %s.%s is already defined", toChars(), v->toChars()); else parameters->push(v); localsymtab->insert(v); v->parent = this; #if IN_LLVM if (fdrequireParams) fdrequireParams->push(new VarExp(loc, v)); if (fdensureParams) fdensureParams->push(new VarExp(loc, v)); #endif } } // Declare the tuple symbols and put them in the symbol table, // but not in parameters[]. if (f->parameters) { for (size_t i = 0; i < f->parameters->dim; i++) { Parameter *arg = (*f->parameters)[i]; if (!arg->ident) continue; // never used, so ignore if (arg->type->ty == Ttuple) { TypeTuple *t = (TypeTuple *)arg->type; size_t dim = Parameter::dim(t->arguments); Objects *exps = new Objects(); exps->setDim(dim); for (size_t j = 0; j < dim; j++) { Parameter *narg = Parameter::getNth(t->arguments, j); assert(narg->ident); VarDeclaration *v = sc2->search(0, narg->ident, NULL)->isVarDeclaration(); assert(v); Expression *e = new VarExp(v->loc, v); (*exps)[j] = e; } assert(arg->ident); TupleDeclaration *v = new TupleDeclaration(loc, arg->ident, exps); //printf("declaring tuple %s\n", v->toChars()); v->isexp = 1; if (!sc2->insert(v)) error("parameter %s.%s is already defined", toChars(), v->toChars()); localsymtab->insert(v); v->parent = this; } } } // Precondition invariant Statement *fpreinv = NULL; if (addPreInvariant()) { Expression *e = NULL; if (isDtorDeclaration()) { // Call invariant directly only if it exists InvariantDeclaration *inv = ad->inv; ClassDeclaration *cd = ad->isClassDeclaration(); while (!inv && cd) { cd = cd->baseClass; if (!cd) break; inv = cd->inv; } if (inv) { e = new DsymbolExp(0, inv); e = new CallExp(0, e); e = e->semantic(sc2); } } else { // Call invariant virtually #if IN_LLVM // We actually need a valid 'var' for codegen. ThisExp* tv = new ThisExp(0); tv->var = vthis; Expression *v = tv; #else Expression *v = new ThisExp(0); #endif v->type = vthis->type; #if STRUCTTHISREF if (ad->isStructDeclaration()) v = v->addressOf(sc); #endif Expression *se = new StringExp(0, (char *)"null this"); se = se->semantic(sc); se->type = Type::tchar->arrayOf(); e = new AssertExp(loc, v, se); } if (e) fpreinv = new ExpStatement(0, e); } // Postcondition invariant Statement *fpostinv = NULL; if (addPostInvariant()) { Expression *e = NULL; if (isCtorDeclaration()) { // Call invariant directly only if it exists InvariantDeclaration *inv = ad->inv; ClassDeclaration *cd = ad->isClassDeclaration(); while (!inv && cd) { cd = cd->baseClass; if (!cd) break; inv = cd->inv; } if (inv) { e = new DsymbolExp(0, inv); e = new CallExp(0, e); e = e->semantic(sc2); } } else { // Call invariant virtually #if IN_LLVM // We actually need a valid 'var' for codegen. ThisExp* tv = new ThisExp(0); tv->var = vthis; Expression *v = tv; #else Expression *v = new ThisExp(0); #endif v->type = vthis->type; #if STRUCTTHISREF if (ad->isStructDeclaration()) v = v->addressOf(sc); #endif e = new AssertExp(0, v); } if (e) fpostinv = new ExpStatement(0, e); } if (fensure || addPostInvariant()) { if ((fensure && global.params.useOut) || fpostinv) { returnLabel = new LabelDsymbol(Id::returnLabel); } // scope of out contract (need for vresult->semantic) ScopeDsymbol *sym = new ScopeDsymbol(); sym->parent = sc2->scopesym; scout = sc2->push(sym); } if (fbody) { ScopeDsymbol *sym = new ScopeDsymbol(); sym->parent = sc2->scopesym; sc2 = sc2->push(sym); AggregateDeclaration *ad = isAggregateMember(); /* If this is a class constructor */ if (ad && isCtorDeclaration()) { for (size_t i = 0; i < ad->fields.dim; i++) { VarDeclaration *v = ad->fields[i]; v->ctorinit = 0; } } if (!inferRetType && f->retStyle() != RETstack) nrvo_can = 0; fbody = fbody->semantic(sc2); if (!fbody) fbody = new CompoundStatement(0, new Statements()); if (inferRetType) { // If no return type inferred yet, then infer a void if (!type->nextOf()) { ((TypeFunction *)type)->next = Type::tvoid; //type = type->semantic(loc, sc); // Removed with 6902 } f = (TypeFunction *)type; } if (isStaticCtorDeclaration()) { /* It's a static constructor. Ensure that all * ctor consts were initialized. */ Dsymbol *p = toParent(); ScopeDsymbol *pd = p->isScopeDsymbol(); if (!pd) { error("static constructor can only be member of struct/class/module, not %s %s", p->kind(), p->toChars()); } else { for (size_t i = 0; i < pd->members->dim; i++) { Dsymbol *s = (*pd->members)[i]; s->checkCtorConstInit(); } } } if (isCtorDeclaration() && ad) { //printf("callSuper = x%x\n", sc2->callSuper); ClassDeclaration *cd = ad->isClassDeclaration(); // Verify that all the ctorinit fields got initialized if (!(sc2->callSuper & CSXthis_ctor)) { for (size_t i = 0; i < ad->fields.dim; i++) { VarDeclaration *v = ad->fields[i]; if (v->ctorinit == 0) { /* Current bugs in the flow analysis: * 1. union members should not produce error messages even if * not assigned to * 2. structs should recognize delegating opAssign calls as well * as delegating calls to other constructors */ if (v->isCtorinit() && !v->type->isMutable() && cd) error("missing initializer for final field %s", v->toChars()); else if (v->storage_class & STCnodefaultctor) error("field %s must be initialized in constructor", v->toChars()); } } } if (cd && !(sc2->callSuper & CSXany_ctor) && cd->baseClass && cd->baseClass->ctor) { sc2->callSuper = 0; // Insert implicit super() at start of fbody Expression *e1 = new SuperExp(0); Expression *e = new CallExp(0, e1); e = e->trySemantic(sc2); if (!e) error("no match for implicit super() call in constructor"); else { Statement *s = new ExpStatement(0, e); fbody = new CompoundStatement(0, s, fbody); } } } else if (fes) { // For foreach(){} body, append a return 0; Expression *e = new IntegerExp(0); Statement *s = new ReturnStatement(0, e); fbody = new CompoundStatement(0, fbody, s); assert(!returnLabel); } else if (!hasReturnExp && type->nextOf()->ty != Tvoid) error("has no return statement, but is expected to return a value of type %s", type->nextOf()->toChars()); else if (hasReturnExp & 8) // if inline asm { flags &= ~FUNCFLAGnothrowInprocess; } else { #if DMDV2 // Check for errors related to 'nothrow'. int nothrowErrors = global.errors; int blockexit = fbody ? fbody->blockExit(f->isnothrow) : BEfallthru; if (f->isnothrow && (global.errors != nothrowErrors) ) error("'%s' is nothrow yet may throw", toChars()); if (flags & FUNCFLAGnothrowInprocess) { flags &= ~FUNCFLAGnothrowInprocess; if (!(blockexit & BEthrow)) f->isnothrow = TRUE; } int offend = blockexit & BEfallthru; #endif if (type->nextOf()->ty != Tvoid) { if (offend) { Expression *e; #if DMDV1 warning(loc, "no return exp; or assert(0); at end of function"); #else error("no return exp; or assert(0); at end of function"); #endif if (global.params.useAssert && !global.params.useInline) { /* Add an assert(0, msg); where the missing return * should be. */ e = new AssertExp( endloc, new IntegerExp(0), new StringExp(loc, (char *)"missing return expression") ); } else e = new HaltExp(endloc); e = new CommaExp(0, e, type->nextOf()->defaultInit()); e = e->semantic(sc2); Statement *s = new ExpStatement(0, e); fbody = new CompoundStatement(0, fbody, s); } } } sc2 = sc2->pop(); } Statement *freq = frequire; Statement *fens = fensure; /* Do the semantic analysis on the [in] preconditions and * [out] postconditions. */ if (freq) { /* frequire is composed of the [in] contracts */ ScopeDsymbol *sym = new ScopeDsymbol(); sym->parent = sc2->scopesym; sc2 = sc2->push(sym); sc2->incontract++; // BUG: need to error if accessing out parameters // BUG: need to treat parameters as const // BUG: need to disallow returns and throws // BUG: verify that all in and ref parameters are read DsymbolTable *labtab_save = labtab; labtab = NULL; // so in contract can't refer to out/body labels freq = freq->semantic(sc2); labtab = labtab_save; sc2->incontract--; sc2 = sc2->pop(); if (!global.params.useIn) freq = NULL; } if (fens) { /* fensure is composed of the [out] contracts */ if (type->nextOf()->ty == Tvoid && outId) { error("void functions have no result"); } if (type->nextOf()->ty != Tvoid) buildResultVar(); sc2 = scout; //push sc2->incontract++; // BUG: need to treat parameters as const // BUG: need to disallow returns and throws DsymbolTable *labtab_save = labtab; labtab = NULL; // so out contract can't refer to in/body labels fens = fens->semantic(sc2); labtab = labtab_save; sc2->incontract--; sc2 = sc2->pop(); if (!global.params.useOut) fens = NULL; } { Statements *a = new Statements(); // Merge in initialization of 'out' parameters if (parameters) { for (size_t i = 0; i < parameters->dim; i++) { VarDeclaration *v = (*parameters)[i]; if (v->storage_class & STCout) { assert(v->init); ExpInitializer *ie = v->init->isExpInitializer(); assert(ie); if (ie->exp->op == TOKconstruct) ie->exp->op = TOKassign; // construction occured in parameter processing a->push(new ExpStatement(0, ie->exp)); } } } // we'll handle variadics ourselves #if !IN_LLVM if (argptr) { // Initialize _argptr #if IN_GCC // Handled in FuncDeclaration::toObjFile v_argptr = argptr; v_argptr->init = new VoidInitializer(loc); #else Type *t = argptr->type; if (global.params.is64bit) { // Initialize _argptr to point to v_argsave Expression *e1 = new VarExp(0, argptr); Expression *e = new SymOffExp(0, v_argsave, 6*8 + 8*16); e->type = argptr->type; e = new AssignExp(0, e1, e); e = e->semantic(sc); a->push(new ExpStatement(0, e)); } else { // Initialize _argptr to point past non-variadic arg VarDeclaration *p; unsigned offset = 0; Expression *e1 = new VarExp(0, argptr); // Find the last non-ref parameter if (parameters && parameters->dim) { int lastNonref = parameters->dim -1; p = (*parameters)[lastNonref]; /* The trouble with out and ref parameters is that taking * the address of it doesn't work, because later processing * adds in an extra level of indirection. So we skip over them. */ while (p->storage_class & (STCout | STCref)) { --lastNonref; offset += PTRSIZE; if (lastNonref < 0) { p = v_arguments; break; } p = (*parameters)[lastNonref]; } } else p = v_arguments; // last parameter is _arguments[] if (p->storage_class & STClazy) // If the last parameter is lazy, it's the size of a delegate offset += PTRSIZE * 2; else offset += p->type->size(); offset = (offset + PTRSIZE - 1) & ~(PTRSIZE - 1); // assume stack aligns on pointer size Expression *e = new SymOffExp(0, p, offset); e->type = Type::tvoidptr; //e = e->semantic(sc); e = new AssignExp(0, e1, e); e->type = t; a->push(new ExpStatement(0, e)); p->isargptr = TRUE; } #endif } if (_arguments) { #ifdef IN_GCC v_arguments_var = _arguments; v_arguments_var->init = new VoidInitializer(loc); #endif /* Advance to elements[] member of TypeInfo_Tuple with: * _arguments = v_arguments.elements; */ Expression *e = new VarExp(0, v_arguments); e = new DotIdExp(0, e, Id::elements); Expression *e1 = new VarExp(0, _arguments); e = new ConstructExp(0, e1, e); e = e->semantic(sc2); a->push(new ExpStatement(0, e)); } #endif // !IN_LLVM // Merge contracts together with body into one compound statement if (freq || fpreinv) { if (!freq) freq = fpreinv; else if (fpreinv) freq = new CompoundStatement(0, freq, fpreinv); freq->incontract = 1; a->push(freq); } if (fbody) a->push(fbody); if (fens || fpostinv) { if (!fens) fens = fpostinv; else if (fpostinv) fens = new CompoundStatement(0, fpostinv, fens); LabelStatement *ls = new LabelStatement(0, Id::returnLabel, fens); returnLabel->statement = ls; a->push(returnLabel->statement); if (type->nextOf()->ty != Tvoid && vresult) { #if IN_LLVM Expression *e = 0; if (isCtorDeclaration()) { ThisExp *te = new ThisExp(0); te->type = vthis->type; te->var = vthis; e = te; } else { e = new VarExp(0, vresult); } #else // Create: return vresult; Expression *e = new VarExp(0, vresult); #endif if (tintro) { e = e->implicitCastTo(sc, tintro->nextOf()); e = e->semantic(sc); } ReturnStatement *s = new ReturnStatement(0, e); a->push(s); } } if (isMain() && type->nextOf()->ty == Tvoid) { // Add a return 0; statement Statement *s = new ReturnStatement(0, new IntegerExp(0)); a->push(s); } fbody = new CompoundStatement(0, a); #if DMDV2 /* Append destructor calls for parameters as finally blocks. */ if (parameters) { for (size_t i = 0; i < parameters->dim; i++) { VarDeclaration *v = (*parameters)[i]; if (v->storage_class & (STCref | STCout | STClazy)) continue; #if !SARRAYVALUE /* Don't do this for static arrays, since static * arrays are called by reference. Remove this * when we change them to call by value. */ if (v->type->toBasetype()->ty == Tsarray) continue; #endif if (v->noscope) continue; Expression *e = v->edtor; if (e) { Statement *s = new ExpStatement(0, e); s = s->semantic(sc2); if (fbody->blockExit(f->isnothrow) == BEfallthru) fbody = new CompoundStatement(0, fbody, s); else fbody = new TryFinallyStatement(0, fbody, s); } } } #endif #if 1 if (isSynchronized()) { /* Wrap the entire function body in a synchronized statement */ AggregateDeclaration *ad = isThis(); ClassDeclaration *cd = ad ? ad->isClassDeclaration() : parent->isClassDeclaration(); if (cd) { #if TARGET_WINDOS if (/*config.flags2 & CFG2seh &&*/ // always on for WINDOS !isStatic() && !fbody->usesEH()) { /* The back end uses the "jmonitor" hack for syncing; * no need to do the sync at this level. */ } else #endif { Expression *vsync; if (isStatic()) { // The monitor is in the ClassInfo vsync = new DotIdExp(loc, new DsymbolExp(loc, cd), Id::classinfo); } else { // 'this' is the monitor vsync = new VarExp(loc, vthis); } fbody = new PeelStatement(fbody); // don't redo semantic() fbody = new SynchronizedStatement(loc, vsync, fbody); fbody = fbody->semantic(sc2); } } else { error("synchronized function %s must be a member of a class", toChars()); } } #endif } sc2->callSuper = 0; sc2->pop(); } /* If function survived being marked as impure, then it is pure */ if (flags & FUNCFLAGpurityInprocess) { flags &= ~FUNCFLAGpurityInprocess; f->purity = PUREfwdref; } if (flags & FUNCFLAGsafetyInprocess) { flags &= ~FUNCFLAGsafetyInprocess; f->trust = TRUSTsafe; } // Do semantic type AFTER pure/nothrow inference. if (inferRetType) { type = type->semantic(loc, sc); } if (global.gag && global.errors != nerrors) semanticRun = PASSsemanticdone; // Ensure errors get reported again else { semanticRun = PASSsemantic3done; semantic3Errors = global.errors - nerrors; } //printf("-FuncDeclaration::semantic3('%s.%s', sc = %p, loc = %s)\n", parent->toChars(), toChars(), sc, loc.toChars()); //fflush(stdout); } void FuncDeclaration::toCBuffer(OutBuffer *buf, HdrGenState *hgs) { //printf("FuncDeclaration::toCBuffer() '%s'\n", toChars()); StorageClassDeclaration::stcToCBuffer(buf, storage_class); type->toCBuffer(buf, ident, hgs); bodyToCBuffer(buf, hgs); } VarDeclaration *FuncDeclaration::declareThis(Scope *sc, AggregateDeclaration *ad) { if (ad) { VarDeclaration *v; { assert(ad->handle); Type *thandle = ad->handle; #if STRUCTTHISREF thandle = thandle->addMod(type->mod); thandle = thandle->addStorageClass(storage_class); //if (isPure()) //thandle = thandle->addMod(MODconst); #else if (storage_class & STCconst || type->isConst()) { assert(0); // BUG: shared not handled if (thandle->ty == Tclass) thandle = thandle->constOf(); else { assert(thandle->ty == Tpointer); thandle = thandle->nextOf()->constOf()->pointerTo(); } } else if (storage_class & STCimmutable || type->isImmutable()) { if (thandle->ty == Tclass) thandle = thandle->invariantOf(); else { assert(thandle->ty == Tpointer); thandle = thandle->nextOf()->invariantOf()->pointerTo(); } } else if (storage_class & STCshared || type->isShared()) { assert(0); // not implemented } #endif v = new ThisDeclaration(loc, thandle); //v = new ThisDeclaration(loc, isCtorDeclaration() ? ad->handle : thandle); v->storage_class |= STCparameter; #if STRUCTTHISREF if (thandle->ty == Tstruct) v->storage_class |= STCref; #endif v->semantic(sc); if (!sc->insert(v)) assert(0); v->parent = this; return v; } } else if (isNested()) { /* The 'this' for a nested function is the link to the * enclosing function's stack frame. * Note that nested functions and member functions are disjoint. */ VarDeclaration *v = new ThisDeclaration(loc, Type::tvoid->pointerTo()); v->storage_class |= STCparameter; v->semantic(sc); if (!sc->insert(v)) assert(0); v->parent = this; return v; } return NULL; } int FuncDeclaration::equals(Object *o) { if (this == o) return TRUE; Dsymbol *s = isDsymbol(o); if (s) { FuncDeclaration *fd1 = this->toAliasFunc(); FuncDeclaration *fd2 = s->isFuncDeclaration(); if (fd2) { fd2 = fd2->toAliasFunc(); return fd1->toParent()->equals(fd2->toParent()) && fd1->ident->equals(fd2->ident) && fd1->type->equals(fd2->type); } } return FALSE; } void FuncDeclaration::bodyToCBuffer(OutBuffer *buf, HdrGenState *hgs) { if (fbody && (!hgs->hdrgen || hgs->tpltMember || canInline(1,1,1)) ) { buf->writenl(); // in{} if (frequire) { buf->writestring("in"); buf->writenl(); frequire->toCBuffer(buf, hgs); } // out{} if (fensure) { buf->writestring("out"); if (outId) { buf->writebyte('('); buf->writestring(outId->toChars()); buf->writebyte(')'); } buf->writenl(); fensure->toCBuffer(buf, hgs); } if (frequire || fensure) { buf->writestring("body"); buf->writenl(); } buf->writebyte('{'); buf->writenl(); fbody->toCBuffer(buf, hgs); buf->writebyte('}'); buf->writenl(); } else { buf->writeByte(';'); buf->writenl(); } } /**************************************************** * Declare result variable lazily. */ void FuncDeclaration::buildResultVar() { if (vresult) return; assert(type->nextOf()); assert(type->nextOf()->toBasetype()->ty != Tvoid); TypeFunction *tf = (TypeFunction *)(type); Loc loc = this->loc; if (fensure) loc = fensure->loc; if (!outId) outId = Id::result; // provide a default VarDeclaration *v = new VarDeclaration(loc, type->nextOf(), outId, NULL); v->noscope = 1; v->storage_class |= STCresult; #if DMDV2 if (!isVirtual()) v->storage_class |= STCconst; if (tf->isref) { v->storage_class |= STCref | STCforeach; } #endif v->semantic(scout); if (!scout->insert(v)) error("out result %s is already defined", v->toChars()); v->parent = this; vresult = v; // vresult gets initialized with the function return value // in ReturnStatement::semantic() } /**************************************************** * Merge into this function the 'in' contracts of all it overrides. * 'in's are OR'd together, i.e. only one of them needs to pass. */ Statement *FuncDeclaration::mergeFrequire(Statement *sf, Expressions *params) { if (!params) params = fdrequireParams; /* If a base function and its override both have an IN contract, then * only one of them needs to succeed. This is done by generating: * * void derived.in() { * try { * base.in(); * } * catch () { * ... body of derived.in() ... * } * } * * So if base.in() doesn't throw, derived.in() need not be executed, and the contract is valid. * If base.in() throws, then derived.in()'s body is executed. */ #if IN_LLVM /* In LDC, we can't rely on these codegen hacks - we explicitly pass * parameters on to the contract functions. */ #else /* Implementing this is done by having the overriding function call * nested functions (the fdrequire functions) nested inside the overridden * function. This requires that the stack layout of the calling function's * parameters and 'this' pointer be in the same place (as the nested * function refers to them). * This is easy for the parameters, as they are all on the stack in the same * place by definition, since it's an overriding function. The problem is * getting the 'this' pointer in the same place, since it is a local variable. * We did some hacks in the code generator to make this happen: * 1. always generate exception handler frame, or at least leave space for it * in the frame (Windows 32 SEH only) * 2. always generate an EBP style frame * 3. since 'this' is passed in a register that is subsequently copied into * a stack local, allocate that local immediately following the exception * handler block, so it is always at the same offset from EBP. */ #endif for (int i = 0; i < foverrides.dim; i++) { FuncDeclaration *fdv = foverrides[i]; /* The semantic pass on the contracts of the overridden functions must * be completed before code generation occurs (bug 3602). */ if (fdv->fdrequire && fdv->fdrequire->semanticRun != PASSsemantic3done) { assert(fdv->scope); Scope *sc = fdv->scope->push(); sc->stc &= ~STCoverride; fdv->semantic3(sc); sc->pop(); } sf = fdv->mergeFrequire(sf, params); if (sf && fdv->fdrequire) { //printf("fdv->frequire: %s\n", fdv->frequire->toChars()); /* Make the call: * try { __require(); } * catch { frequire; } */ Expression *e = new CallExp(loc, new VarExp(loc, fdv->fdrequire, 0), params); Statement *s2 = new ExpStatement(loc, e); Catch *c = new Catch(loc, NULL, NULL, sf); c->internalCatch = true; Catches *catches = new Catches(); catches->push(c); sf = new TryCatchStatement(loc, s2, catches); } else return NULL; } return sf; } /**************************************************** * Merge into this function the 'out' contracts of all it overrides. * 'out's are AND'd together, i.e. all of them need to pass. */ Statement *FuncDeclaration::mergeFensure(Statement *sf, Expressions *params) { if (!params) params = fdensureParams; /* Same comments as for mergeFrequire(), except that we take care * of generating a consistent reference to the 'result' local by * explicitly passing 'result' to the nested function as a reference * argument. * This won't work for the 'this' parameter as it would require changing * the semantic code for the nested function so that it looks on the parameter * list for the 'this' pointer, something that would need an unknown amount * of tweaking of various parts of the compiler that I'd rather leave alone. */ for (int i = 0; i < foverrides.dim; i++) { FuncDeclaration *fdv = foverrides[i]; /* The semantic pass on the contracts of the overridden functions must * be completed before code generation occurs (bug 3602 and 5230). */ if (fdv->fdensure && fdv->fdensure->semanticRun != PASSsemantic3done) { assert(fdv->scope); Scope *sc = fdv->scope->push(); sc->stc &= ~STCoverride; fdv->semantic3(sc); sc->pop(); } sf = fdv->mergeFensure(sf, params); if (fdv->fdensure) { //printf("fdv->fensure: %s\n", fdv->fensure->toChars()); // Make the call: __ensure(result) Expression *e = new CallExp(loc, new VarExp(loc, fdv->fdensure, 0), params); Statement *s2 = new ExpStatement(loc, e); if (sf) { sf = new CompoundStatement(fensure->loc, s2, sf); } else sf = s2; } } return sf; } /**************************************************** * Determine if 'this' overrides fd. * Return !=0 if it does. */ int FuncDeclaration::overrides(FuncDeclaration *fd) { int result = 0; if (fd->ident == ident) { int cov = type->covariant(fd->type); if (cov) { ClassDeclaration *cd1 = toParent()->isClassDeclaration(); ClassDeclaration *cd2 = fd->toParent()->isClassDeclaration(); if (cd1 && cd2 && cd2->isBaseOf(cd1, NULL)) result = 1; } } return result; } /************************************************* * Find index of function in vtbl[0..dim] that * this function overrides. * Prefer an exact match to a covariant one. * Returns: * -1 didn't find one * -2 can't determine because of forward references */ int FuncDeclaration::findVtblIndex(Dsymbols *vtbl, int dim) { FuncDeclaration *mismatch = NULL; StorageClass mismatchstc = 0; int mismatchvi = -1; int exactvi = -1; int bestvi = -1; for (int vi = 0; vi < dim; vi++) { FuncDeclaration *fdv = (*vtbl)[vi]->isFuncDeclaration(); if (fdv && fdv->ident == ident) { if (type->equals(fdv->type)) // if exact match { if (fdv->parent->isClassDeclaration()) return vi; // no need to look further if (exactvi >= 0) { error("cannot determine overridden function"); return exactvi; } exactvi = vi; bestvi = vi; continue; } StorageClass stc = 0; int cov = type->covariant(fdv->type, &stc); //printf("\tbaseclass cov = %d\n", cov); switch (cov) { case 0: // types are distinct break; case 1: bestvi = vi; // covariant, but not identical break; // keep looking for an exact match case 2: mismatchvi = vi; mismatchstc = stc; mismatch = fdv; // overrides, but is not covariant break; // keep looking for an exact match case 3: return -2; // forward references default: assert(0); } } } if (bestvi == -1 && mismatch) { //type->print(); //mismatch->type->print(); //printf("%s %s\n", type->deco, mismatch->type->deco); //printf("stc = %llx\n", mismatchstc); if (mismatchstc) { // Fix it by modifying the type to add the storage classes type = type->addStorageClass(mismatchstc); bestvi = mismatchvi; } else error("of type %s overrides but is not covariant with %s of type %s", type->toChars(), mismatch->toPrettyChars(), mismatch->type->toChars()); } return bestvi; } /**************************************************** * Overload this FuncDeclaration with the new one f. * Return !=0 if successful; i.e. no conflict. */ int FuncDeclaration::overloadInsert(Dsymbol *s) { FuncDeclaration *f; AliasDeclaration *a; //printf("FuncDeclaration::overloadInsert(s = %s) this = %s\n", s->toChars(), toChars()); a = s->isAliasDeclaration(); if (a) { if (overnext) return overnext->overloadInsert(a); if (!a->aliassym && a->type->ty != Tident && a->type->ty != Tinstance) { //printf("\ta = '%s'\n", a->type->toChars()); return FALSE; } overnext = a; //printf("\ttrue: no conflict\n"); return TRUE; } f = s->isFuncDeclaration(); if (!f) return FALSE; #if 0 /* Disable this check because: * const void foo(); * semantic() isn't run yet on foo(), so the const hasn't been * applied yet. */ if (type) { printf("type = %s\n", type->toChars()); printf("f->type = %s\n", f->type->toChars()); } if (type && f->type && // can be NULL for overloaded constructors f->type->covariant(type) && f->type->mod == type->mod && !isFuncAliasDeclaration()) { //printf("\tfalse: conflict %s\n", kind()); return FALSE; } #endif if (overnext) return overnext->overloadInsert(f); overnext = f; //printf("\ttrue: no conflict\n"); return TRUE; } /******************************************** * Find function in overload list that exactly matches t. */ /*************************************************** * Visit each overloaded function in turn, and call * (*fp)(param, f) on it. * Exit when no more, or (*fp)(param, f) returns 1. * Returns: * 0 continue * 1 done */ int overloadApply(FuncDeclaration *fstart, int (*fp)(void *, FuncDeclaration *), void *param) { FuncDeclaration *f; Declaration *d; Declaration *next; for (d = fstart; d; d = next) { FuncAliasDeclaration *fa = d->isFuncAliasDeclaration(); if (fa) { if (fa->hasOverloads) { if (overloadApply(fa->funcalias, fp, param)) return 1; } else { f = fa->toAliasFunc(); if (!f) { d->error("is aliased to a function"); break; } if ((*fp)(param, f)) return 1; } next = fa->overnext; } else { AliasDeclaration *a = d->isAliasDeclaration(); if (a) { Dsymbol *s = a->toAlias(); next = s->isDeclaration(); if (next == a) break; if (next == fstart) break; } else { f = d->isFuncDeclaration(); if (!f) { d->error("is aliased to a function"); break; // BUG: should print error message? } if ((*fp)(param, f)) return 1; next = f->overnext; } } } return 0; } /******************************************** * If there are no overloads of function f, return that function, * otherwise return NULL. */ static int fpunique(void *param, FuncDeclaration *f) { FuncDeclaration **pf = (FuncDeclaration **)param; if (*pf) { *pf = NULL; return 1; // ambiguous, done } else { *pf = f; return 0; } } FuncDeclaration *FuncDeclaration::isUnique() { FuncDeclaration *result = NULL; overloadApply(this, &fpunique, &result); return result; } /******************************************** * Find function in overload list that exactly matches t. */ struct Param1 { Type *t; // type to match FuncDeclaration *f; // return value }; int fp1(void *param, FuncDeclaration *f) { Param1 *p = (Param1 *)param; Type *t = p->t; if (t->equals(f->type)) { p->f = f; return 1; } #if DMDV2 /* Allow covariant matches, as long as the return type * is just a const conversion. * This allows things like pure functions to match with an impure function type. */ if (t->ty == Tfunction) { TypeFunction *tf = (TypeFunction *)f->type; if (tf->covariant(t) == 1 && tf->nextOf()->implicitConvTo(t->nextOf()) >= MATCHconst) { p->f = f; return 1; } } #endif return 0; } FuncDeclaration *FuncDeclaration::overloadExactMatch(Type *t, Module* from) { Param1 p; p.t = t; p.f = NULL; overloadApply(this, &fp1, &p); return p.f; } /******************************************** * Decide which function matches the arguments best. */ struct Param2 { Match *m; #if DMDV2 Expression *ethis; int property; // 0: unintialized // 1: seen @property // 2: not @property #endif Expressions *arguments; }; int fp2(void *param, FuncDeclaration *f) { Param2 *p = (Param2 *)param; Match *m = p->m; Expressions *arguments = p->arguments; MATCH match; if (f != m->lastf) // skip duplicates { m->anyf = f; TypeFunction *tf = (TypeFunction *)f->type; int property = (tf->isproperty) ? 1 : 2; if (p->property == 0) p->property = property; else if (p->property != property) error(f->loc, "cannot overload both property and non-property functions"); /* For constructors, don't worry about the right type of ethis. It's a problem * anyway, because the constructor attribute may not match the ethis attribute, * but we don't care because the attribute on the ethis doesn't matter until * after it's constructed. */ match = (MATCH) tf->callMatch(f->needThis() && !f->isCtorDeclaration() ? p->ethis : NULL, arguments); //printf("test1: match = %d\n", match); if (match != MATCHnomatch) { if (match > m->last) goto LfIsBetter; if (match < m->last) goto LlastIsBetter; /* See if one of the matches overrides the other. */ if (m->lastf->overrides(f)) goto LlastIsBetter; else if (f->overrides(m->lastf)) goto LfIsBetter; #if DMDV2 /* Try to disambiguate using template-style partial ordering rules. * In essence, if f() and g() are ambiguous, if f() can call g(), * but g() cannot call f(), then pick f(). * This is because f() is "more specialized." */ { MATCH c1 = f->leastAsSpecialized(m->lastf); MATCH c2 = m->lastf->leastAsSpecialized(f); //printf("c1 = %d, c2 = %d\n", c1, c2); if (c1 > c2) goto LfIsBetter; if (c1 < c2) goto LlastIsBetter; } #endif Lambiguous: m->nextf = f; m->count++; return 0; LfIsBetter: m->last = match; m->lastf = f; m->count = 1; return 0; LlastIsBetter: return 0; } } return 0; } void overloadResolveX(Match *m, FuncDeclaration *fstart, Expression *ethis, Expressions *arguments, Module* from) { Param2 p; p.m = m; p.ethis = ethis; p.property = 0; p.arguments = arguments; overloadApply(fstart, &fp2, &p); } FuncDeclaration *FuncDeclaration::overloadResolve(Loc loc, Expression *ethis, Expressions *arguments, int flags, Module* from) { TypeFunction *tf; Match m; #if 0 printf("FuncDeclaration::overloadResolve('%s')\n", toChars()); if (arguments) { int i; for (i = 0; i < arguments->dim; i++) { Expression *arg; arg = (*arguments)[i]; assert(arg->type); printf("\t%s: ", arg->toChars()); arg->type->print(); } } #endif memset(&m, 0, sizeof(m)); m.last = MATCHnomatch; overloadResolveX(&m, this, ethis, arguments, from); if (m.count == 1) // exactly one match { return m.lastf; } else { OutBuffer buf; buf.writeByte('('); if (arguments) { HdrGenState hgs; argExpTypesToCBuffer(&buf, arguments, &hgs); buf.writeByte(')'); if (ethis) ethis->type->modToBuffer(&buf); } else buf.writeByte(')'); if (m.last == MATCHnomatch) { if (flags & 1) // if do not print error messages return NULL; // no match tf = (TypeFunction *)type; OutBuffer buf2; tf->modToBuffer(&buf2); //printf("tf = %s, args = %s\n", tf->deco, (*arguments)[0]->type->deco); error(loc, "%s%s is not callable using argument types %s", Parameter::argsTypesToChars(tf->parameters, tf->varargs), buf2.toChars(), buf.toChars()); return m.anyf; // as long as it's not a FuncAliasDeclaration } else { #if 1 TypeFunction *t1 = (TypeFunction *)m.lastf->type; TypeFunction *t2 = (TypeFunction *)m.nextf->type; error(loc, "called with argument types:\n\t(%s)\nmatches both:\n\t%s%s\nand:\n\t%s%s", buf.toChars(), m.lastf->toPrettyChars(), Parameter::argsTypesToChars(t1->parameters, t1->varargs), m.nextf->toPrettyChars(), Parameter::argsTypesToChars(t2->parameters, t2->varargs)); #else error(loc, "overloads %s and %s both match argument list for %s", m.lastf->type->toChars(), m.nextf->type->toChars(), m.lastf->toChars()); #endif return m.lastf; } } } /************************************* * Determine partial specialization order of 'this' vs g. * This is very similar to TemplateDeclaration::leastAsSpecialized(). * Returns: * match 'this' is at least as specialized as g * 0 g is more specialized than 'this' */ #if DMDV2 MATCH FuncDeclaration::leastAsSpecialized(FuncDeclaration *g) { #define LOG_LEASTAS 0 #if LOG_LEASTAS printf("%s.leastAsSpecialized(%s)\n", toChars(), g->toChars()); printf("%s, %s\n", type->toChars(), g->type->toChars()); #endif /* This works by calling g() with f()'s parameters, and * if that is possible, then f() is at least as specialized * as g() is. */ TypeFunction *tf = (TypeFunction *)type; TypeFunction *tg = (TypeFunction *)g->type; size_t nfparams = Parameter::dim(tf->parameters); size_t ngparams = Parameter::dim(tg->parameters); MATCH match = MATCHexact; /* If both functions have a 'this' pointer, and the mods are not * the same and g's is not const, then this is less specialized. */ if (needThis() && g->needThis()) { if (tf->mod != tg->mod) { if (MODimplicitConv(tf->mod, tg->mod)) match = MATCHconst; else return MATCHnomatch; } } /* Create a dummy array of arguments out of the parameters to f() */ Expressions args; args.setDim(nfparams); for (int u = 0; u < nfparams; u++) { Parameter *p = Parameter::getNth(tf->parameters, u); Expression *e; if (p->storageClass & (STCref | STCout)) { e = new IdentifierExp(0, p->ident); e->type = p->type; } else e = p->type->defaultInitLiteral(0); args[u] = e; } MATCH m = (MATCH) tg->callMatch(NULL, &args, 1); if (m) { /* A variadic parameter list is less specialized than a * non-variadic one. */ if (tf->varargs && !tg->varargs) goto L1; // less specialized #if LOG_LEASTAS printf(" matches %d, so is least as specialized\n", m); #endif return m; } L1: #if LOG_LEASTAS printf(" doesn't match, so is not as specialized\n"); #endif return MATCHnomatch; } /******************************************* * Given a symbol that could be either a FuncDeclaration or * a function template, resolve it to a function symbol. * sc instantiation scope * loc instantiation location * targsi initial list of template arguments * ethis if !NULL, the 'this' pointer argument * fargs arguments to function * flags 1: do not issue error message on no match, just return NULL */ FuncDeclaration *resolveFuncCall(Scope *sc, Loc loc, Dsymbol *s, Objects *tiargs, Expression *ethis, Expressions *arguments, int flags) { if (!s) return NULL; // no match FuncDeclaration *f = s->isFuncDeclaration(); if (f) f = f->overloadResolve(loc, ethis, arguments); else { TemplateDeclaration *td = s->isTemplateDeclaration(); assert(td); f = td->deduceFunctionTemplate(sc, loc, tiargs, NULL, arguments, flags); } return f; } #endif /******************************** * Labels are in a separate scope, one per function. */ LabelDsymbol *FuncDeclaration::searchLabel(Identifier *ident) { Dsymbol *s; if (!labtab) labtab = new DsymbolTable(); // guess we need one s = labtab->lookup(ident); if (!s) { s = new LabelDsymbol(ident); labtab->insert(s); } return (LabelDsymbol *)s; } /**************************************** * If non-static member function that has a 'this' pointer, * return the aggregate it is a member of. * Otherwise, return NULL. */ AggregateDeclaration *FuncDeclaration::isThis() { AggregateDeclaration *ad; //printf("+FuncDeclaration::isThis() '%s'\n", toChars()); ad = NULL; if ((storage_class & STCstatic) == 0) { ad = isMember2(); } //printf("-FuncDeclaration::isThis() %p\n", ad); return ad; } AggregateDeclaration *FuncDeclaration::isMember2() { AggregateDeclaration *ad; //printf("+FuncDeclaration::isMember2() '%s'\n", toChars()); ad = NULL; for (Dsymbol *s = this; s; s = s->parent) { //printf("\ts = '%s', parent = '%s', kind = %s\n", s->toChars(), s->parent->toChars(), s->parent->kind()); ad = s->isMember(); if (ad) { break; } if (!s->parent || (!s->parent->isTemplateInstance())) { break; } } //printf("-FuncDeclaration::isMember2() %p\n", ad); return ad; } /***************************************** * Determine lexical level difference from 'this' to nested function 'fd'. * Error if this cannot call fd. * Returns: * 0 same level * -1 increase nesting by 1 (fd is nested within 'this') * >0 decrease nesting by number */ int FuncDeclaration::getLevel(Loc loc, Scope *sc, FuncDeclaration *fd) { int level; Dsymbol *s; Dsymbol *fdparent; //printf("FuncDeclaration::getLevel(fd = '%s')\n", fd->toChars()); fdparent = fd->toParent2(); if (fdparent == this) return -1; s = this; level = 0; while (fd != s && fdparent != s->toParent2()) { //printf("\ts = %s, '%s'\n", s->kind(), s->toChars()); FuncDeclaration *thisfd = s->isFuncDeclaration(); if (thisfd) { if (!thisfd->isNested() && !thisfd->vthis && !sc->intypeof) goto Lerr; } else { AggregateDeclaration *thiscd = s->isAggregateDeclaration(); if (thiscd) { /* AggregateDeclaration::isNested returns true only when * it has a hidden pointer. * But, calling the function belongs unrelated lexical scope * is still allowed inside typeof. * * struct Map(alias fun) { * typeof({ return fun(); }) RetType; * // No member function makes Map struct 'not nested'. * } */ if (!thiscd->isNested() && !sc->intypeof) goto Lerr; } else goto Lerr; } s = s->toParent2(); assert(s); level++; } return level; Lerr: // Don't give error if in template constraint if (!((sc->flags & SCOPEstaticif) && parent->isTemplateDeclaration())) error(loc, "cannot access frame of function %s", fd->toPrettyChars()); return 1; } void FuncDeclaration::appendExp(Expression *e) { Statement *s; s = new ExpStatement(0, e); appendState(s); } void FuncDeclaration::appendState(Statement *s) { if (!fbody) fbody = s; else { CompoundStatement *cs = fbody->isCompoundStatement(); if (cs) { if (!cs->statements) fbody = s; else cs->statements->push(s); } else fbody = new CompoundStatement(0, fbody, s); } } const char *FuncDeclaration::toPrettyChars() { if (isMain()) return "D main"; else return Dsymbol::toPrettyChars(); } int FuncDeclaration::isMain() { return ident == Id::main && linkage != LINKc && !isMember() && !isNested(); } int FuncDeclaration::isWinMain() { //printf("FuncDeclaration::isWinMain() %s\n", toChars()); #if 0 int x = ident == Id::WinMain && linkage != LINKc && !isMember(); printf("%s\n", x ? "yes" : "no"); return x; #else return ident == Id::WinMain && linkage != LINKc && !isMember(); #endif } int FuncDeclaration::isDllMain() { return ident == Id::DllMain && linkage != LINKc && !isMember(); } int FuncDeclaration::isExport() { return protection == PROTexport; } int FuncDeclaration::isImportedSymbol() { //printf("isImportedSymbol()\n"); //printf("protection = %d\n", protection); return (protection == PROTexport) && !fbody; } // Determine if function goes into virtual function pointer table int FuncDeclaration::isVirtual() { if (toAliasFunc() != this) return toAliasFunc()->isVirtual(); Dsymbol *p = toParent(); #if 0 printf("FuncDeclaration::isVirtual(%s)\n", toChars()); printf("isMember:%p isStatic:%d private:%d ctor:%d !Dlinkage:%d\n", isMember(), isStatic(), protection == PROTprivate, isCtorDeclaration(), linkage != LINKd); printf("result is %d\n", isMember() && !(isStatic() || protection == PROTprivate || protection == PROTpackage) && p->isClassDeclaration() && !(p->isInterfaceDeclaration() && isFinal())); #endif return isMember() && !(isStatic() || protection == PROTprivate || protection == PROTpackage) && p->isClassDeclaration() && !(p->isInterfaceDeclaration() && isFinal()); } // Determine if a function is pedantically virtual int FuncDeclaration::isVirtualMethod() { if (toAliasFunc() != this) return toAliasFunc()->isVirtualMethod(); //printf("FuncDeclaration::isVirtualMethod() %s\n", toChars()); if (!isVirtual()) return 0; // If it's a final method, and does not override anything, then it is not virtual if (isFinal() && foverrides.dim == 0) { return 0; } return 1; } int FuncDeclaration::isFinal() { if (toAliasFunc() != this) return toAliasFunc()->isFinal(); ClassDeclaration *cd; #if 0 printf("FuncDeclaration::isFinal(%s), %x\n", toChars(), Declaration::isFinal()); printf("%p %d %d %d\n", isMember(), isStatic(), Declaration::isFinal(), ((cd = toParent()->isClassDeclaration()) != NULL && cd->storage_class & STCfinal)); printf("result is %d\n", isMember() && (Declaration::isFinal() || ((cd = toParent()->isClassDeclaration()) != NULL && cd->storage_class & STCfinal))); if (cd) printf("\tmember of %s\n", cd->toChars()); #if 0 !(isStatic() || protection == PROTprivate || protection == PROTpackage) && (cd = toParent()->isClassDeclaration()) != NULL && cd->storage_class & STCfinal); #endif #endif return isMember() && (Declaration::isFinal() || ((cd = toParent()->isClassDeclaration()) != NULL && cd->storage_class & STCfinal)); } int FuncDeclaration::isAbstract() { return storage_class & STCabstract; } int FuncDeclaration::isCodeseg() { return TRUE; // functions are always in the code segment } int FuncDeclaration::isOverloadable() { return 1; // functions can be overloaded } int FuncDeclaration::hasOverloads() { return overnext != NULL; } enum PURE FuncDeclaration::isPure() { //printf("FuncDeclaration::isPure() '%s'\n", toChars()); assert(type->ty == Tfunction); TypeFunction *tf = (TypeFunction *)type; if (flags & FUNCFLAGpurityInprocess) setImpure(); if (tf->purity == PUREfwdref) tf->purityLevel(); enum PURE purity = tf->purity; if (purity > PUREweak && needThis()) { // The attribute of the 'this' reference affects purity strength if (type->mod & (MODimmutable | MODwild)) ; else if (type->mod & MODconst && purity >= PUREconst) purity = PUREconst; else purity = PUREweak; } tf->purity = purity; // ^ This rely on the current situation that every FuncDeclaration has a // unique TypeFunction. return purity; } enum PURE FuncDeclaration::isPureBypassingInference() { if (flags & FUNCFLAGpurityInprocess) return PUREfwdref; else return isPure(); } /************************************** * The function is doing something impure, * so mark it as impure. * If there's a purity error, return TRUE. */ bool FuncDeclaration::setImpure() { if (flags & FUNCFLAGpurityInprocess) { flags &= ~FUNCFLAGpurityInprocess; } else if (isPure()) return TRUE; return FALSE; } int FuncDeclaration::isSafe() { assert(type->ty == Tfunction); if (flags & FUNCFLAGsafetyInprocess) setUnsafe(); return ((TypeFunction *)type)->trust == TRUSTsafe; } bool FuncDeclaration::isSafeBypassingInference() { if (flags & FUNCFLAGsafetyInprocess) return false; else return isSafe(); } int FuncDeclaration::isTrusted() { assert(type->ty == Tfunction); if (flags & FUNCFLAGsafetyInprocess) setUnsafe(); return ((TypeFunction *)type)->trust == TRUSTtrusted; } /************************************** * The function is doing something unsave, * so mark it as unsafe. * If there's a safe error, return TRUE. */ bool FuncDeclaration::setUnsafe() { if (flags & FUNCFLAGsafetyInprocess) { flags &= ~FUNCFLAGsafetyInprocess; ((TypeFunction *)type)->trust = TRUSTsystem; } else if (isSafe()) return TRUE; return FALSE; } // Determine if function needs // a static frame pointer to its lexically enclosing function int FuncDeclaration::isNested() { FuncDeclaration *f = toAliasFunc(); //printf("\ttoParent2() = '%s'\n", f->toParent2()->toChars()); return ((f->storage_class & STCstatic) == 0) && (f->linkage == LINKd) && (f->toParent2()->isFuncDeclaration() != NULL); } int FuncDeclaration::needThis() { //printf("FuncDeclaration::needThis() '%s'\n", toChars()); return toAliasFunc()->isThis() != NULL; } int FuncDeclaration::addPreInvariant() { AggregateDeclaration *ad = isThis(); return (ad && //ad->isClassDeclaration() && global.params.useInvariants && (protection == PROTprotected || protection == PROTpublic || protection == PROTexport) && !naked && ident != Id::cpctor); } int FuncDeclaration::addPostInvariant() { AggregateDeclaration *ad = isThis(); return (ad && ad->inv && //ad->isClassDeclaration() && global.params.useInvariants && (protection == PROTprotected || protection == PROTpublic || protection == PROTexport) && !naked && ident != Id::cpctor); } /********************************** * Generate a FuncDeclaration for a runtime library function. */ // // LDC: Adjusted to give argument info to the runtime function decl. // FuncDeclaration *FuncDeclaration::genCfunc(Parameters *args, Type *treturn, const char *name) { return genCfunc(args, treturn, Lexer::idPool(name)); } FuncDeclaration *FuncDeclaration::genCfunc(Parameters *args, Type *treturn, Identifier *id) { FuncDeclaration *fd; TypeFunction *tf; Dsymbol *s; static DsymbolTable *st = NULL; //printf("genCfunc(name = '%s')\n", id->toChars()); //printf("treturn\n\t"); treturn->print(); // See if already in table if (!st) st = new DsymbolTable(); s = st->lookup(id); if (s) { fd = s->isFuncDeclaration(); assert(fd); assert(fd->type->nextOf()->equals(treturn)); } else { tf = new TypeFunction(args, treturn, 0, LINKc); fd = new FuncDeclaration(0, 0, id, STCstatic, tf); fd->protection = PROTpublic; fd->linkage = LINKc; st->insert(fd); } return fd; } const char *FuncDeclaration::kind() { return "function"; } void FuncDeclaration::checkNestedReference(Scope *sc, Loc loc) { //printf("FuncDeclaration::checkNestedReference() %s\n", toChars()); if (parent && parent != sc->parent && this->isNested() && this->ident != Id::require && this->ident != Id::ensure) { // The function that this function is in FuncDeclaration *fdv = toParent()->isFuncDeclaration(); // The current function FuncDeclaration *fdthis = sc->parent->isFuncDeclaration(); //printf("this = %s in [%s]\n", this->toChars(), this->loc.toChars()); //printf("fdv = %s in [%s]\n", fdv->toChars(), fdv->loc.toChars()); //printf("fdthis = %s in [%s]\n", fdthis->toChars(), fdthis->loc.toChars()); if (fdv && fdthis && fdv != fdthis) { int lv = fdthis->getLevel(loc, sc, fdv); if (lv == -1) return; // OK if (lv == 0) return; // OK // BUG: may need to walk up outer scopes like Declaration::checkNestedReference() does // function literal has reference to enclosing scope is delegate if (FuncLiteralDeclaration *fld = fdthis->isFuncLiteralDeclaration()) fld->tok = TOKdelegate; } } } /******************************* * Look at all the variables in this function that are referenced * by nested functions, and determine if a closure needs to be * created for them. */ #if DMDV2 int FuncDeclaration::needsClosure() { /* Need a closure for all the closureVars[] if any of the * closureVars[] are accessed by a * function that escapes the scope of this function. * We take the conservative approach and decide that any function that: * 1) is a virtual function * 2) has its address taken * 3) has a parent that escapes * -or- * 4) this function returns a local struct/class * * Note that since a non-virtual function can be called by * a virtual one, if that non-virtual function accesses a closure * var, the closure still has to be taken. Hence, we check for isThis() * instead of isVirtual(). (thanks to David Friedman) */ //printf("FuncDeclaration::needsClosure() %s\n", toChars()); for (int i = 0; i < closureVars.dim; i++) { VarDeclaration *v = closureVars[i]; assert(v->isVarDeclaration()); //printf("\tv = %s\n", v->toChars()); for (int j = 0; j < v->nestedrefs.dim; j++) { FuncDeclaration *f = v->nestedrefs[j]; assert(f != this); //printf("\t\tf = %s, %d, %p, %d\n", f->toChars(), f->isVirtual(), f->isThis(), f->tookAddressOf); if (f->isThis() || f->tookAddressOf) goto Lyes; // assume f escapes this function's scope // Look to see if any parents of f that are below this escape for (Dsymbol *s = f->parent; s && s != this; s = s->parent) { f = s->isFuncDeclaration(); if (f && (f->isThis() || f->tookAddressOf)) goto Lyes; } } } /* Look for case (4) */ if (closureVars.dim) { assert(type->ty == Tfunction); Type *tret = ((TypeFunction *)type)->next; assert(tret); tret = tret->toBasetype(); if (tret->ty == Tclass || tret->ty == Tstruct) { Dsymbol *st = tret->toDsymbol(NULL); for (Dsymbol *s = st->parent; s; s = s->parent) { if (s == this) goto Lyes; } } } return 0; Lyes: //printf("\tneeds closure\n"); return 1; } #endif /*********************************************** * Determine if function's variables are referenced by a function * nested within it. */ int FuncDeclaration::hasNestedFrameRefs() { #if DMDV2 if (closureVars.dim) #else if (nestedFrameRef) #endif return 1; /* If a virtual method has contracts, assume its variables are referenced * by those contracts, even if they aren't. Because they might be referenced * by the overridden or overriding function's contracts. * This can happen because frequire and fensure are implemented as nested functions, * and they can be called directly by an overriding function and the overriding function's * context had better match, or Bugzilla 7337 will bite. */ if ((fdrequire || fdensure) && isVirtualMethod()) return 1; if (foverrides.dim && isVirtualMethod()) { for (size_t i = 0; i < foverrides.dim; i++) { FuncDeclaration *fdv = foverrides[i]; if (fdv->hasNestedFrameRefs()) return 1; } } return 0; } /********************************************* * Return the function's parameter list, and whether * it is variadic or not. */ Parameters *FuncDeclaration::getParameters(int *pvarargs) { Parameters *fparameters; int fvarargs; if (type) { assert(type->ty == Tfunction); TypeFunction *fdtype = (TypeFunction *)type; fparameters = fdtype->parameters; fvarargs = fdtype->varargs; } if (pvarargs) *pvarargs = fvarargs; return fparameters; } /****************************** FuncAliasDeclaration ************************/ // Used as a way to import a set of functions from another scope into this one. FuncAliasDeclaration::FuncAliasDeclaration(FuncDeclaration *funcalias, int hasOverloads) : FuncDeclaration(funcalias->loc, funcalias->endloc, funcalias->ident, funcalias->storage_class, funcalias->type) { assert(funcalias != this); this->funcalias = funcalias; #if IN_LLVM importprot = PROTundefined; #endif this->hasOverloads = hasOverloads; if (hasOverloads) { if (FuncAliasDeclaration *fad = funcalias->isFuncAliasDeclaration()) this->hasOverloads = fad->hasOverloads; } else { // for internal use assert(!funcalias->isFuncAliasDeclaration()); this->hasOverloads = 0; } } const char *FuncAliasDeclaration::kind() { return "function alias"; } FuncDeclaration *FuncAliasDeclaration::toAliasFunc() { return funcalias->toAliasFunc(); } /****************************** FuncLiteralDeclaration ************************/ FuncLiteralDeclaration::FuncLiteralDeclaration(Loc loc, Loc endloc, Type *type, enum TOK tok, ForeachStatement *fes) : FuncDeclaration(loc, endloc, NULL, STCundefined, type) { const char *id; if (fes) id = "__foreachbody"; else if (tok == TOKreserved) id = "__lambda"; else if (tok == TOKdelegate) id = "__dgliteral"; else id = "__funcliteral"; this->ident = Lexer::uniqueId(id); this->tok = tok; this->fes = fes; this->treq = NULL; //printf("FuncLiteralDeclaration() id = '%s', type = '%s'\n", this->ident->toChars(), type->toChars()); } Dsymbol *FuncLiteralDeclaration::syntaxCopy(Dsymbol *s) { FuncLiteralDeclaration *f; //printf("FuncLiteralDeclaration::syntaxCopy('%s')\n", toChars()); if (s) f = (FuncLiteralDeclaration *)s; else { f = new FuncLiteralDeclaration(loc, endloc, type->syntaxCopy(), tok, fes); f->ident = ident; // keep old identifier f->treq = treq; // don't need to copy } FuncDeclaration::syntaxCopy(f); return f; } int FuncLiteralDeclaration::isNested() { //printf("FuncLiteralDeclaration::isNested() '%s'\n", toChars()); return (tok != TOKfunction); } int FuncLiteralDeclaration::isVirtual() { return FALSE; } const char *FuncLiteralDeclaration::kind() { // GCC requires the (char*) casts return (tok != TOKfunction) ? (char*)"delegate" : (char*)"function"; } void FuncLiteralDeclaration::toCBuffer(OutBuffer *buf, HdrGenState *hgs) { buf->writestring(kind()); buf->writeByte(' '); type->toCBuffer(buf, NULL, hgs); bodyToCBuffer(buf, hgs); } /********************************* CtorDeclaration ****************************/ CtorDeclaration::CtorDeclaration(Loc loc, Loc endloc, StorageClass stc, Type *type) : FuncDeclaration(loc, endloc, Id::ctor, stc, type) { //printf("CtorDeclaration(loc = %s) %s\n", loc.toChars(), toChars()); } Dsymbol *CtorDeclaration::syntaxCopy(Dsymbol *s) { CtorDeclaration *f = new CtorDeclaration(loc, endloc, storage_class, type->syntaxCopy()); f->outId = outId; f->frequire = frequire ? frequire->syntaxCopy() : NULL; f->fensure = fensure ? fensure->syntaxCopy() : NULL; f->fbody = fbody ? fbody->syntaxCopy() : NULL; assert(!fthrows); // deprecated return f; } void CtorDeclaration::semantic(Scope *sc) { //printf("CtorDeclaration::semantic() %s\n", toChars()); TypeFunction *tf = (TypeFunction *)type; assert(tf && tf->ty == Tfunction); if (scope) { sc = scope; scope = NULL; } sc = sc->push(); sc->stc &= ~STCstatic; // not a static constructor sc->flags |= SCOPEctor; parent = sc->parent; Dsymbol *parent = toParent2(); Type *tret; AggregateDeclaration *ad = parent->isAggregateDeclaration(); if (!ad || parent->isUnionDeclaration()) { error("constructors are only for class or struct definitions"); fatal(); tret = Type::tvoid; } else { tret = ad->handle; assert(tret); tret = tret->addStorageClass(storage_class | sc->stc); tret = tret->addMod(type->mod); } tf->next = tret; type = type->semantic(loc, sc); #if STRUCTTHISREF if (ad && ad->isStructDeclaration()) { if (!originalType) originalType = type->syntaxCopy(); ((TypeFunction *)type)->isref = 1; } #endif if (!originalType) originalType = type; // Append: // return this; // to the function body if (fbody && semanticRun < PASSsemantic) { ThisExp *e = new ThisExp(loc); if (parent->isClassDeclaration()) e->type = tret; Statement *s = new ReturnStatement(loc, e); fbody = new CompoundStatement(loc, fbody, s); } FuncDeclaration::semantic(sc); sc->pop(); // See if it's the default constructor if (ad && tf->varargs == 0 && Parameter::dim(tf->parameters) == 0) { StructDeclaration *sd = ad->isStructDeclaration(); if (sd) { if (fbody || !(storage_class & STCdisable)) { error("default constructor for structs only allowed with @disable and no body"); storage_class |= STCdisable; fbody = NULL; } sd->noDefaultCtor = TRUE; } else ad->defaultCtor = this; } } const char *CtorDeclaration::kind() { return "constructor"; } char *CtorDeclaration::toChars() { return (char *)"this"; } int CtorDeclaration::isVirtual() { return FALSE; } int CtorDeclaration::addPreInvariant() { return FALSE; } int CtorDeclaration::addPostInvariant() { return (isThis() && vthis && global.params.useInvariants); } /********************************* PostBlitDeclaration ****************************/ #if DMDV2 PostBlitDeclaration::PostBlitDeclaration(Loc loc, Loc endloc, StorageClass stc) : FuncDeclaration(loc, endloc, Id::_postblit, stc, NULL) { } PostBlitDeclaration::PostBlitDeclaration(Loc loc, Loc endloc, Identifier *id) : FuncDeclaration(loc, endloc, id, STCundefined, NULL) { } Dsymbol *PostBlitDeclaration::syntaxCopy(Dsymbol *s) { assert(!s); PostBlitDeclaration *dd = new PostBlitDeclaration(loc, endloc, ident); return FuncDeclaration::syntaxCopy(dd); } void PostBlitDeclaration::semantic(Scope *sc) { //printf("PostBlitDeclaration::semantic() %s\n", toChars()); //printf("ident: %s, %s, %p, %p\n", ident->toChars(), Id::dtor->toChars(), ident, Id::dtor); //printf("stc = x%llx\n", sc->stc); if (scope) { sc = scope; scope = NULL; } parent = sc->parent; Dsymbol *parent = toParent(); StructDeclaration *ad = parent->isStructDeclaration(); if (!ad) { error("post blits are only for struct/union definitions, not %s %s", parent->kind(), parent->toChars()); } else if (ident == Id::_postblit && semanticRun < PASSsemantic) ad->postblits.push(this); if (!type) type = new TypeFunction(NULL, Type::tvoid, FALSE, LINKd, storage_class); sc = sc->push(); sc->stc &= ~STCstatic; // not static sc->linkage = LINKd; FuncDeclaration::semantic(sc); sc->pop(); } int PostBlitDeclaration::overloadInsert(Dsymbol *s) { return FALSE; // cannot overload postblits } int PostBlitDeclaration::addPreInvariant() { return FALSE; } int PostBlitDeclaration::addPostInvariant() { return (isThis() && vthis && global.params.useInvariants); } int PostBlitDeclaration::isVirtual() { return FALSE; } void PostBlitDeclaration::toCBuffer(OutBuffer *buf, HdrGenState *hgs) { buf->writestring("this(this)"); bodyToCBuffer(buf, hgs); } #endif /********************************* DtorDeclaration ****************************/ DtorDeclaration::DtorDeclaration(Loc loc, Loc endloc) : FuncDeclaration(loc, endloc, Id::dtor, STCundefined, NULL) { } DtorDeclaration::DtorDeclaration(Loc loc, Loc endloc, Identifier *id) : FuncDeclaration(loc, endloc, id, STCundefined, NULL) { } Dsymbol *DtorDeclaration::syntaxCopy(Dsymbol *s) { assert(!s); DtorDeclaration *dd = new DtorDeclaration(loc, endloc, ident); return FuncDeclaration::syntaxCopy(dd); } void DtorDeclaration::semantic(Scope *sc) { //printf("DtorDeclaration::semantic() %s\n", toChars()); //printf("ident: %s, %s, %p, %p\n", ident->toChars(), Id::dtor->toChars(), ident, Id::dtor); if (scope) { sc = scope; scope = NULL; } parent = sc->parent; Dsymbol *parent = toParent(); AggregateDeclaration *ad = parent->isAggregateDeclaration(); if (!ad) { error("destructors are only for class/struct/union definitions, not %s %s", parent->kind(), parent->toChars()); fatal(); } else if (ident == Id::dtor && semanticRun < PASSsemantic) ad->dtors.push(this); if (!type) type = new TypeFunction(NULL, Type::tvoid, FALSE, LINKd); sc = sc->push(); sc->stc &= ~STCstatic; // not a static destructor sc->linkage = LINKd; FuncDeclaration::semantic(sc); sc->pop(); } int DtorDeclaration::overloadInsert(Dsymbol *s) { return FALSE; // cannot overload destructors } int DtorDeclaration::addPreInvariant() { return (isThis() && vthis && global.params.useInvariants); } int DtorDeclaration::addPostInvariant() { return FALSE; } const char *DtorDeclaration::kind() { return "destructor"; } char *DtorDeclaration::toChars() { return (char *)"~this"; } int DtorDeclaration::isVirtual() { // FALSE so that dtor's don't get put into the vtbl[] return FALSE; } void DtorDeclaration::toCBuffer(OutBuffer *buf, HdrGenState *hgs) { buf->writestring("~this()"); bodyToCBuffer(buf, hgs); } /********************************* StaticCtorDeclaration ****************************/ StaticCtorDeclaration::StaticCtorDeclaration(Loc loc, Loc endloc) : FuncDeclaration(loc, endloc, Identifier::generateId("_staticCtor"), STCstatic, NULL) { } StaticCtorDeclaration::StaticCtorDeclaration(Loc loc, Loc endloc, const char *name) : FuncDeclaration(loc, endloc, Identifier::generateId(name), STCstatic, NULL) { } Dsymbol *StaticCtorDeclaration::syntaxCopy(Dsymbol *s) { assert(!s); StaticCtorDeclaration *scd = new StaticCtorDeclaration(loc, endloc); return FuncDeclaration::syntaxCopy(scd); } void StaticCtorDeclaration::semantic(Scope *sc) { //printf("StaticCtorDeclaration::semantic()\n"); if (scope) { sc = scope; scope = NULL; } if (!type) type = new TypeFunction(NULL, Type::tvoid, FALSE, LINKd); /* If the static ctor appears within a template instantiation, * it could get called multiple times by the module constructors * for different modules. Thus, protect it with a gate. */ if (inTemplateInstance() && semanticRun < PASSsemantic) { /* Add this prefix to the function: * static int gate; * if (++gate != 1) return; * Note that this is not thread safe; should not have threads * during static construction. */ Identifier *id = Lexer::idPool("__gate"); VarDeclaration *v = new VarDeclaration(0, Type::tint32, id, NULL); v->storage_class = isSharedStaticCtorDeclaration() ? STCstatic : STCtls; Statements *sa = new Statements(); Statement *s = new ExpStatement(0, v); sa->push(s); Expression *e = new IdentifierExp(0, id); e = new AddAssignExp(0, e, new IntegerExp(1)); e = new EqualExp(TOKnotequal, 0, e, new IntegerExp(1)); s = new IfStatement(0, NULL, e, new ReturnStatement(0, NULL), NULL); sa->push(s); if (fbody) sa->push(fbody); fbody = new CompoundStatement(0, sa); } FuncDeclaration::semantic(sc); // We're going to need ModuleInfo Module *m = getModule(); if (!m) m = sc->module; if (m) { m->needmoduleinfo = 1; //printf("module1 %s needs moduleinfo\n", m->toChars()); #ifdef IN_GCC m->strictlyneedmoduleinfo = 1; #endif } } AggregateDeclaration *StaticCtorDeclaration::isThis() { return NULL; } int StaticCtorDeclaration::isVirtual() { return FALSE; } bool StaticCtorDeclaration::hasStaticCtorOrDtor() { return TRUE; } int StaticCtorDeclaration::addPreInvariant() { return FALSE; } int StaticCtorDeclaration::addPostInvariant() { return FALSE; } void StaticCtorDeclaration::toCBuffer(OutBuffer *buf, HdrGenState *hgs) { if (hgs->hdrgen && !hgs->tpltMember) { buf->writestring("static this();"); buf->writenl(); return; } buf->writestring("static this()"); bodyToCBuffer(buf, hgs); } /********************************* SharedStaticCtorDeclaration ****************************/ SharedStaticCtorDeclaration::SharedStaticCtorDeclaration(Loc loc, Loc endloc) : StaticCtorDeclaration(loc, endloc, "_sharedStaticCtor") { } Dsymbol *SharedStaticCtorDeclaration::syntaxCopy(Dsymbol *s) { assert(!s); SharedStaticCtorDeclaration *scd = new SharedStaticCtorDeclaration(loc, endloc); return FuncDeclaration::syntaxCopy(scd); } void SharedStaticCtorDeclaration::toCBuffer(OutBuffer *buf, HdrGenState *hgs) { buf->writestring("shared "); StaticCtorDeclaration::toCBuffer(buf, hgs); } /********************************* StaticDtorDeclaration ****************************/ StaticDtorDeclaration::StaticDtorDeclaration(Loc loc, Loc endloc) : FuncDeclaration(loc, endloc, Identifier::generateId("_staticDtor"), STCstatic, NULL) { vgate = NULL; } StaticDtorDeclaration::StaticDtorDeclaration(Loc loc, Loc endloc, const char *name) : FuncDeclaration(loc, endloc, Identifier::generateId(name), STCstatic, NULL) { vgate = NULL; } Dsymbol *StaticDtorDeclaration::syntaxCopy(Dsymbol *s) { assert(!s); StaticDtorDeclaration *sdd = new StaticDtorDeclaration(loc, endloc); return FuncDeclaration::syntaxCopy(sdd); } void StaticDtorDeclaration::semantic(Scope *sc) { if (scope) { sc = scope; scope = NULL; } ClassDeclaration *cd = sc->scopesym->isClassDeclaration(); if (!type) type = new TypeFunction(NULL, Type::tvoid, FALSE, LINKd); /* If the static ctor appears within a template instantiation, * it could get called multiple times by the module constructors * for different modules. Thus, protect it with a gate. */ if (inTemplateInstance() && semanticRun < PASSsemantic) { /* Add this prefix to the function: * static int gate; * if (--gate != 0) return; * Increment gate during constructor execution. * Note that this is not thread safe; should not have threads * during static destruction. */ Identifier *id = Lexer::idPool("__gate"); VarDeclaration *v = new VarDeclaration(0, Type::tint32, id, NULL); v->storage_class = isSharedStaticDtorDeclaration() ? STCstatic : STCtls; Statements *sa = new Statements(); Statement *s = new ExpStatement(0, v); sa->push(s); Expression *e = new IdentifierExp(0, id); e = new AddAssignExp(0, e, new IntegerExp((uint64_t)-1)); e = new EqualExp(TOKnotequal, 0, e, new IntegerExp(0)); s = new IfStatement(0, NULL, e, new ReturnStatement(0, NULL), NULL); sa->push(s); if (fbody) sa->push(fbody); fbody = new CompoundStatement(0, sa); vgate = v; } FuncDeclaration::semantic(sc); // We're going to need ModuleInfo Module *m = getModule(); if (!m) m = sc->module; if (m) { m->needmoduleinfo = 1; //printf("module2 %s needs moduleinfo\n", m->toChars()); #ifdef IN_GCC m->strictlyneedmoduleinfo = 1; #endif } } AggregateDeclaration *StaticDtorDeclaration::isThis() { return NULL; } int StaticDtorDeclaration::isVirtual() { return FALSE; } bool StaticDtorDeclaration::hasStaticCtorOrDtor() { return TRUE; } int StaticDtorDeclaration::addPreInvariant() { return FALSE; } int StaticDtorDeclaration::addPostInvariant() { return FALSE; } void StaticDtorDeclaration::toCBuffer(OutBuffer *buf, HdrGenState *hgs) { if (hgs->hdrgen) return; buf->writestring("static ~this()"); bodyToCBuffer(buf, hgs); } /********************************* SharedStaticDtorDeclaration ****************************/ SharedStaticDtorDeclaration::SharedStaticDtorDeclaration(Loc loc, Loc endloc) : StaticDtorDeclaration(loc, endloc, "_sharedStaticDtor") { } Dsymbol *SharedStaticDtorDeclaration::syntaxCopy(Dsymbol *s) { assert(!s); SharedStaticDtorDeclaration *sdd = new SharedStaticDtorDeclaration(loc, endloc); return FuncDeclaration::syntaxCopy(sdd); } void SharedStaticDtorDeclaration::toCBuffer(OutBuffer *buf, HdrGenState *hgs) { if (!hgs->hdrgen) { buf->writestring("shared "); StaticDtorDeclaration::toCBuffer(buf, hgs); } } /********************************* InvariantDeclaration ****************************/ InvariantDeclaration::InvariantDeclaration(Loc loc, Loc endloc) : FuncDeclaration(loc, endloc, Id::classInvariant, STCundefined, NULL) { } Dsymbol *InvariantDeclaration::syntaxCopy(Dsymbol *s) { InvariantDeclaration *id; assert(!s); id = new InvariantDeclaration(loc, endloc); FuncDeclaration::syntaxCopy(id); return id; } void InvariantDeclaration::semantic(Scope *sc) { if (scope) { sc = scope; scope = NULL; } parent = sc->parent; Dsymbol *parent = toParent(); AggregateDeclaration *ad = parent->isAggregateDeclaration(); if (!ad) { error("invariants are only for struct/union/class definitions"); return; } else if (ad->inv && ad->inv != this && semanticRun < PASSsemantic) { error("more than one invariant for %s", ad->toChars()); } ad->inv = this; if (!type) type = new TypeFunction(NULL, Type::tvoid, FALSE, LINKd); sc = sc->push(); sc->stc &= ~STCstatic; // not a static invariant sc->stc |= STCconst; // invariant() is always const sc->incontract++; sc->linkage = LINKd; FuncDeclaration::semantic(sc); sc->pop(); } int InvariantDeclaration::isVirtual() { return FALSE; } int InvariantDeclaration::addPreInvariant() { return FALSE; } int InvariantDeclaration::addPostInvariant() { return FALSE; } void InvariantDeclaration::toCBuffer(OutBuffer *buf, HdrGenState *hgs) { if (hgs->hdrgen) return; buf->writestring("invariant"); bodyToCBuffer(buf, hgs); } /********************************* UnitTestDeclaration ****************************/ /******************************* * Generate unique unittest function Id so we can have multiple * instances per module. */ static Identifier *unitTestId() { return Lexer::uniqueId("__unittest"); } UnitTestDeclaration::UnitTestDeclaration(Loc loc, Loc endloc) : FuncDeclaration(loc, endloc, unitTestId(), STCundefined, NULL) { } Dsymbol *UnitTestDeclaration::syntaxCopy(Dsymbol *s) { UnitTestDeclaration *utd; assert(!s); utd = new UnitTestDeclaration(loc, endloc); return FuncDeclaration::syntaxCopy(utd); } void UnitTestDeclaration::semantic(Scope *sc) { if (scope) { sc = scope; scope = NULL; } #if IN_LLVM if (global.params.useUnitTests && sc->module->isRoot) #else if (global.params.useUnitTests) #endif { if (!type) type = new TypeFunction(NULL, Type::tvoid, FALSE, LINKd); Scope *sc2 = sc->push(); // It makes no sense for unit tests to be pure or nothrow. sc2->stc &= ~(STCnothrow | STCpure); sc2->linkage = LINKd; FuncDeclaration::semantic(sc2); sc2->pop(); } #if 0 // We're going to need ModuleInfo even if the unit tests are not // compiled in, because other modules may import this module and refer // to this ModuleInfo. // (This doesn't make sense to me?) Module *m = getModule(); if (!m) m = sc->module; if (m) { //printf("module3 %s needs moduleinfo\n", m->toChars()); m->needmoduleinfo = 1; } #endif } AggregateDeclaration *UnitTestDeclaration::isThis() { return NULL; } int UnitTestDeclaration::isVirtual() { return FALSE; } int UnitTestDeclaration::addPreInvariant() { return FALSE; } int UnitTestDeclaration::addPostInvariant() { return FALSE; } void UnitTestDeclaration::toCBuffer(OutBuffer *buf, HdrGenState *hgs) { if (hgs->hdrgen) return; buf->writestring("unittest"); bodyToCBuffer(buf, hgs); } /********************************* NewDeclaration ****************************/ NewDeclaration::NewDeclaration(Loc loc, Loc endloc, Parameters *arguments, int varargs) : FuncDeclaration(loc, endloc, Id::classNew, STCstatic, NULL) { this->arguments = arguments; this->varargs = varargs; } Dsymbol *NewDeclaration::syntaxCopy(Dsymbol *s) { NewDeclaration *f; f = new NewDeclaration(loc, endloc, NULL, varargs); FuncDeclaration::syntaxCopy(f); f->arguments = Parameter::arraySyntaxCopy(arguments); return f; } void NewDeclaration::semantic(Scope *sc) { //printf("NewDeclaration::semantic()\n"); if (scope) { sc = scope; scope = NULL; } parent = sc->parent; Dsymbol *parent = toParent(); ClassDeclaration *cd = parent->isClassDeclaration(); if (!cd && !parent->isStructDeclaration()) { error("new allocators only are for class or struct definitions"); } Type *tret = Type::tvoid->pointerTo(); if (!type) type = new TypeFunction(arguments, tret, varargs, LINKd); type = type->semantic(loc, sc); assert(type->ty == Tfunction); // Check that there is at least one argument of type size_t TypeFunction *tf = (TypeFunction *)type; if (Parameter::dim(tf->parameters) < 1) { error("at least one argument of type size_t expected"); } else { Parameter *a = Parameter::getNth(tf->parameters, 0); if (!a->type->equals(Type::tsize_t)) error("first argument must be type size_t, not %s", a->type->toChars()); } FuncDeclaration::semantic(sc); } const char *NewDeclaration::kind() { return "allocator"; } int NewDeclaration::isVirtual() { return FALSE; } int NewDeclaration::addPreInvariant() { return FALSE; } int NewDeclaration::addPostInvariant() { return FALSE; } void NewDeclaration::toCBuffer(OutBuffer *buf, HdrGenState *hgs) { buf->writestring("new"); Parameter::argsToCBuffer(buf, hgs, arguments, varargs); bodyToCBuffer(buf, hgs); } /********************************* DeleteDeclaration ****************************/ DeleteDeclaration::DeleteDeclaration(Loc loc, Loc endloc, Parameters *arguments) : FuncDeclaration(loc, endloc, Id::classDelete, STCstatic, NULL) { this->arguments = arguments; } Dsymbol *DeleteDeclaration::syntaxCopy(Dsymbol *s) { DeleteDeclaration *f; f = new DeleteDeclaration(loc, endloc, NULL); FuncDeclaration::syntaxCopy(f); f->arguments = Parameter::arraySyntaxCopy(arguments); return f; } void DeleteDeclaration::semantic(Scope *sc) { //printf("DeleteDeclaration::semantic()\n"); if (scope) { sc = scope; scope = NULL; } parent = sc->parent; Dsymbol *parent = toParent(); ClassDeclaration *cd = parent->isClassDeclaration(); if (!cd && !parent->isStructDeclaration()) { error("new allocators only are for class or struct definitions"); } if (!type) type = new TypeFunction(arguments, Type::tvoid, 0, LINKd); type = type->semantic(loc, sc); assert(type->ty == Tfunction); // Check that there is only one argument of type void* TypeFunction *tf = (TypeFunction *)type; if (Parameter::dim(tf->parameters) != 1) { error("one argument of type void* expected"); } else { Parameter *a = Parameter::getNth(tf->parameters, 0); if (!a->type->equals(Type::tvoid->pointerTo())) error("one argument of type void* expected, not %s", a->type->toChars()); } FuncDeclaration::semantic(sc); } const char *DeleteDeclaration::kind() { return "deallocator"; } int DeleteDeclaration::isDelete() { return TRUE; } int DeleteDeclaration::isVirtual() { return FALSE; } int DeleteDeclaration::addPreInvariant() { return FALSE; } int DeleteDeclaration::addPostInvariant() { return FALSE; } void DeleteDeclaration::toCBuffer(OutBuffer *buf, HdrGenState *hgs) { buf->writestring("delete"); Parameter::argsToCBuffer(buf, hgs, arguments, 0); bodyToCBuffer(buf, hgs); }