Files
ldc/dmd2/argtypes.c
2013-01-04 06:22:53 +01:00

444 lines
10 KiB
C

// Compiler implementation of the D programming language
// Copyright (c) 2010-2012 by Digital Mars
// All Rights Reserved
// written by Walter Bright
// http://www.digitalmars.com
// http://www.dsource.org/projects/dmd/browser/branches/dmd-1.x/src/argtypes.c
// License for redistribution is by either the Artistic License
// in artistic.txt, or the GNU General Public License in gnu.txt.
// See the included readme.txt for details.
#include <stdio.h>
#include <assert.h>
#include "mars.h"
#include "dsymbol.h"
#include "mtype.h"
#include "scope.h"
#include "init.h"
#include "expression.h"
#include "attrib.h"
#include "declaration.h"
#include "template.h"
#include "id.h"
#include "enum.h"
#include "import.h"
#include "aggregate.h"
#include "hdrgen.h"
#define tfloat2 tfloat64
//#define tfloat2 tcomplex32
/****************************************************
* This breaks a type down into 'simpler' types that can be passed to a function
* in registers, and returned in registers.
* It's highly platform dependent.
* Returning a tuple of zero length means the type cannot be passed/returned in registers.
*/
TypeTuple *Type::toArgTypes()
{
return NULL; // not valid for a parameter
}
TypeTuple *TypeError::toArgTypes()
{
return new TypeTuple(Type::terror);
}
TypeTuple *TypeBasic::toArgTypes()
{ Type *t1 = NULL;
Type *t2 = NULL;
switch (ty)
{
case Tvoid:
return NULL;
case Tbool:
case Tint8:
case Tuns8:
case Tint16:
case Tuns16:
case Tint32:
case Tuns32:
case Tfloat32:
case Tint64:
case Tuns64:
case Tfloat64:
case Tfloat80:
t1 = this;
break;
case Timaginary32:
t1 = Type::tfloat32;
break;
case Timaginary64:
t1 = Type::tfloat64;
break;
case Timaginary80:
t1 = Type::tfloat80;
break;
case Tcomplex32:
if (global.params.is64bit)
t1 = Type::tfloat2;
else
{
t1 = Type::tfloat64;
t2 = Type::tfloat64;
}
break;
case Tcomplex64:
t1 = Type::tfloat64;
t2 = Type::tfloat64;
break;
case Tcomplex80:
t1 = Type::tfloat80;
t2 = Type::tfloat80;
break;
case Tascii:
t1 = Type::tuns8;
break;
case Twchar:
t1 = Type::tuns16;
break;
case Tdchar:
t1 = Type::tuns32;
break;
default: assert(0);
}
TypeTuple *t;
if (t1)
{
if (t2)
t = new TypeTuple(t1, t2);
else
t = new TypeTuple(t1);
}
else
t = new TypeTuple();
return t;
}
#if DMDV2
TypeTuple *TypeVector::toArgTypes()
{
return new TypeTuple(this);
}
#endif
TypeTuple *TypeSArray::toArgTypes()
{
#if DMDV2
if (dim)
{
/* Should really be done as if it were a struct with dim members
* of the array's elements.
* I.e. int[2] should be done like struct S { int a; int b; }
*/
dinteger_t sz = dim->toInteger();
if (sz == 1)
// T[1] should be passed like T
return next->toArgTypes();
}
return new TypeTuple(); // pass on the stack for efficiency
#else
return new TypeTuple(); // pass on the stack for efficiency
#endif
}
TypeTuple *TypeDArray::toArgTypes()
{
/* Should be done as if it were:
* struct S { size_t length; void* ptr; }
*/
return new TypeTuple(Type::tsize_t, Type::tvoidptr);
}
TypeTuple *TypeAArray::toArgTypes()
{
return new TypeTuple(Type::tvoidptr);
}
TypeTuple *TypePointer::toArgTypes()
{
return new TypeTuple(Type::tvoidptr);
}
TypeTuple *TypeDelegate::toArgTypes()
{
/* Should be done as if it were:
* struct S { void* ptr; void* funcptr; }
*/
return new TypeTuple(Type::tvoidptr, Type::tvoidptr);
}
/*************************************
* Convert a floating point type into the equivalent integral type.
*/
Type *mergeFloatToInt(Type *t)
{
switch (t->ty)
{
case Tfloat32:
case Timaginary32:
t = Type::tint32;
break;
case Tfloat64:
case Timaginary64:
case Tcomplex32:
t = Type::tint64;
break;
default:
#ifdef DEBUG
printf("mergeFloatToInt() %s\n", t->toChars());
#endif
assert(0);
}
return t;
}
/*************************************
* This merges two types into an 8byte type.
*/
Type *argtypemerge(Type *t1, Type *t2, unsigned offset2)
{
//printf("argtypemerge(%s, %s, %d)\n", t1 ? t1->toChars() : "", t2 ? t2->toChars() : "", offset2);
if (!t1)
{ assert(!t2 || offset2 == 0);
return t2;
}
if (!t2)
return t1;
unsigned sz1 = t1->size(0);
unsigned sz2 = t2->size(0);
if (t1->ty != t2->ty &&
(t1->ty == Tfloat80 || t2->ty == Tfloat80))
return NULL;
// [float,float] => [cfloat]
if (t1->ty == Tfloat32 && t2->ty == Tfloat32 && offset2 == 4)
return Type::tfloat2;
// Merging floating and non-floating types produces the non-floating type
if (t1->isfloating())
{
if (!t2->isfloating())
t1 = mergeFloatToInt(t1);
}
else if (t2->isfloating())
t2 = mergeFloatToInt(t2);
Type *t;
// Pick type with larger size
if (sz1 < sz2)
t = t2;
else
t = t1;
// If t2 does not lie within t1, need to increase the size of t to enclose both
if (offset2 && sz1 < offset2 + sz2)
{
switch (offset2 + sz2)
{
case 2:
t = Type::tint16;
break;
case 3:
case 4:
t = Type::tint32;
break;
case 5:
case 6:
case 7:
case 8:
t = Type::tint64;
break;
default:
assert(0);
}
}
return t;
}
TypeTuple *TypeStruct::toArgTypes()
{
//printf("TypeStruct::toArgTypes() %s\n", toChars());
if (!sym->isPOD())
{
Lmemory:
//printf("\ttoArgTypes() %s => [ ]\n", toChars());
return new TypeTuple(); // pass on the stack
}
Type *t1 = NULL;
Type *t2 = NULL;
d_uns64 sz = size(0);
assert(sz < 0xFFFFFFFF);
switch ((unsigned)sz)
{
case 1:
t1 = Type::tint8;
break;
case 2:
t1 = Type::tint16;
break;
case 4:
t1 = Type::tint32;
break;
case 8:
t1 = Type::tint64;
break;
case 16:
t1 = NULL; // could be a TypeVector
break;
default:
goto Lmemory;
}
if (global.params.is64bit && sym->fields.dim)
{
#if 1
unsigned sz1 = 0;
unsigned sz2 = 0;
t1 = NULL;
for (size_t i = 0; i < sym->fields.dim; i++)
{ VarDeclaration *f = sym->fields[i];
//printf("f->type = %s\n", f->type->toChars());
TypeTuple *tup = f->type->toArgTypes();
if (!tup)
goto Lmemory;
size_t dim = tup->arguments->dim;
Type *ft1 = NULL;
Type *ft2 = NULL;
switch (dim)
{
case 2:
ft1 = (*tup->arguments)[0]->type;
ft2 = (*tup->arguments)[1]->type;
break;
case 1:
if (f->offset < 8)
ft1 = (*tup->arguments)[0]->type;
else
ft2 = (*tup->arguments)[0]->type;
break;
default:
goto Lmemory;
}
if (f->offset & 7)
{
// Misaligned fields goto Lmemory
unsigned alignsz = f->type->alignsize();
if (f->offset & (alignsz - 1))
goto Lmemory;
// Fields that overlap the 8byte boundary goto Lmemory
unsigned fieldsz = f->type->size(0);
if (f->offset < 8 && (f->offset + fieldsz) > 8)
goto Lmemory;
}
// First field in 8byte must be at start of 8byte
assert(t1 || f->offset == 0);
if (ft1)
{
t1 = argtypemerge(t1, ft1, f->offset);
if (!t1)
goto Lmemory;
}
if (ft2)
{
unsigned off2 = f->offset;
if (ft1)
off2 = 8;
if (!t2 && off2 != 8)
goto Lmemory;
assert(t2 || off2 == 8);
t2 = argtypemerge(t2, ft2, off2 - 8);
if (!t2)
goto Lmemory;
}
}
if (t2)
{
if (t1->isfloating() && t2->isfloating())
{
if (t1->ty == Tfloat64 && t2->ty == Tfloat64)
;
else
goto Lmemory;
}
else if (t1->isfloating())
goto Lmemory;
else if (t2->isfloating())
goto Lmemory;
else
;
}
#else
if (sym->fields.dim == 1)
{ VarDeclaration *f = sym->fields[0];
//printf("f->type = %s\n", f->type->toChars());
TypeTuple *tup = f->type->toArgTypes();
if (tup)
{
size_t dim = tup->arguments->dim;
if (dim == 1)
t1 = (*tup->arguments)[0]->type;
}
}
#endif
}
//printf("\ttoArgTypes() %s => [%s,%s]\n", toChars(), t1 ? t1->toChars() : "", t2 ? t2->toChars() : "");
TypeTuple *t;
if (t1)
{
//if (t1) printf("test1: %s => %s\n", toChars(), t1->toChars());
if (t2)
t = new TypeTuple(t1, t2);
else
t = new TypeTuple(t1);
}
else
goto Lmemory;
return t;
}
TypeTuple *TypeEnum::toArgTypes()
{
return toBasetype()->toArgTypes();
}
TypeTuple *TypeTypedef::toArgTypes()
{
return sym->basetype->toArgTypes();
}
TypeTuple *TypeClass::toArgTypes()
{
return new TypeTuple(Type::tvoidptr);
}