Files
ldc/dmd2/attrib.c
kai a7bed6c488 Fix prototypes from DMD2.
The prototypes for obj_includelib and obj_startaddress are DMD-specific.
Update them to match DMD 2.061.
2013-02-28 07:58:28 +01:00

1740 lines
44 KiB
C

// Compiler implementation of the D programming language
// Copyright (c) 1999-2012 by Digital Mars
// All Rights Reserved
// written by Walter Bright
// http://www.digitalmars.com
// License for redistribution is by either the Artistic License
// in artistic.txt, or the GNU General Public License in gnu.txt.
// See the included readme.txt for details.
#include <stdio.h>
#include <stdlib.h>
#include <assert.h>
#include <string.h> // memcpy()
#include "rmem.h"
#include "init.h"
#include "declaration.h"
#include "attrib.h"
#include "cond.h"
#include "scope.h"
#include "id.h"
#include "expression.h"
#include "dsymbol.h"
#include "aggregate.h"
#include "module.h"
#include "parse.h"
#include "template.h"
#if TARGET_NET
#include "frontend.net/pragma.h"
#endif
#if IN_LLVM
#include "../gen/pragma.h"
#endif
#if IN_DMD
extern bool obj_includelib(const char *name);
void obj_startaddress(Symbol *s);
#endif
/********************************* AttribDeclaration ****************************/
AttribDeclaration::AttribDeclaration(Dsymbols *decl)
: Dsymbol()
{
this->decl = decl;
}
Dsymbols *AttribDeclaration::include(Scope *sc, ScopeDsymbol *sd)
{
return decl;
}
int AttribDeclaration::apply(Dsymbol_apply_ft_t fp, void *param)
{
Dsymbols *d = include(scope, NULL);
if (d)
{
for (size_t i = 0; i < d->dim; i++)
{ Dsymbol *s = (*d)[i];
if (s)
{
if (s->apply(fp, param))
return 1;
}
}
}
return 0;
}
int AttribDeclaration::addMember(Scope *sc, ScopeDsymbol *sd, int memnum)
{
int m = 0;
Dsymbols *d = include(sc, sd);
if (d)
{
for (size_t i = 0; i < d->dim; i++)
{ Dsymbol *s = (*d)[i];
//printf("\taddMember %s to %s\n", s->toChars(), sd->toChars());
m |= s->addMember(sc, sd, m | memnum);
}
}
return m;
}
void AttribDeclaration::setScopeNewSc(Scope *sc,
StorageClass stc, enum LINK linkage, enum PROT protection, int explicitProtection,
structalign_t structalign)
{
if (decl)
{
Scope *newsc = sc;
if (stc != sc->stc ||
linkage != sc->linkage ||
protection != sc->protection ||
explicitProtection != sc->explicitProtection ||
structalign != sc->structalign)
{
// create new one for changes
newsc = new Scope(*sc);
newsc->flags &= ~SCOPEfree;
newsc->stc = stc;
newsc->linkage = linkage;
newsc->protection = protection;
newsc->explicitProtection = explicitProtection;
newsc->structalign = structalign;
}
for (size_t i = 0; i < decl->dim; i++)
{ Dsymbol *s = (*decl)[i];
s->setScope(newsc); // yes, the only difference from semanticNewSc()
}
if (newsc != sc)
{
sc->offset = newsc->offset;
newsc->pop();
}
}
}
void AttribDeclaration::semanticNewSc(Scope *sc,
StorageClass stc, enum LINK linkage, enum PROT protection, int explicitProtection,
structalign_t structalign)
{
if (decl)
{
Scope *newsc = sc;
if (stc != sc->stc ||
linkage != sc->linkage ||
protection != sc->protection ||
explicitProtection != sc->explicitProtection ||
structalign != sc->structalign)
{
// create new one for changes
newsc = new Scope(*sc);
newsc->flags &= ~SCOPEfree;
newsc->stc = stc;
newsc->linkage = linkage;
newsc->protection = protection;
newsc->explicitProtection = explicitProtection;
newsc->structalign = structalign;
}
for (size_t i = 0; i < decl->dim; i++)
{ Dsymbol *s = (*decl)[i];
s->semantic(newsc);
}
if (newsc != sc)
{
sc->offset = newsc->offset;
newsc->pop();
}
}
}
void AttribDeclaration::semantic(Scope *sc)
{
Dsymbols *d = include(sc, NULL);
//printf("\tAttribDeclaration::semantic '%s', d = %p\n",toChars(), d);
if (d)
{
for (size_t i = 0; i < d->dim; i++)
{
Dsymbol *s = (*d)[i];
s->semantic(sc);
}
}
}
void AttribDeclaration::semantic2(Scope *sc)
{
Dsymbols *d = include(sc, NULL);
if (d)
{
for (size_t i = 0; i < d->dim; i++)
{ Dsymbol *s = (*d)[i];
s->semantic2(sc);
}
}
}
void AttribDeclaration::semantic3(Scope *sc)
{
Dsymbols *d = include(sc, NULL);
if (d)
{
for (size_t i = 0; i < d->dim; i++)
{ Dsymbol *s = (*d)[i];
s->semantic3(sc);
}
}
}
void AttribDeclaration::inlineScan()
{
Dsymbols *d = include(NULL, NULL);
if (d)
{
for (size_t i = 0; i < d->dim; i++)
{ Dsymbol *s = (*d)[i];
//printf("AttribDeclaration::inlineScan %s\n", s->toChars());
s->inlineScan();
}
}
}
void AttribDeclaration::addComment(unsigned char *comment)
{
//printf("AttribDeclaration::addComment %s\n", comment);
if (comment)
{
Dsymbols *d = include(NULL, NULL);
if (d)
{
for (size_t i = 0; i < d->dim; i++)
{ Dsymbol *s = (*d)[i];
//printf("AttribDeclaration::addComment %s\n", s->toChars());
s->addComment(comment);
}
}
}
}
void AttribDeclaration::emitComment(Scope *sc)
{
//printf("AttribDeclaration::emitComment(sc = %p)\n", sc);
/* A general problem with this, illustrated by BUGZILLA 2516,
* is that attributes are not transmitted through to the underlying
* member declarations for template bodies, because semantic analysis
* is not done for template declaration bodies
* (only template instantiations).
* Hence, Ddoc omits attributes from template members.
*/
Dsymbols *d = include(NULL, NULL);
if (d)
{
for (size_t i = 0; i < d->dim; i++)
{ Dsymbol *s = (*d)[i];
//printf("AttribDeclaration::emitComment %s\n", s->toChars());
s->emitComment(sc);
}
}
}
#if IN_DMD
void AttribDeclaration::toObjFile(int multiobj)
{
Dsymbols *d = include(NULL, NULL);
if (d)
{
for (size_t i = 0; i < d->dim; i++)
{ Dsymbol *s = (*d)[i];
s->toObjFile(multiobj);
}
}
}
#endif
void AttribDeclaration::setFieldOffset(AggregateDeclaration *ad, unsigned *poffset, bool isunion)
{
Dsymbols *d = include(NULL, NULL);
if (d)
{
for (size_t i = 0; i < d->dim; i++)
{ Dsymbol *s = (*d)[i];
s->setFieldOffset(ad, poffset, isunion);
}
}
}
int AttribDeclaration::hasPointers()
{
Dsymbols *d = include(NULL, NULL);
if (d)
{
for (size_t i = 0; i < d->dim; i++)
{
Dsymbol *s = (*d)[i];
if (s->hasPointers())
return 1;
}
}
return 0;
}
bool AttribDeclaration::hasStaticCtorOrDtor()
{
Dsymbols *d = include(NULL, NULL);
if (d)
{
for (size_t i = 0; i < d->dim; i++)
{
Dsymbol *s = (*d)[i];
if (s->hasStaticCtorOrDtor())
return TRUE;
}
}
return FALSE;
}
const char *AttribDeclaration::kind()
{
return "attribute";
}
int AttribDeclaration::oneMember(Dsymbol **ps, Identifier *ident)
{
Dsymbols *d = include(NULL, NULL);
return Dsymbol::oneMembers(d, ps, ident);
}
void AttribDeclaration::checkCtorConstInit()
{
Dsymbols *d = include(NULL, NULL);
if (d)
{
for (size_t i = 0; i < d->dim; i++)
{ Dsymbol *s = (*d)[i];
s->checkCtorConstInit();
}
}
}
/****************************************
*/
void AttribDeclaration::addLocalClass(ClassDeclarations *aclasses)
{
Dsymbols *d = include(NULL, NULL);
if (d)
{
for (size_t i = 0; i < d->dim; i++)
{ Dsymbol *s = (*d)[i];
s->addLocalClass(aclasses);
}
}
}
void AttribDeclaration::toCBuffer(OutBuffer *buf, HdrGenState *hgs)
{
if (decl)
{
if (decl->dim == 0)
buf->writestring("{}");
else if (decl->dim == 1)
((*decl)[0])->toCBuffer(buf, hgs);
else
{
buf->writenl();
buf->writeByte('{');
buf->writenl();
buf->level++;
for (size_t i = 0; i < decl->dim; i++)
{
Dsymbol *s = (*decl)[i];
s->toCBuffer(buf, hgs);
}
buf->level--;
buf->writeByte('}');
}
}
else
buf->writeByte(';');
buf->writenl();
}
/************************* StorageClassDeclaration ****************************/
StorageClassDeclaration::StorageClassDeclaration(StorageClass stc, Dsymbols *decl)
: AttribDeclaration(decl)
{
this->stc = stc;
}
Dsymbol *StorageClassDeclaration::syntaxCopy(Dsymbol *s)
{
StorageClassDeclaration *scd;
assert(!s);
scd = new StorageClassDeclaration(stc, Dsymbol::arraySyntaxCopy(decl));
return scd;
}
int StorageClassDeclaration::oneMember(Dsymbol **ps, Identifier *ident)
{
int t = Dsymbol::oneMembers(decl, ps, ident);
if (t && *ps)
{
/* This is to deal with the following case:
* struct Tick {
* template to(T) { const T to() { ... } }
* }
* For eponymous function templates, the 'const' needs to get attached to 'to'
* before the semantic analysis of 'to', so that template overloading based on the
* 'this' pointer can be successful.
*/
FuncDeclaration *fd = (*ps)->isFuncDeclaration();
if (fd)
{
/* Use storage_class2 instead of storage_class otherwise when we do .di generation
* we'll wind up with 'const const' rather than 'const'.
*/
/* Don't think we need to worry about mutually exclusive storage classes here
*/
fd->storage_class2 |= stc;
}
}
return t;
}
void StorageClassDeclaration::setScope(Scope *sc)
{
if (decl)
{
StorageClass scstc = sc->stc;
/* These sets of storage classes are mutually exclusive,
* so choose the innermost or most recent one.
*/
if (stc & (STCauto | STCscope | STCstatic | STCextern | STCmanifest))
scstc &= ~(STCauto | STCscope | STCstatic | STCextern | STCmanifest);
if (stc & (STCauto | STCscope | STCstatic | STCtls | STCmanifest | STCgshared))
scstc &= ~(STCauto | STCscope | STCstatic | STCtls | STCmanifest | STCgshared);
if (stc & (STCconst | STCimmutable | STCmanifest))
scstc &= ~(STCconst | STCimmutable | STCmanifest);
if (stc & (STCgshared | STCshared | STCtls))
scstc &= ~(STCgshared | STCshared | STCtls);
if (stc & (STCsafe | STCtrusted | STCsystem))
scstc &= ~(STCsafe | STCtrusted | STCsystem);
scstc |= stc;
//printf("scstc = x%llx\n", scstc);
setScopeNewSc(sc, scstc, sc->linkage, sc->protection, sc->explicitProtection, sc->structalign);
}
}
void StorageClassDeclaration::semantic(Scope *sc)
{
if (decl)
{
StorageClass scstc = sc->stc;
/* These sets of storage classes are mutually exclusive,
* so choose the innermost or most recent one.
*/
if (stc & (STCauto | STCscope | STCstatic | STCextern | STCmanifest))
scstc &= ~(STCauto | STCscope | STCstatic | STCextern | STCmanifest);
if (stc & (STCauto | STCscope | STCstatic | STCtls | STCmanifest | STCgshared))
scstc &= ~(STCauto | STCscope | STCstatic | STCtls | STCmanifest | STCgshared);
if (stc & (STCconst | STCimmutable | STCmanifest))
scstc &= ~(STCconst | STCimmutable | STCmanifest);
if (stc & (STCgshared | STCshared | STCtls))
scstc &= ~(STCgshared | STCshared | STCtls);
if (stc & (STCsafe | STCtrusted | STCsystem))
scstc &= ~(STCsafe | STCtrusted | STCsystem);
scstc |= stc;
semanticNewSc(sc, scstc, sc->linkage, sc->protection, sc->explicitProtection, sc->structalign);
}
}
void StorageClassDeclaration::stcToCBuffer(OutBuffer *buf, StorageClass stc)
{
struct SCstring
{
StorageClass stc;
enum TOK tok;
Identifier *id;
};
static SCstring table[] =
{
{ STCauto, TOKauto },
{ STCscope, TOKscope },
{ STCstatic, TOKstatic },
{ STCextern, TOKextern },
{ STCconst, TOKconst },
{ STCfinal, TOKfinal },
{ STCabstract, TOKabstract },
{ STCsynchronized, TOKsynchronized },
{ STCdeprecated, TOKdeprecated },
{ STCoverride, TOKoverride },
{ STClazy, TOKlazy },
{ STCalias, TOKalias },
{ STCout, TOKout },
{ STCin, TOKin },
#if DMDV2
{ STCmanifest, TOKenum },
{ STCimmutable, TOKimmutable },
{ STCshared, TOKshared },
{ STCnothrow, TOKnothrow },
{ STCpure, TOKpure },
{ STCref, TOKref },
{ STCtls, TOKtls },
{ STCgshared, TOKgshared },
{ STCproperty, TOKat, Id::property },
{ STCsafe, TOKat, Id::safe },
{ STCtrusted, TOKat, Id::trusted },
{ STCsystem, TOKat, Id::system },
{ STCdisable, TOKat, Id::disable },
#endif
};
for (int i = 0; i < sizeof(table)/sizeof(table[0]); i++)
{
if (stc & table[i].stc)
{
enum TOK tok = table[i].tok;
#if DMDV2
if (tok == TOKat)
{
buf->writeByte('@');
buf->writestring(table[i].id->toChars());
}
else
#endif
buf->writestring(Token::toChars(tok));
buf->writeByte(' ');
}
}
}
void StorageClassDeclaration::toCBuffer(OutBuffer *buf, HdrGenState *hgs)
{
stcToCBuffer(buf, stc);
AttribDeclaration::toCBuffer(buf, hgs);
}
/********************************* DeprecatedDeclaration ****************************/
DeprecatedDeclaration::DeprecatedDeclaration(Expression *msg, Dsymbols *decl)
: StorageClassDeclaration(STCdeprecated, decl)
{
this->msg = msg;
}
Dsymbol *DeprecatedDeclaration::syntaxCopy(Dsymbol *s)
{
assert(!s);
return new DeprecatedDeclaration(msg->syntaxCopy(), Dsymbol::arraySyntaxCopy(decl));
}
void DeprecatedDeclaration::setScope(Scope *sc)
{
assert(msg);
char *depmsg = NULL;
StringExp *se = msg->toString();
if (se)
depmsg = (char *)se->string;
else
msg->error("string expected, not '%s'", msg->toChars());
Scope *scx = sc->push();
scx->depmsg = depmsg;
StorageClassDeclaration::setScope(scx);
scx->pop();
}
void DeprecatedDeclaration::toCBuffer(OutBuffer *buf, HdrGenState *hgs)
{
buf->writestring("deprecated(");
msg->toCBuffer(buf, hgs);
buf->writestring(") ");
AttribDeclaration::toCBuffer(buf, hgs);
}
/********************************* LinkDeclaration ****************************/
LinkDeclaration::LinkDeclaration(enum LINK p, Dsymbols *decl)
: AttribDeclaration(decl)
{
//printf("LinkDeclaration(linkage = %d, decl = %p)\n", p, decl);
linkage = p;
}
Dsymbol *LinkDeclaration::syntaxCopy(Dsymbol *s)
{
LinkDeclaration *ld;
assert(!s);
ld = new LinkDeclaration(linkage, Dsymbol::arraySyntaxCopy(decl));
return ld;
}
void LinkDeclaration::setScope(Scope *sc)
{
//printf("LinkDeclaration::setScope(linkage = %d, decl = %p)\n", linkage, decl);
if (decl)
{
setScopeNewSc(sc, sc->stc, linkage, sc->protection, sc->explicitProtection, sc->structalign);
}
}
void LinkDeclaration::semantic(Scope *sc)
{
//printf("LinkDeclaration::semantic(linkage = %d, decl = %p)\n", linkage, decl);
if (decl)
{
semanticNewSc(sc, sc->stc, linkage, sc->protection, sc->explicitProtection, sc->structalign);
}
}
void LinkDeclaration::semantic3(Scope *sc)
{
//printf("LinkDeclaration::semantic3(linkage = %d, decl = %p)\n", linkage, decl);
if (decl)
{ enum LINK linkage_save = sc->linkage;
sc->linkage = linkage;
for (size_t i = 0; i < decl->dim; i++)
{
Dsymbol *s = (*decl)[i];
s->semantic3(sc);
}
sc->linkage = linkage_save;
}
else
{
sc->linkage = linkage;
}
}
void LinkDeclaration::toCBuffer(OutBuffer *buf, HdrGenState *hgs)
{ const char *p;
switch (linkage)
{
case LINKd: p = "D"; break;
case LINKc: p = "C"; break;
case LINKcpp: p = "C++"; break;
case LINKwindows: p = "Windows"; break;
case LINKpascal: p = "Pascal"; break;
#if IN_LLVM
case LINKintrinsic: p = "Intrinsic"; break;
#endif
default:
assert(0);
break;
}
buf->writestring("extern (");
buf->writestring(p);
buf->writestring(") ");
AttribDeclaration::toCBuffer(buf, hgs);
}
char *LinkDeclaration::toChars()
{
return (char *)"extern ()";
}
/********************************* ProtDeclaration ****************************/
ProtDeclaration::ProtDeclaration(enum PROT p, Dsymbols *decl)
: AttribDeclaration(decl)
{
protection = p;
//printf("decl = %p\n", decl);
}
Dsymbol *ProtDeclaration::syntaxCopy(Dsymbol *s)
{
ProtDeclaration *pd;
assert(!s);
pd = new ProtDeclaration(protection, Dsymbol::arraySyntaxCopy(decl));
return pd;
}
void ProtDeclaration::setScope(Scope *sc)
{
if (decl)
{
setScopeNewSc(sc, sc->stc, sc->linkage, protection, 1, sc->structalign);
}
}
void ProtDeclaration::importAll(Scope *sc)
{
Scope *newsc = sc;
if (sc->protection != protection ||
sc->explicitProtection != 1)
{
// create new one for changes
newsc = new Scope(*sc);
newsc->flags &= ~SCOPEfree;
newsc->protection = protection;
newsc->explicitProtection = 1;
}
for (size_t i = 0; i < decl->dim; i++)
{
Dsymbol *s = (*decl)[i];
s->importAll(newsc);
}
if (newsc != sc)
newsc->pop();
}
void ProtDeclaration::semantic(Scope *sc)
{
if (decl)
{
semanticNewSc(sc, sc->stc, sc->linkage, protection, 1, sc->structalign);
}
}
void ProtDeclaration::protectionToCBuffer(OutBuffer *buf, enum PROT protection)
{
const char *p;
p = Pprotectionnames[protection];
assert(p);
buf->writestring(p);
buf->writeByte(' ');
}
void ProtDeclaration::toCBuffer(OutBuffer *buf, HdrGenState *hgs)
{
protectionToCBuffer(buf, protection);
AttribDeclaration::toCBuffer(buf, hgs);
}
/********************************* AlignDeclaration ****************************/
AlignDeclaration::AlignDeclaration(unsigned sa, Dsymbols *decl)
: AttribDeclaration(decl)
{
salign = sa;
}
Dsymbol *AlignDeclaration::syntaxCopy(Dsymbol *s)
{
AlignDeclaration *ad;
assert(!s);
ad = new AlignDeclaration(salign, Dsymbol::arraySyntaxCopy(decl));
return ad;
}
void AlignDeclaration::setScope(Scope *sc)
{
//printf("\tAlignDeclaration::setScope '%s'\n",toChars());
if (decl)
{
setScopeNewSc(sc, sc->stc, sc->linkage, sc->protection, sc->explicitProtection, salign);
}
}
void AlignDeclaration::semantic(Scope *sc)
{
//printf("\tAlignDeclaration::semantic '%s'\n",toChars());
if (decl)
{
semanticNewSc(sc, sc->stc, sc->linkage, sc->protection, sc->explicitProtection, salign);
}
}
void AlignDeclaration::toCBuffer(OutBuffer *buf, HdrGenState *hgs)
{
if (salign == STRUCTALIGN_DEFAULT)
buf->printf("align");
else
buf->printf("align (%d)", salign);
AttribDeclaration::toCBuffer(buf, hgs);
}
/********************************* AnonDeclaration ****************************/
AnonDeclaration::AnonDeclaration(Loc loc, int isunion, Dsymbols *decl)
: AttribDeclaration(decl)
{
this->loc = loc;
this->alignment = 0;
this->isunion = isunion;
this->sem = 0;
}
Dsymbol *AnonDeclaration::syntaxCopy(Dsymbol *s)
{
AnonDeclaration *ad;
assert(!s);
ad = new AnonDeclaration(loc, isunion, Dsymbol::arraySyntaxCopy(decl));
return ad;
}
void AnonDeclaration::semantic(Scope *sc)
{
//printf("\tAnonDeclaration::semantic %s %p\n", isunion ? "union" : "struct", this);
assert(sc->parent);
Dsymbol *parent = sc->parent->pastMixin();
AggregateDeclaration *ad = parent->isAggregateDeclaration();
if (!ad || (!ad->isStructDeclaration() && !ad->isClassDeclaration()))
{
error("can only be a part of an aggregate");
return;
}
alignment = sc->structalign;
if (decl)
{
sc = sc->push();
sc->stc &= ~(STCauto | STCscope | STCstatic | STCtls | STCgshared);
sc->inunion = isunion;
sc->offset = 0;
sc->flags = 0;
for (size_t i = 0; i < decl->dim; i++)
{
Dsymbol *s = (*decl)[i];
s->semantic(sc);
}
sc = sc->pop();
}
}
void AnonDeclaration::setFieldOffset(AggregateDeclaration *ad, unsigned *poffset, bool isunion)
{
//printf("\tAnonDeclaration::setFieldOffset %s %p\n", isunion ? "union" : "struct", this);
if (decl)
{
/* This works by treating an AnonDeclaration as an aggregate 'member',
* so in order to place that member we need to compute the member's
* size and alignment.
*/
size_t fieldstart = ad->fields.dim;
/* Hackishly hijack ad's structsize and alignsize fields
* for use in our fake anon aggregate member.
*/
unsigned savestructsize = ad->structsize;
unsigned savealignsize = ad->alignsize;
ad->structsize = 0;
ad->alignsize = 0;
unsigned offset = 0;
for (size_t i = 0; i < decl->dim; i++)
{
Dsymbol *s = (*decl)[i];
s->setFieldOffset(ad, &offset, this->isunion);
if (this->isunion)
offset = 0;
}
unsigned anonstructsize = ad->structsize;
unsigned anonalignsize = ad->alignsize;
ad->structsize = savestructsize;
ad->alignsize = savealignsize;
// 0 sized structs are set to 1 byte
if (anonstructsize == 0)
{
anonstructsize = 1;
anonalignsize = 1;
}
/* Given the anon 'member's size and alignment,
* go ahead and place it.
*/
unsigned anonoffset = AggregateDeclaration::placeField(
poffset,
anonstructsize, anonalignsize, alignment,
&ad->structsize, &ad->alignsize,
isunion);
// Add to the anon fields the base offset of this anonymous aggregate
//printf("anon fields, anonoffset = %d\n", anonoffset);
for (size_t i = fieldstart; i < ad->fields.dim; i++)
{
VarDeclaration *v = ad->fields[i];
//printf("\t[%d] %s %d\n", i, v->toChars(), v->offset);
v->offset += anonoffset;
}
}
}
void AnonDeclaration::toCBuffer(OutBuffer *buf, HdrGenState *hgs)
{
buf->printf(isunion ? "union" : "struct");
buf->writestring("\n{\n");
buf->level++;
if (decl)
{
for (size_t i = 0; i < decl->dim; i++)
{
Dsymbol *s = (*decl)[i];
s->toCBuffer(buf, hgs);
}
}
buf->level--;
buf->writestring("}\n");
}
const char *AnonDeclaration::kind()
{
return (isunion ? "anonymous union" : "anonymous struct");
}
/********************************* PragmaDeclaration ****************************/
PragmaDeclaration::PragmaDeclaration(Loc loc, Identifier *ident, Expressions *args, Dsymbols *decl)
: AttribDeclaration(decl)
{
this->loc = loc;
this->ident = ident;
this->args = args;
}
Dsymbol *PragmaDeclaration::syntaxCopy(Dsymbol *s)
{
//printf("PragmaDeclaration::syntaxCopy(%s)\n", toChars());
PragmaDeclaration *pd;
assert(!s);
pd = new PragmaDeclaration(loc, ident,
Expression::arraySyntaxCopy(args), Dsymbol::arraySyntaxCopy(decl));
return pd;
}
void PragmaDeclaration::setScope(Scope *sc)
{
#if TARGET_NET
if (ident == Lexer::idPool("assembly"))
{
if (!args || args->dim != 1)
{
error("pragma has invalid number of arguments");
}
else
{
Expression *e = (*args)[0];
e = e->semantic(sc);
e = resolveProperties(sc, e);
e = e->ctfeInterpret();
(*args)[0] = e;
StringExp* se = e->toString();
if (!se)
{
error("string expected, not '%s'", e->toChars());
}
PragmaScope* pragma = new PragmaScope(this, sc->parent, se);
assert(sc);
pragma->setScope(sc);
//add to module members
assert(sc->module);
assert(sc->module->members);
sc->module->members->push(pragma);
}
}
#endif // TARGET_NET
}
void PragmaDeclaration::semantic(Scope *sc)
{ // Should be merged with PragmaStatement
#if IN_LLVM
Pragma llvm_internal = LLVMnone;
std::string arg1str;
#endif
//printf("\tPragmaDeclaration::semantic '%s'\n",toChars());
if (ident == Id::msg)
{
if (args)
{
for (size_t i = 0; i < args->dim; i++)
{
Expression *e = (*args)[i];
e = e->semantic(sc);
e = resolveProperties(sc, e);
if (e->op != TOKerror && e->op != TOKtype)
e = e->ctfeInterpret();
if (e->op == TOKerror)
{ errorSupplemental(loc, "while evaluating pragma(msg, %s)", (*args)[i]->toChars());
return;
}
StringExp *se = e->toString();
if (se)
{
fprintf(stdmsg, "%.*s", (int)se->len, (char *)se->string);
}
else
fprintf(stdmsg, "%s", e->toChars());
}
fprintf(stdmsg, "\n");
}
goto Lnodecl;
}
else if (ident == Id::lib)
{
if (!args || args->dim != 1)
error("string expected for library name");
else
{
Expression *e = (*args)[0];
e = e->semantic(sc);
e = resolveProperties(sc, e);
e = e->ctfeInterpret();
(*args)[0] = e;
if (e->op == TOKerror)
goto Lnodecl;
StringExp *se = e->toString();
if (!se)
error("string expected for library name, not '%s'", e->toChars());
else if (global.params.verbose)
{
char *name = (char *)mem.malloc(se->len + 1);
memcpy(name, se->string, se->len);
name[se->len] = 0;
printf("library %s\n", name);
mem.free(name);
}
}
goto Lnodecl;
}
#ifdef IN_GCC
else if (ident == Id::GNU_asm)
{
if (! args || args->dim != 2)
error("identifier and string expected for asm name");
else
{
Expression *e;
Declaration *d = NULL;
StringExp *s = NULL;
e = (*args)[0];
e = e->semantic(sc);
if (e->op == TOKvar)
{
d = ((VarExp *)e)->var;
if (! d->isFuncDeclaration() && ! d->isVarDeclaration())
d = NULL;
}
if (!d)
error("first argument of GNU_asm must be a function or variable declaration");
e = (*args)[1];
e = e->semantic(sc);
e = resolveProperties(sc, e);
e = e->ctfeInterpret();
e = e->toString();
if (e && ((StringExp *)e)->sz == 1)
s = ((StringExp *)e);
else
error("second argument of GNU_asm must be a character string");
if (d && s)
d->c_ident = Lexer::idPool((char*) s->string);
}
goto Lnodecl;
}
#endif
#if DMDV2
else if (ident == Id::startaddress)
{
if (!args || args->dim != 1)
error("function name expected for start address");
else
{
Expression *e = (*args)[0];
e = e->semantic(sc);
e = resolveProperties(sc, e);
e = e->ctfeInterpret();
(*args)[0] = e;
Dsymbol *sa = getDsymbol(e);
if (!sa || !sa->isFuncDeclaration())
error("function name expected for start address, not '%s'", e->toChars());
}
goto Lnodecl;
}
#endif
#if TARGET_NET
else if (ident == Lexer::idPool("assembly"))
{
}
#endif // TARGET_NET
#if IN_LLVM
else if ((llvm_internal = DtoGetPragma(sc, this, arg1str)) != LLVMnone)
{
// nothing to do anymore
}
#endif
else if (global.params.ignoreUnsupportedPragmas)
{
if (global.params.verbose)
{
/* Print unrecognized pragmas
*/
printf("pragma %s", ident->toChars());
if (args)
{
for (size_t i = 0; i < args->dim; i++)
{
Expression *e = (*args)[i];
// ignore errors in ignored pragmas.
global.gag++;
unsigned errors_save = global.errors;
e = e->semantic(sc);
e = resolveProperties(sc, e);
e = e->ctfeInterpret();
if (i == 0)
printf(" (");
else
printf(",");
printf("%s", e->toChars());
// restore error state.
global.gag--;
global.errors = errors_save;
}
if (args->dim)
printf(")");
}
printf("\n");
}
}
else
error("unrecognized pragma(%s)", ident->toChars());
Ldecl:
if (decl)
{
for (size_t i = 0; i < decl->dim; i++)
{
Dsymbol *s = (*decl)[i];
s->semantic(sc);
#if IN_LLVM
DtoCheckPragma(this, s, llvm_internal, arg1str);
#endif
}
}
return;
Lnodecl:
if (decl)
{
error("pragma is missing closing ';'");
goto Ldecl; // do them anyway, to avoid segfaults.
}
}
int PragmaDeclaration::oneMember(Dsymbol **ps, Identifier *ident)
{
*ps = NULL;
return TRUE;
}
const char *PragmaDeclaration::kind()
{
return "pragma";
}
#if IN_DMD
void PragmaDeclaration::toObjFile(int multiobj)
{
if (ident == Id::lib)
{
assert(args && args->dim == 1);
Expression *e = (*args)[0];
assert(e->op == TOKstring);
StringExp *se = (StringExp *)e;
char *name = (char *)mem.malloc(se->len + 1);
memcpy(name, se->string, se->len);
name[se->len] = 0;
/* Embed the library names into the object file.
* The linker will then automatically
* search that library, too.
*/
if (!obj_includelib(name))
{
/* The format does not allow embedded library names,
* so instead append the library name to the list to be passed
* to the linker.
*/
global.params.libfiles->push(name);
}
}
#if DMDV2
else if (ident == Id::startaddress)
{
assert(args && args->dim == 1);
Expression *e = (*args)[0];
Dsymbol *sa = getDsymbol(e);
FuncDeclaration *f = sa->isFuncDeclaration();
assert(f);
Symbol *s = f->toSymbol();
obj_startaddress(s);
}
#endif
AttribDeclaration::toObjFile(multiobj);
}
#endif
void PragmaDeclaration::toCBuffer(OutBuffer *buf, HdrGenState *hgs)
{
buf->printf("pragma (%s", ident->toChars());
if (args && args->dim)
{
buf->writestring(", ");
argsToCBuffer(buf, args, hgs);
}
buf->writeByte(')');
AttribDeclaration::toCBuffer(buf, hgs);
}
/********************************* ConditionalDeclaration ****************************/
ConditionalDeclaration::ConditionalDeclaration(Condition *condition, Dsymbols *decl, Dsymbols *elsedecl)
: AttribDeclaration(decl)
{
//printf("ConditionalDeclaration::ConditionalDeclaration()\n");
this->condition = condition;
this->elsedecl = elsedecl;
}
Dsymbol *ConditionalDeclaration::syntaxCopy(Dsymbol *s)
{
ConditionalDeclaration *dd;
assert(!s);
dd = new ConditionalDeclaration(condition->syntaxCopy(),
Dsymbol::arraySyntaxCopy(decl),
Dsymbol::arraySyntaxCopy(elsedecl));
return dd;
}
int ConditionalDeclaration::oneMember(Dsymbol **ps, Identifier *ident)
{
//printf("ConditionalDeclaration::oneMember(), inc = %d\n", condition->inc);
if (condition->inc)
{
Dsymbols *d = condition->include(NULL, NULL) ? decl : elsedecl;
return Dsymbol::oneMembers(d, ps, ident);
}
*ps = NULL;
return TRUE;
}
void ConditionalDeclaration::emitComment(Scope *sc)
{
//printf("ConditionalDeclaration::emitComment(sc = %p)\n", sc);
if (condition->inc)
{
AttribDeclaration::emitComment(sc);
}
else if (sc->docbuf)
{
/* If generating doc comment, be careful because if we're inside
* a template, then include(NULL, NULL) will fail.
*/
Dsymbols *d = decl ? decl : elsedecl;
for (size_t i = 0; i < d->dim; i++)
{ Dsymbol *s = (*d)[i];
s->emitComment(sc);
}
}
}
// Decide if 'then' or 'else' code should be included
Dsymbols *ConditionalDeclaration::include(Scope *sc, ScopeDsymbol *sd)
{
//printf("ConditionalDeclaration::include(sc = %p) scope = %p\n", sc, scope);
assert(condition);
return condition->include(scope ? scope : sc, sd) ? decl : elsedecl;
}
void ConditionalDeclaration::setScope(Scope *sc)
{
Dsymbols *d = include(sc, NULL);
//printf("\tConditionalDeclaration::setScope '%s', d = %p\n",toChars(), d);
if (d)
{
for (size_t i = 0; i < d->dim; i++)
{
Dsymbol *s = (*d)[i];
s->setScope(sc);
}
}
}
void ConditionalDeclaration::importAll(Scope *sc)
{
Dsymbols *d = include(sc, NULL);
//printf("\tConditionalDeclaration::importAll '%s', d = %p\n",toChars(), d);
if (d)
{
for (size_t i = 0; i < d->dim; i++)
{
Dsymbol *s = (*d)[i];
s->importAll(sc);
}
}
}
void ConditionalDeclaration::addComment(unsigned char *comment)
{
/* Because addComment is called by the parser, if we called
* include() it would define a version before it was used.
* But it's no problem to drill down to both decl and elsedecl,
* so that's the workaround.
*/
if (comment)
{
Dsymbols *d = decl;
for (int j = 0; j < 2; j++)
{
if (d)
{
for (size_t i = 0; i < d->dim; i++)
{ Dsymbol *s = (*d)[i];
//printf("ConditionalDeclaration::addComment %s\n", s->toChars());
s->addComment(comment);
}
}
d = elsedecl;
}
}
}
void ConditionalDeclaration::toCBuffer(OutBuffer *buf, HdrGenState *hgs)
{
condition->toCBuffer(buf, hgs);
if (decl || elsedecl)
{
buf->writenl();
buf->writeByte('{');
buf->writenl();
buf->level++;
if (decl)
{
for (size_t i = 0; i < decl->dim; i++)
{
Dsymbol *s = (*decl)[i];
s->toCBuffer(buf, hgs);
}
}
buf->level--;
buf->writeByte('}');
if (elsedecl)
{
buf->writenl();
buf->writestring("else");
buf->writenl();
buf->writeByte('{');
buf->writenl();
buf->level++;
for (size_t i = 0; i < elsedecl->dim; i++)
{
Dsymbol *s = (*elsedecl)[i];
s->toCBuffer(buf, hgs);
}
buf->level--;
buf->writeByte('}');
}
}
else
buf->writeByte(':');
buf->writenl();
}
/***************************** StaticIfDeclaration ****************************/
StaticIfDeclaration::StaticIfDeclaration(Condition *condition,
Dsymbols *decl, Dsymbols *elsedecl)
: ConditionalDeclaration(condition, decl, elsedecl)
{
//printf("StaticIfDeclaration::StaticIfDeclaration()\n");
sd = NULL;
addisdone = 0;
}
Dsymbol *StaticIfDeclaration::syntaxCopy(Dsymbol *s)
{
StaticIfDeclaration *dd;
assert(!s);
dd = new StaticIfDeclaration(condition->syntaxCopy(),
Dsymbol::arraySyntaxCopy(decl),
Dsymbol::arraySyntaxCopy(elsedecl));
return dd;
}
Dsymbols *StaticIfDeclaration::include(Scope *sc, ScopeDsymbol *sd)
{
//printf("StaticIfDeclaration::include(sc = %p) scope = %p\n", sc, scope);
if (condition->inc == 0)
{
Dsymbols *d = ConditionalDeclaration::include(sc, sd);
// Set the scopes lazily.
if (scope && d)
{
for (size_t i = 0; i < d->dim; i++)
{
Dsymbol *s = (*d)[i];
s->setScope(scope);
}
}
return d;
}
else
{
return ConditionalDeclaration::include(sc, sd);
}
}
int StaticIfDeclaration::addMember(Scope *sc, ScopeDsymbol *sd, int memnum)
{
//printf("StaticIfDeclaration::addMember() '%s'\n",toChars());
/* This is deferred until semantic(), so that
* expressions in the condition can refer to declarations
* in the same scope, such as:
*
* template Foo(int i)
* {
* const int j = i + 1;
* static if (j == 3)
* const int k;
* }
*/
this->sd = sd;
int m = 0;
if (memnum == 0)
{ m = AttribDeclaration::addMember(sc, sd, memnum);
addisdone = 1;
}
return m;
}
void StaticIfDeclaration::importAll(Scope *sc)
{
// do not evaluate condition before semantic pass
}
void StaticIfDeclaration::setScope(Scope *sc)
{
// do not evaluate condition before semantic pass
// But do set the scope, in case we need it for forward referencing
Dsymbol::setScope(sc);
}
void StaticIfDeclaration::semantic(Scope *sc)
{
Dsymbols *d = include(sc, sd);
//printf("\tStaticIfDeclaration::semantic '%s', d = %p\n",toChars(), d);
if (d)
{
if (!addisdone)
{ AttribDeclaration::addMember(sc, sd, 1);
addisdone = 1;
}
for (size_t i = 0; i < d->dim; i++)
{
Dsymbol *s = (*d)[i];
s->semantic(sc);
}
}
}
const char *StaticIfDeclaration::kind()
{
return "static if";
}
/***************************** CompileDeclaration *****************************/
// These are mixin declarations, like mixin("int x");
CompileDeclaration::CompileDeclaration(Loc loc, Expression *exp)
: AttribDeclaration(NULL)
{
//printf("CompileDeclaration(loc = %d)\n", loc.linnum);
this->loc = loc;
this->exp = exp;
this->sd = NULL;
this->compiled = 0;
}
Dsymbol *CompileDeclaration::syntaxCopy(Dsymbol *s)
{
//printf("CompileDeclaration::syntaxCopy('%s')\n", toChars());
CompileDeclaration *sc = new CompileDeclaration(loc, exp->syntaxCopy());
return sc;
}
int CompileDeclaration::addMember(Scope *sc, ScopeDsymbol *sd, int memnum)
{
//printf("CompileDeclaration::addMember(sc = %p, sd = %p, memnum = %d)\n", sc, sd, memnum);
this->sd = sd;
if (memnum == 0)
{ /* No members yet, so parse the mixin now
*/
compileIt(sc);
memnum |= AttribDeclaration::addMember(sc, sd, memnum);
compiled = 1;
}
return memnum;
}
void CompileDeclaration::compileIt(Scope *sc)
{
//printf("CompileDeclaration::compileIt(loc = %d) %s\n", loc.linnum, exp->toChars());
exp = exp->semantic(sc);
exp = resolveProperties(sc, exp);
exp = exp->ctfeInterpret();
StringExp *se = exp->toString();
if (!se)
{ exp->error("argument to mixin must be a string, not (%s)", exp->toChars());
}
else
{
se = se->toUTF8(sc);
Parser p(sc->module, (unsigned char *)se->string, se->len, 0);
p.loc = loc;
p.nextToken();
decl = p.parseDeclDefs(0);
if (p.token.value != TOKeof)
exp->error("incomplete mixin declaration (%s)", se->toChars());
}
}
void CompileDeclaration::semantic(Scope *sc)
{
//printf("CompileDeclaration::semantic()\n");
if (!compiled)
{
compileIt(sc);
AttribDeclaration::addMember(sc, sd, 0);
compiled = 1;
}
AttribDeclaration::semantic(sc);
}
void CompileDeclaration::toCBuffer(OutBuffer *buf, HdrGenState *hgs)
{
buf->writestring("mixin(");
exp->toCBuffer(buf, hgs);
buf->writestring(");");
buf->writenl();
}
const char *CompileDeclaration::kind()
{
return "mixin";
}
/***************************** UserAttributeDeclaration *****************************/
UserAttributeDeclaration::UserAttributeDeclaration(Expressions *atts, Dsymbols *decl)
: AttribDeclaration(decl)
{
//printf("UserAttributeDeclaration()\n");
this->atts = atts;
}
Dsymbol *UserAttributeDeclaration::syntaxCopy(Dsymbol *s)
{
//printf("UserAttributeDeclaration::syntaxCopy('%s')\n", toChars());
assert(!s);
Expressions *atts = Expression::arraySyntaxCopy(this->atts);
return new UserAttributeDeclaration(atts, Dsymbol::arraySyntaxCopy(decl));
}
void UserAttributeDeclaration::semantic(Scope *sc)
{
//printf("UserAttributeDeclaration::semantic() %p\n", this);
atts = arrayExpressionSemantic(atts, sc);
if (decl)
{
Scope *newsc = sc;
#if 1
if (atts && atts->dim)
{
// create new one for changes
newsc = new Scope(*sc);
newsc->flags &= ~SCOPEfree;
// Create new uda that is the concatenation of the previous
newsc->userAttributes = concat(newsc->userAttributes, atts);
}
#endif
for (size_t i = 0; i < decl->dim; i++)
{ Dsymbol *s = (*decl)[i];
s->semantic(newsc);
}
if (newsc != sc)
{
sc->offset = newsc->offset;
newsc->pop();
}
}
}
Expressions *UserAttributeDeclaration::concat(Expressions *udas1, Expressions *udas2)
{
Expressions *udas;
if (!udas1 || udas1->dim == 0)
udas = udas2;
else if (!udas2 || udas2->dim == 0)
udas = udas1;
else
{
/* Create a new tuple that combines them
* (do not append to left operand, as this is a copy-on-write operation)
*/
udas = new Expressions();
udas->push(new TupleExp(0, udas1));
udas->push(new TupleExp(0, udas2));
}
return udas;
}
void UserAttributeDeclaration::setScope(Scope *sc)
{
//printf("UserAttributeDeclaration::setScope() %p\n", this);
if (decl)
{
Scope *newsc = sc;
#if 1
if (atts && atts->dim)
{
// create new one for changes
newsc = new Scope(*sc);
newsc->flags &= ~SCOPEfree;
// Append new atts to old one
if (!newsc->userAttributes || newsc->userAttributes->dim == 0)
newsc->userAttributes = atts;
else
{
// Create a tuple that combines them
Expressions *exps = new Expressions();
exps->push(new TupleExp(0, newsc->userAttributes));
exps->push(new TupleExp(0, atts));
newsc->userAttributes = exps;
}
}
#endif
for (size_t i = 0; i < decl->dim; i++)
{ Dsymbol *s = (*decl)[i];
s->setScope(newsc); // yes, the only difference from semantic()
}
if (newsc != sc)
{
sc->offset = newsc->offset;
newsc->pop();
}
}
}
void UserAttributeDeclaration::toCBuffer(OutBuffer *buf, HdrGenState *hgs)
{
buf->writestring("@(");
argsToCBuffer(buf, atts, hgs);
buf->writeByte(')');
AttribDeclaration::toCBuffer(buf, hgs);
}
const char *UserAttributeDeclaration::kind()
{
return "UserAttribute";
}