Files
ldc/dmd/optimize.c
2012-03-06 07:28:29 +01:00

897 lines
23 KiB
C

// Compiler implementation of the D programming language
// Copyright (c) 1999-2012 by Digital Mars
// All Rights Reserved
// written by Walter Bright
// http://www.digitalmars.com
// License for redistribution is by either the Artistic License
// in artistic.txt, or the GNU General Public License in gnu.txt.
// See the included readme.txt for details.
#include <stdio.h>
#include <ctype.h>
#include <assert.h>
#include <math.h>
#if __DMC__
#include <complex.h>
#endif
#include "lexer.h"
#include "mtype.h"
#include "expression.h"
#include "declaration.h"
#include "aggregate.h"
#include "init.h"
#ifdef IN_GCC
#include "d-gcc-real.h"
/* %% fix? */
extern "C" bool real_isnan (const real_t *);
#endif
static real_t zero; // work around DMC bug for now
/*************************************
* If expression is a variable with a const initializer,
* return that initializer.
*/
Expression *fromConstInitializer(int result, Expression *e1)
{
//printf("fromConstInitializer(%s)\n", e1->toChars());
if (e1->op == TOKvar)
{ VarExp *ve = (VarExp *)e1;
VarDeclaration *v = ve->var->isVarDeclaration();
if (v && !v->originalType && v->scope) // semantic() not yet run
v->semantic (v->scope);
if (!v || !v->type)
return e1;
Type * tb = v->type->toBasetype();
if (v->isConst() && v->init
&& (result & WANTinterpret || (tb->isscalar() ||
((result & WANTexpand) && (tb->ty != Tsarray && tb->ty != Tstruct))))
)
{ Expression *ei = v->init->toExpression();
if (ei && ei->type)
e1 = ei;
}
}
return e1;
}
Expression *Expression::optimize(int result)
{
//printf("Expression::optimize(result = x%x) %s\n", result, toChars());
return this;
}
Expression *VarExp::optimize(int result)
{
return fromConstInitializer(result, this);
return this;
}
Expression *TupleExp::optimize(int result)
{
for (size_t i = 0; i < exps->dim; i++)
{ Expression *e = (Expression *)exps->data[i];
e = e->optimize(WANTvalue | (result & WANTinterpret));
exps->data[i] = (void *)e;
}
return this;
}
Expression *ArrayLiteralExp::optimize(int result)
{
if (elements)
{
for (size_t i = 0; i < elements->dim; i++)
{ Expression *e = (Expression *)elements->data[i];
e = e->optimize(WANTvalue | (result & WANTinterpret));
elements->data[i] = (void *)e;
}
}
return this;
}
Expression *AssocArrayLiteralExp::optimize(int result)
{
assert(keys->dim == values->dim);
for (size_t i = 0; i < keys->dim; i++)
{ Expression *e = (Expression *)keys->data[i];
e = e->optimize(WANTvalue | (result & WANTinterpret));
keys->data[i] = (void *)e;
e = (Expression *)values->data[i];
e = e->optimize(WANTvalue | (result & WANTinterpret));
values->data[i] = (void *)e;
}
return this;
}
Expression *StructLiteralExp::optimize(int result)
{
if (elements)
{
for (size_t i = 0; i < elements->dim; i++)
{ Expression *e = (*elements)[i];
if (!e)
continue;
e = e->optimize(WANTvalue | (result & WANTinterpret));
(*elements)[i] = e;
}
}
return this;
}
Expression *TypeExp::optimize(int result)
{
return this;
}
Expression *UnaExp::optimize(int result)
{
e1 = e1->optimize(result);
return this;
}
Expression *NegExp::optimize(int result)
{ Expression *e;
e1 = e1->optimize(result);
if (e1->isConst() == 1)
{
e = Neg(type, e1);
}
else
e = this;
return e;
}
Expression *ComExp::optimize(int result)
{ Expression *e;
e1 = e1->optimize(result);
if (e1->isConst() == 1)
{
e = Com(type, e1);
}
else
e = this;
return e;
}
Expression *NotExp::optimize(int result)
{ Expression *e;
e1 = e1->optimize(result);
if (e1->isConst() == 1)
{
e = Not(type, e1);
}
else
e = this;
return e;
}
Expression *BoolExp::optimize(int result)
{ Expression *e;
e1 = e1->optimize(result);
if (e1->isConst() == 1)
{
e = Bool(type, e1);
}
else
e = this;
return e;
}
Expression *AddrExp::optimize(int result)
{ Expression *e;
//printf("AddrExp::optimize(result = %d) %s\n", result, toChars());
// never try to interpret: it could change the semantics by turning
// const p = &s; into an something like const p = &(Struct());
e1 = e1->optimize(result & ~WANTinterpret);
// Convert &*ex to ex
if (e1->op == TOKstar)
{ Expression *ex;
ex = ((PtrExp *)e1)->e1;
if (type->equals(ex->type))
e = ex;
else
{
e = ex->copy();
e->type = type;
}
return e;
}
#if !IN_LLVM
if (e1->op == TOKvar)
{ VarExp *ve = (VarExp *)e1;
if (!ve->var->isOut() && !ve->var->isRef() &&
!ve->var->isImportedSymbol())
{
e = new SymOffExp(loc, ve->var, 0);
e->type = type;
return e;
}
}
if (e1->op == TOKindex)
{ // Convert &array[n] to &array+n
IndexExp *ae = (IndexExp *)e1;
if (ae->e2->op == TOKint64 && ae->e1->op == TOKvar)
{
dinteger_t index = ae->e2->toInteger();
VarExp *ve = (VarExp *)ae->e1;
if (ve->type->ty == Tsarray && ve->type->next->ty != Tbit
&& !ve->var->isImportedSymbol())
{
TypeSArray *ts = (TypeSArray *)ve->type;
dinteger_t dim = ts->dim->toInteger();
if (index < 0 || index >= dim)
error("array index %jd is out of bounds [0..%jd]", index, dim);
e = new SymOffExp(loc, ve->var, index * ts->next->size());
e->type = type;
return e;
}
}
}
#endif
return this;
}
Expression *PtrExp::optimize(int result)
{
//printf("PtrExp::optimize(result = x%x) %s\n", result, toChars());
e1 = e1->optimize(result);
// Convert *&ex to ex
if (e1->op == TOKaddress)
{ Expression *e;
Expression *ex;
ex = ((AddrExp *)e1)->e1;
if (type->equals(ex->type))
e = ex;
else
{
e = ex->copy();
e->type = type;
}
return e;
}
// Constant fold *(&structliteral + offset)
if (e1->op == TOKadd)
{
Expression *e;
e = Ptr(type, e1);
if (e != EXP_CANT_INTERPRET)
return e;
}
return this;
}
Expression *DotVarExp::optimize(int result)
{
//printf("DotVarExp::optimize(result = x%x) %s\n", result, toChars());
e1 = e1->optimize(result);
#if DMDV2
if (e1->op == TOKvar)
{ VarExp *ve = (VarExp *)e1;
VarDeclaration *v = ve->var->isVarDeclaration();
Expression *e = expandVar(result, v);
if (e && e->op == TOKstructliteral)
{ StructLiteralExp *sle = (StructLiteralExp *)e;
VarDeclaration *vf = var->isVarDeclaration();
if (vf)
{
e = sle->getField(type, vf->offset);
if (e && e != EXP_CANT_INTERPRET)
return e;
}
}
}
else
#endif
if (e1->op == TOKstructliteral)
{ StructLiteralExp *sle = (StructLiteralExp *)e1;
VarDeclaration *vf = var->isVarDeclaration();
if (vf)
{
Expression *e = sle->getField(type, vf->offset);
if (e && e != EXP_CANT_INTERPRET)
return e;
}
}
return this;
}
Expression *NewExp::optimize(int result)
{
if (thisexp)
thisexp = thisexp->optimize(WANTvalue);
// Optimize parameters
if (newargs)
{
for (size_t i = 0; i < newargs->dim; i++)
{ Expression *e = newargs->tdata()[i];
e = e->optimize(WANTvalue);
newargs->tdata()[i] = e;
}
}
if (arguments)
{
for (size_t i = 0; i < arguments->dim; i++)
{ Expression *e = arguments->tdata()[i];
e = e->optimize(WANTvalue);
arguments->tdata()[i] = e;
}
}
return this;
}
Expression *CallExp::optimize(int result)
{
//printf("CallExp::optimize(result = %d) %s\n", result, toChars());
Expression *e = this;
// Optimize parameters
if (arguments)
{
for (size_t i = 0; i < arguments->dim; i++)
{ Expression *e = arguments->tdata()[i];
e = e->optimize(WANTvalue);
arguments->tdata()[i] = e;
}
}
e1 = e1->optimize(result);
if (result & WANTinterpret)
{
Expression *eresult = interpret(NULL);
if (eresult == EXP_CANT_INTERPRET)
return e;
if (eresult && eresult != EXP_VOID_INTERPRET)
e = eresult;
else
error("cannot evaluate %s at compile time", toChars());
}
return e;
}
Expression *CastExp::optimize(int result)
{
//printf("CastExp::optimize(result = %d) %s\n", result, toChars());
//printf("from %s to %s\n", type->toChars(), to->toChars());
//printf("from %s\n", type->toChars());
//printf("e1->type %s\n", e1->type->toChars());
//printf("type = %p\n", type);
assert(type);
enum TOK op1 = e1->op;
e1 = e1->optimize(result);
if (result & WANTinterpret)
e1 = fromConstInitializer(result, e1);
if ((e1->op == TOKstring || e1->op == TOKarrayliteral) &&
(type->ty == Tpointer || type->ty == Tarray) &&
type->next->equals(e1->type->next)
)
{
// make a copy before adjusting type to avoid
// messing up the type of an existing initializer
e1 = e1->syntaxCopy();
e1->type = type;
return e1;
}
/* The first test here is to prevent infinite loops
*/
if (op1 != TOKarrayliteral && e1->op == TOKarrayliteral)
return e1->castTo(NULL, to);
if (e1->op == TOKnull &&
(type->ty == Tpointer || type->ty == Tclass))
{
e1->type = type;
return e1;
}
if (result & WANTflags && type->ty == Tclass && e1->type->ty == Tclass)
{
// See if we can remove an unnecessary cast
ClassDeclaration *cdfrom;
ClassDeclaration *cdto;
int offset;
cdfrom = e1->type->isClassHandle();
cdto = type->isClassHandle();
if (cdto->isBaseOf(cdfrom, &offset) && offset == 0)
{
e1->type = type;
return e1;
}
}
Expression *e;
if (e1->isConst())
{
if (e1->op == TOKsymoff)
{
if (type->size() == e1->type->size() &&
type->toBasetype()->ty != Tsarray)
{
e1->type = type;
return e1;
}
return this;
}
if (to->toBasetype()->ty == Tvoid)
e = this;
else
e = Cast(type, to, e1);
}
else
e = this;
return e;
}
Expression *BinExp::optimize(int result)
{
//printf("BinExp::optimize(result = %d) %s\n", result, toChars());
e1 = e1->optimize(result);
e2 = e2->optimize(result);
if (op == TOKshlass || op == TOKshrass || op == TOKushrass)
{
if (e2->isConst() == 1)
{
dinteger_t i2 = e2->toInteger();
d_uns64 sz = e1->type->size() * 8;
if (i2 < 0 || i2 >= sz)
{ error("shift assign by %jd is outside the range 0..%zu", i2, sz - 1);
e2 = new IntegerExp(0);
}
}
}
return this;
}
Expression *AddExp::optimize(int result)
{ Expression *e;
//printf("AddExp::optimize(%s)\n", toChars());
e1 = e1->optimize(result);
e2 = e2->optimize(result);
if (e1->isConst() && e2->isConst())
{
if (e1->op == TOKsymoff && e2->op == TOKsymoff)
return this;
e = Add(type, e1, e2);
}
else
e = this;
return e;
}
Expression *MinExp::optimize(int result)
{ Expression *e;
e1 = e1->optimize(result);
e2 = e2->optimize(result);
if (e1->isConst() && e2->isConst())
{
if (e2->op == TOKsymoff)
return this;
e = Min(type, e1, e2);
}
else
e = this;
return e;
}
Expression *MulExp::optimize(int result)
{ Expression *e;
//printf("MulExp::optimize(result = %d) %s\n", result, toChars());
e1 = e1->optimize(result);
e2 = e2->optimize(result);
if (e1->isConst() == 1 && e2->isConst() == 1)
{
e = Mul(type, e1, e2);
}
else
e = this;
return e;
}
Expression *DivExp::optimize(int result)
{ Expression *e;
//printf("DivExp::optimize(%s)\n", toChars());
e1 = e1->optimize(result);
e2 = e2->optimize(result);
if (e1->isConst() == 1 && e2->isConst() == 1)
{
e = Div(type, e1, e2);
}
else
e = this;
return e;
}
Expression *ModExp::optimize(int result)
{ Expression *e;
e1 = e1->optimize(result);
e2 = e2->optimize(result);
if (e1->isConst() == 1 && e2->isConst() == 1)
{
e = Mod(type, e1, e2);
}
else
e = this;
return e;
}
Expression *shift_optimize(int result, BinExp *e, Expression *(*shift)(Type *, Expression *, Expression *))
{ Expression *ex = e;
e->e1 = e->e1->optimize(result);
e->e2 = e->e2->optimize(result);
if (e->e2->isConst() == 1)
{
dinteger_t i2 = e->e2->toInteger();
d_uns64 sz = e->e1->type->size() * 8;
if (i2 < 0 || i2 >= sz)
{ e->error("shift by %jd is outside the range 0..%zu", i2, sz - 1);
e->e2 = new IntegerExp(0);
}
if (e->e1->isConst() == 1)
ex = (*shift)(e->type, e->e1, e->e2);
}
return ex;
}
Expression *ShlExp::optimize(int result)
{
//printf("ShlExp::optimize(result = %d) %s\n", result, toChars());
return shift_optimize(result, this, Shl);
}
Expression *ShrExp::optimize(int result)
{
//printf("ShrExp::optimize(result = %d) %s\n", result, toChars());
return shift_optimize(result, this, Shr);
}
Expression *UshrExp::optimize(int result)
{
//printf("UshrExp::optimize(result = %d) %s\n", result, toChars());
return shift_optimize(result, this, Ushr);
}
Expression *AndExp::optimize(int result)
{ Expression *e;
e1 = e1->optimize(result);
e2 = e2->optimize(result);
if (e1->isConst() == 1 && e2->isConst() == 1)
e = And(type, e1, e2);
else
e = this;
return e;
}
Expression *OrExp::optimize(int result)
{ Expression *e;
e1 = e1->optimize(result);
e2 = e2->optimize(result);
if (e1->isConst() == 1 && e2->isConst() == 1)
e = Or(type, e1, e2);
else
e = this;
return e;
}
Expression *XorExp::optimize(int result)
{ Expression *e;
e1 = e1->optimize(result);
e2 = e2->optimize(result);
if (e1->isConst() == 1 && e2->isConst() == 1)
e = Xor(type, e1, e2);
else
e = this;
return e;
}
Expression *CommaExp::optimize(int result)
{ Expression *e;
//printf("CommaExp::optimize(result = %d) %s\n", result, toChars());
// Comma needs special treatment, because it may
// contain compiler-generated declarations. We can interpret them, but
// otherwise we must NOT attempt to constant-fold them.
// In particular, if the comma returns a temporary variable, it needs
// to be an lvalue (this is particularly important for struct constructors)
if (result & WANTinterpret)
{ // Interpreting comma needs special treatment, because it may
// contain compiler-generated declarations.
e = interpret(NULL);
return (e == EXP_CANT_INTERPRET) ? this : e;
}
e1 = e1->optimize(result & WANTinterpret);
e2 = e2->optimize(result);
if (!e1 || e1->op == TOKint64 || e1->op == TOKfloat64 || !e1->hasSideEffect())
{
e = e2;
if (e)
e->type = type;
}
else
e = this;
//printf("-CommaExp::optimize(result = %d) %s\n", result, e->toChars());
return e;
}
Expression *ArrayLengthExp::optimize(int result)
{ Expression *e;
//printf("ArrayLengthExp::optimize(result = %d) %s\n", result, toChars());
e1 = e1->optimize(WANTvalue | WANTexpand | (result & WANTinterpret));
e = this;
if (e1->op == TOKstring || e1->op == TOKarrayliteral || e1->op == TOKassocarrayliteral)
{
e = ArrayLength(type, e1);
}
return e;
}
Expression *EqualExp::optimize(int result)
{ Expression *e;
//printf("EqualExp::optimize(result = %x) %s\n", result, toChars());
e1 = e1->optimize(WANTvalue | (result & WANTinterpret));
e2 = e2->optimize(WANTvalue | (result & WANTinterpret));
e = this;
Expression *e1 = fromConstInitializer(result, this->e1);
Expression *e2 = fromConstInitializer(result, this->e2);
e = Equal(op, type, e1, e2);
if (e == EXP_CANT_INTERPRET)
e = this;
return e;
}
Expression *IdentityExp::optimize(int result)
{
//printf("IdentityExp::optimize(result = %d) %s\n", result, toChars());
e1 = e1->optimize(WANTvalue | (result & WANTinterpret));
e2 = e2->optimize(WANTvalue | (result & WANTinterpret));
Expression *e = this;
if ((this->e1->isConst() && this->e2->isConst()) ||
(this->e1->op == TOKnull && this->e2->op == TOKnull))
{
e = Identity(op, type, this->e1, this->e2);
if (e == EXP_CANT_INTERPRET)
e = this;
}
return e;
}
/* It is possible for constant folding to change an array expression of
* unknown length, into one where the length is known.
* If the expression 'arr' is a literal, set lengthVar to be its length.
*/
void setLengthVarIfKnown(VarDeclaration *lengthVar, Expression *arr)
{
if (!lengthVar)
return;
if (lengthVar->init && !lengthVar->init->isVoidInitializer())
return; // we have previously calculated the length
size_t len;
if (arr->op == TOKstring)
len = ((StringExp *)arr)->len;
else if (arr->op == TOKarrayliteral)
len = ((ArrayLiteralExp *)arr)->elements->dim;
else
return; // we don't know the length yet
Expression *dollar = new IntegerExp(0, len, Type::tsize_t);
lengthVar->init = new ExpInitializer(0, dollar);
lengthVar->storage_class |= STCstatic | STCconst;
}
Expression *IndexExp::optimize(int result)
{ Expression *e;
//printf("IndexExp::optimize(result = %d) %s\n", result, toChars());
Expression *e1 = this->e1->optimize(WANTvalue | (result & WANTinterpret));
if (result & WANTinterpret)
e1 = fromConstInitializer(result, e1);
// We might know $ now
setLengthVarIfKnown(lengthVar, e1);
e2 = e2->optimize(WANTvalue | (result & WANTinterpret));
e = Index(type, e1, e2);
if (e == EXP_CANT_INTERPRET)
e = this;
return e;
}
Expression *SliceExp::optimize(int result)
{ Expression *e;
//printf("SliceExp::optimize(result = %d) %s\n", result, toChars());
e = this;
e1 = e1->optimize(WANTvalue | (result & WANTinterpret));
if (!lwr)
{ if (e1->op == TOKstring)
{ // Convert slice of string literal into dynamic array
Type *t = e1->type->toBasetype();
if (t->nextOf())
e = e1->castTo(NULL, t->nextOf()->arrayOf());
}
return e;
}
if (result & WANTinterpret)
e1 = fromConstInitializer(result, e1);
// We might know $ now
setLengthVarIfKnown(lengthVar, e1);
lwr = lwr->optimize(WANTvalue | (result & WANTinterpret));
upr = upr->optimize(WANTvalue | (result & WANTinterpret));
e = Slice(type, e1, lwr, upr);
if (e == EXP_CANT_INTERPRET)
e = this;
//printf("-SliceExp::optimize() %s\n", e->toChars());
return e;
}
Expression *AndAndExp::optimize(int result)
{ Expression *e;
//printf("AndAndExp::optimize(%d) %s\n", result, toChars());
e1 = e1->optimize(WANTflags | (result & WANTinterpret));
e = this;
if (e1->isBool(FALSE))
{
if (type->toBasetype()->ty == Tvoid)
e = e2;
else
{ e = new CommaExp(loc, e1, new IntegerExp(loc, 0, type));
e->type = type;
}
e = e->optimize(result);
}
else
{
e2 = e2->optimize(WANTflags | (result & WANTinterpret));
if (result && e2->type->toBasetype()->ty == Tvoid && !global.errors)
error("void has no value");
if (e1->isConst())
{
if (e2->isConst())
{ int n1 = e1->isBool(1);
int n2 = e2->isBool(1);
e = new IntegerExp(loc, n1 && n2, type);
}
else if (e1->isBool(TRUE))
{
if (type->toBasetype()->ty == Tvoid)
e = e2;
else e = new BoolExp(loc, e2, type);
}
}
}
return e;
}
Expression *OrOrExp::optimize(int result)
{ Expression *e;
e1 = e1->optimize(WANTflags | (result & WANTinterpret));
e = this;
if (e1->isBool(TRUE))
{ // Replace with (e1, 1)
e = new CommaExp(loc, e1, new IntegerExp(loc, 1, type));
e->type = type;
e = e->optimize(result);
}
else
{
e2 = e2->optimize(WANTflags | (result & WANTinterpret));
if (result && e2->type->toBasetype()->ty == Tvoid && !global.errors)
error("void has no value");
if (e1->isConst())
{
if (e2->isConst())
{ int n1 = e1->isBool(1);
int n2 = e2->isBool(1);
e = new IntegerExp(loc, n1 || n2, type);
}
else if (e1->isBool(FALSE))
{
if (type->toBasetype()->ty == Tvoid)
e = e2;
else
e = new BoolExp(loc, e2, type);
}
}
}
return e;
}
Expression *CmpExp::optimize(int result)
{ Expression *e;
//printf("CmpExp::optimize() %s\n", toChars());
e1 = e1->optimize(result);
e2 = e2->optimize(result);
if (e1->isConst() == 1 && e2->isConst() == 1)
{
e = Cmp(op, type, this->e1, this->e2);
}
else
e = this;
return e;
}
Expression *CatExp::optimize(int result)
{ Expression *e;
//printf("CatExp::optimize(%d) %s\n", result, toChars());
e1 = e1->optimize(result);
e2 = e2->optimize(result);
e = Cat(type, e1, e2);
if (e == EXP_CANT_INTERPRET)
e = this;
return e;
}
Expression *CondExp::optimize(int result)
{ Expression *e;
econd = econd->optimize(WANTflags | (result & WANTinterpret));
if (econd->isBool(TRUE))
e = e1->optimize(result);
else if (econd->isBool(FALSE))
e = e2->optimize(result);
else
{ e1 = e1->optimize(result);
e2 = e2->optimize(result);
e = this;
}
return e;
}