Files
ldc/dmd2/template.c
David Nadlinger 39e3e3a678 Replace template symbol module fix with more localized hack.
This reverts commit c4adbedcc, which would have fixed the
problem at its roots, but caused strange template function
attribute inference failures in D-YAML, presumably due to
the different order of semantic3 execution on the templates.
2012-12-31 05:46:29 +01:00

6618 lines
199 KiB
C

// Compiler implementation of the D programming language
// Copyright (c) 1999-2012 by Digital Mars
// All Rights Reserved
// written by Walter Bright
// http://www.digitalmars.com
// License for redistribution is by either the Artistic License
// in artistic.txt, or the GNU General Public License in gnu.txt.
// See the included readme.txt for details.
// Handle template implementation
#include <stdio.h>
#include <assert.h>
#include "root.h"
#include "aav.h"
#include "rmem.h"
#include "stringtable.h"
#include "mars.h"
#include "identifier.h"
#include "mtype.h"
#include "template.h"
#include "init.h"
#include "expression.h"
#include "scope.h"
#include "module.h"
#include "aggregate.h"
#include "declaration.h"
#include "dsymbol.h"
#include "hdrgen.h"
#include "id.h"
#if WINDOWS_SEH
#include <windows.h>
long __cdecl __ehfilter(LPEXCEPTION_POINTERS ep);
#endif
#define LOG 0
/********************************************
* These functions substitute for dynamic_cast. dynamic_cast does not work
* on earlier versions of gcc.
*/
Expression *isExpression(Object *o)
{
//return dynamic_cast<Expression *>(o);
if (!o || o->dyncast() != DYNCAST_EXPRESSION)
return NULL;
return (Expression *)o;
}
Dsymbol *isDsymbol(Object *o)
{
//return dynamic_cast<Dsymbol *>(o);
if (!o || o->dyncast() != DYNCAST_DSYMBOL)
return NULL;
return (Dsymbol *)o;
}
Type *isType(Object *o)
{
//return dynamic_cast<Type *>(o);
if (!o || o->dyncast() != DYNCAST_TYPE)
return NULL;
return (Type *)o;
}
Tuple *isTuple(Object *o)
{
//return dynamic_cast<Tuple *>(o);
if (!o || o->dyncast() != DYNCAST_TUPLE)
return NULL;
return (Tuple *)o;
}
/**************************************
* Is this Object an error?
*/
int isError(Object *o)
{
Type *t = isType(o);
if (t)
return (t->ty == Terror);
Expression *e = isExpression(o);
if (e)
return (e->op == TOKerror || !e->type || e->type->ty== Terror);
Tuple *v = isTuple(o);
if (v)
return arrayObjectIsError(&v->objects);
return 0;
}
/**************************************
* Are any of the Objects an error?
*/
int arrayObjectIsError(Objects *args)
{
for (size_t i = 0; i < args->dim; i++)
{
Object *o = (*args)[i];
if (isError(o))
return 1;
}
return 0;
}
/***********************
* Try to get arg as a type.
*/
Type *getType(Object *o)
{
Type *t = isType(o);
if (!t)
{ Expression *e = isExpression(o);
if (e)
t = e->type;
}
return t;
}
Dsymbol *getDsymbol(Object *oarg)
{
Dsymbol *sa;
Expression *ea = isExpression(oarg);
if (ea)
{ // Try to convert Expression to symbol
if (ea->op == TOKvar)
sa = ((VarExp *)ea)->var;
else if (ea->op == TOKfunction)
{
if (((FuncExp *)ea)->td)
sa = ((FuncExp *)ea)->td;
else
sa = ((FuncExp *)ea)->fd;
}
else
sa = NULL;
}
else
{ // Try to convert Type to symbol
Type *ta = isType(oarg);
if (ta)
sa = ta->toDsymbol(NULL);
else
sa = isDsymbol(oarg); // if already a symbol
}
return sa;
}
/******************************
* If o1 matches o2, return 1.
* Else, return 0.
*/
int match(Object *o1, Object *o2, TemplateDeclaration *tempdecl, Scope *sc)
{
Type *t1 = isType(o1);
Type *t2 = isType(o2);
Expression *e1 = isExpression(o1);
Expression *e2 = isExpression(o2);
Dsymbol *s1 = isDsymbol(o1);
Dsymbol *s2 = isDsymbol(o2);
Tuple *u1 = isTuple(o1);
Tuple *u2 = isTuple(o2);
//printf("\t match t1 %p t2 %p, e1 %p e2 %p, s1 %p s2 %p, u1 %p u2 %p\n", t1,t2,e1,e2,s1,s2,u1,u2);
/* A proper implementation of the various equals() overrides
* should make it possible to just do o1->equals(o2), but
* we'll do that another day.
*/
if (s1)
{
VarDeclaration *v1 = s1->isVarDeclaration();
if (v1 && v1->storage_class & STCmanifest)
{ ExpInitializer *ei1 = v1->init->isExpInitializer();
if (ei1)
e1 = ei1->exp, s1 = NULL;
}
}
if (s2)
{
VarDeclaration *v2 = s2->isVarDeclaration();
if (v2 && v2->storage_class & STCmanifest)
{ ExpInitializer *ei2 = v2->init->isExpInitializer();
if (ei2)
e2 = ei2->exp, s2 = NULL;
}
}
if (t1)
{
/* if t1 is an instance of ti, then give error
* about recursive expansions.
*/
Dsymbol *s = t1->toDsymbol(sc);
if (s && s->parent)
{ TemplateInstance *ti1 = s->parent->isTemplateInstance();
if (ti1 && ti1->tempdecl == tempdecl)
{
for (Scope *sc1 = sc; sc1; sc1 = sc1->enclosing)
{
if (sc1->scopesym == ti1)
{
tempdecl->error("recursive template expansion for template argument %s", t1->toChars());
return 1; // fake a match
}
}
}
}
//printf("t1 = %s\n", t1->toChars());
//printf("t2 = %s\n", t2->toChars());
if (!t2 || !t1->equals(t2))
goto Lnomatch;
}
else if (e1)
{
#if 0
if (e1 && e2)
{
printf("match %d\n", e1->equals(e2));
e1->print();
e2->print();
e1->type->print();
e2->type->print();
}
#endif
if (!e2)
goto Lnomatch;
if (!e1->equals(e2))
goto Lnomatch;
}
else if (s1)
{
if (!s2 || !s1->equals(s2) || s1->parent != s2->parent)
goto Lnomatch;
}
else if (u1)
{
if (!u2)
goto Lnomatch;
if (u1->objects.dim != u2->objects.dim)
goto Lnomatch;
for (size_t i = 0; i < u1->objects.dim; i++)
{
if (!match(u1->objects[i],
u2->objects[i],
tempdecl, sc))
goto Lnomatch;
}
}
//printf("match\n");
return 1; // match
Lnomatch:
//printf("nomatch\n");
return 0; // nomatch;
}
/************************************
* Match an array of them.
*/
int arrayObjectMatch(Objects *oa1, Objects *oa2, TemplateDeclaration *tempdecl, Scope *sc)
{
if (oa1 == oa2)
return 1;
if (oa1->dim != oa2->dim)
return 0;
for (size_t j = 0; j < oa1->dim; j++)
{ Object *o1 = (*oa1)[j];
Object *o2 = (*oa2)[j];
if (!match(o1, o2, tempdecl, sc))
{
return 0;
}
}
return 1;
}
/****************************************
* This makes a 'pretty' version of the template arguments.
* It's analogous to genIdent() which makes a mangled version.
*/
void ObjectToCBuffer(OutBuffer *buf, HdrGenState *hgs, Object *oarg)
{
//printf("ObjectToCBuffer()\n");
Type *t = isType(oarg);
Expression *e = isExpression(oarg);
Dsymbol *s = isDsymbol(oarg);
Tuple *v = isTuple(oarg);
/* The logic of this should match what genIdent() does. The _dynamic_cast()
* function relies on all the pretty strings to be unique for different classes
* (see Bugzilla 7375).
* Perhaps it would be better to demangle what genIdent() does.
*/
if (t)
{ //printf("\tt: %s ty = %d\n", t->toChars(), t->ty);
t->toCBuffer(buf, NULL, hgs);
}
else if (e)
{
if (e->op == TOKvar)
e = e->optimize(WANTvalue); // added to fix Bugzilla 7375
e->toCBuffer(buf, hgs);
}
else if (s)
{
char *p = s->ident ? s->ident->toChars() : s->toChars();
buf->writestring(p);
}
else if (v)
{
Objects *args = &v->objects;
for (size_t i = 0; i < args->dim; i++)
{
if (i)
buf->writeByte(',');
Object *o = (*args)[i];
ObjectToCBuffer(buf, hgs, o);
}
}
else if (!oarg)
{
buf->writestring("NULL");
}
else
{
#ifdef DEBUG
printf("bad Object = %p\n", oarg);
#endif
assert(0);
}
}
#if DMDV2
Object *objectSyntaxCopy(Object *o)
{
if (!o)
return NULL;
Type *t = isType(o);
if (t)
return t->syntaxCopy();
Expression *e = isExpression(o);
if (e)
return e->syntaxCopy();
return o;
}
#endif
/* ======================== TemplateDeclaration ============================= */
TemplateDeclaration::TemplateDeclaration(Loc loc, Identifier *id,
TemplateParameters *parameters, Expression *constraint, Dsymbols *decldefs, int ismixin)
: ScopeDsymbol(id)
{
#if LOG
printf("TemplateDeclaration(this = %p, id = '%s')\n", this, id->toChars());
#endif
#if 0
if (parameters)
for (int i = 0; i < parameters->dim; i++)
{ TemplateParameter *tp = (*parameters)[i];
//printf("\tparameter[%d] = %p\n", i, tp);
TemplateTypeParameter *ttp = tp->isTemplateTypeParameter();
if (ttp)
{
printf("\tparameter[%d] = %s : %s\n", i, tp->ident->toChars(), ttp->specType ? ttp->specType->toChars() : "");
}
}
#endif
this->loc = loc;
this->parameters = parameters;
this->origParameters = parameters;
this->constraint = constraint;
this->members = decldefs;
this->overnext = NULL;
this->overroot = NULL;
this->semanticRun = PASSinit;
this->onemember = NULL;
this->literal = 0;
this->ismixin = ismixin;
this->previous = NULL;
// Compute in advance for Ddoc's use
if (members)
{
Dsymbol *s;
if (Dsymbol::oneMembers(members, &s, ident) && s)
{
onemember = s;
s->parent = this;
}
}
}
Dsymbol *TemplateDeclaration::syntaxCopy(Dsymbol *)
{
//printf("TemplateDeclaration::syntaxCopy()\n");
TemplateDeclaration *td;
TemplateParameters *p;
p = NULL;
if (parameters)
{
p = new TemplateParameters();
p->setDim(parameters->dim);
for (size_t i = 0; i < p->dim; i++)
{ TemplateParameter *tp = (*parameters)[i];
(*p)[i] = tp->syntaxCopy();
}
}
Expression *e = NULL;
if (constraint)
e = constraint->syntaxCopy();
Dsymbols *d = Dsymbol::arraySyntaxCopy(members);
td = new TemplateDeclaration(loc, ident, p, e, d, ismixin);
#if IN_LLVM
td->intrinsicName = intrinsicName;
#endif
return td;
}
void TemplateDeclaration::semantic(Scope *sc)
{
#if LOG
printf("TemplateDeclaration::semantic(this = %p, id = '%s')\n", this, ident->toChars());
printf("sc->stc = %llx\n", sc->stc);
printf("sc->module = %s\n", sc->module->toChars());
#endif
if (semanticRun)
return; // semantic() already run
semanticRun = PASSsemantic;
// Remember templates defined in module object that we need to know about
if (sc->module && sc->module->ident == Id::object)
{
if (ident == Id::AssociativeArray)
Type::associativearray = this;
else if (ident == Id::RTInfo)
Type::rtinfo = this;
}
if (sc->func)
{
#if DMDV1
error("cannot declare template at function scope %s", sc->func->toChars());
#endif
}
if (/*global.params.useArrayBounds &&*/ sc->module)
{
// Generate this function as it may be used
// when template is instantiated in other modules
// FIXME: LDC
//sc->module->toModuleArray();
}
if (/*global.params.useAssert &&*/ sc->module)
{
// Generate this function as it may be used
// when template is instantiated in other modules
// FIXME: LDC
//sc->module->toModuleAssert();
}
#if DMDV2
if (sc->module)
{
// Generate this function as it may be used
// when template is instantiated in other modules
// FIXME: LDC
// sc->module->toModuleUnittest();
}
#endif
/* Remember Scope for later instantiations, but make
* a copy since attributes can change.
*/
if (!this->scope)
{ this->scope = new Scope(*sc);
this->scope->setNoFree();
}
// Set up scope for parameters
ScopeDsymbol *paramsym = new ScopeDsymbol();
paramsym->parent = sc->parent;
Scope *paramscope = sc->push(paramsym);
paramscope->parameterSpecialization = 1;
paramscope->stc = 0;
if (!parent)
parent = sc->parent;
if (global.params.doDocComments)
{
origParameters = new TemplateParameters();
origParameters->setDim(parameters->dim);
for (size_t i = 0; i < parameters->dim; i++)
{
TemplateParameter *tp = (*parameters)[i];
(*origParameters)[i] = tp->syntaxCopy();
}
}
for (size_t i = 0; i < parameters->dim; i++)
{
TemplateParameter *tp = (*parameters)[i];
tp->declareParameter(paramscope);
}
for (size_t i = 0; i < parameters->dim; i++)
{
TemplateParameter *tp = (*parameters)[i];
tp->semantic(paramscope);
if (i + 1 != parameters->dim && tp->isTemplateTupleParameter())
{ error("template tuple parameter must be last one");
errors = true;
}
}
paramscope->pop();
// Compute again
onemember = NULL;
if (members)
{
Dsymbol *s;
if (Dsymbol::oneMembers(members, &s, ident) && s)
{
onemember = s;
s->parent = this;
}
}
/* BUG: should check:
* o no virtual functions or non-static data members of classes
*/
}
const char *TemplateDeclaration::kind()
{
return (onemember && onemember->isAggregateDeclaration())
? onemember->kind()
: (char *)"template";
}
/**********************************
* Overload existing TemplateDeclaration 'this' with the new one 's'.
* Return !=0 if successful; i.e. no conflict.
*/
int TemplateDeclaration::overloadInsert(Dsymbol *s)
{
TemplateDeclaration **pf;
TemplateDeclaration *f;
#if LOG
printf("TemplateDeclaration::overloadInsert('%s')\n", s->toChars());
#endif
f = s->isTemplateDeclaration();
if (!f)
return FALSE;
TemplateDeclaration *pthis = this;
for (pf = &pthis; *pf; pf = &(*pf)->overnext)
{
#if 0
// Conflict if TemplateParameter's match
// Will get caught anyway later with TemplateInstance, but
// should check it now.
TemplateDeclaration *f2 = *pf;
if (f->parameters->dim != f2->parameters->dim)
goto Lcontinue;
for (size_t i = 0; i < f->parameters->dim; i++)
{ TemplateParameter *p1 = (*f->parameters)[i];
TemplateParameter *p2 = (*f2->parameters)[i];
if (!p1->overloadMatch(p2))
goto Lcontinue;
}
#if LOG
printf("\tfalse: conflict\n");
#endif
return FALSE;
Lcontinue:
;
#endif
}
f->overroot = this;
*pf = f;
#if LOG
printf("\ttrue: no conflict\n");
#endif
return TRUE;
}
/****************************
* Declare all the function parameters as variables
* and add them to the scope
*/
void TemplateDeclaration::makeParamNamesVisibleInConstraint(Scope *paramscope, Expressions *fargs)
{
/* We do this ONLY if there is only one function in the template.
*/
FuncDeclaration *fd = onemember && onemember->toAlias() ?
onemember->toAlias()->isFuncDeclaration() : NULL;
if (fd)
{
/*
Making parameters is similar to FuncDeclaration::semantic3
*/
paramscope->parent = fd;
TypeFunction *tf = (TypeFunction *)fd->type->syntaxCopy();
// Shouldn't run semantic on default arguments and return type.
for (int i = 0; i<tf->parameters->dim; i++)
(*tf->parameters)[i]->defaultArg = NULL;
tf->next = NULL;
// Resolve parameter types and 'auto ref's.
tf->fargs = fargs;
tf = (TypeFunction *)tf->semantic(loc, paramscope);
Parameters *fparameters = tf->parameters;
int fvarargs = tf->varargs;
size_t nfparams = Parameter::dim(fparameters); // Num function parameters
for (size_t i = 0; i < nfparams; i++)
{
Parameter *fparam = Parameter::getNth(fparameters, i);
// Remove addMod same as func.d L1065 of FuncDeclaration::semantic3
//Type *vtype = fparam->type;
//if (fd->type && fd->isPure())
// vtype = vtype->addMod(MODconst);
fparam->storageClass &= (STCin | STCout | STCref | STClazy | STCfinal | STC_TYPECTOR | STCnodtor);
fparam->storageClass |= STCparameter;
if (fvarargs == 2 && i + 1 == nfparams)
fparam->storageClass |= STCvariadic;
}
for (size_t i = 0; i < fparameters->dim; i++)
{
Parameter *fparam = (*fparameters)[i];
if (!fparam->ident)
continue; // don't add it, if it has no name
VarDeclaration *v = new VarDeclaration(loc, fparam->type, fparam->ident, NULL);
v->storage_class = fparam->storageClass;
v->semantic(paramscope);
if (!paramscope->insert(v))
error("parameter %s.%s is already defined", toChars(), v->toChars());
else
v->parent = this;
}
}
}
/***************************************
* Given that ti is an instance of this TemplateDeclaration,
* deduce the types of the parameters to this, and store
* those deduced types in dedtypes[].
* Input:
* flag 1: don't do semantic() because of dummy types
* 2: don't change types in matchArg()
* Output:
* dedtypes deduced arguments
* Return match level.
*/
MATCH TemplateDeclaration::matchWithInstance(TemplateInstance *ti,
Objects *dedtypes, Expressions *fargs, int flag)
{ MATCH m;
size_t dedtypes_dim = dedtypes->dim;
#define LOGM 0
#if LOGM
printf("\n+TemplateDeclaration::matchWithInstance(this = %s, ti = %s, flag = %d)\n", toChars(), ti->toChars(), flag);
#endif
#if 0
printf("dedtypes->dim = %d, parameters->dim = %d\n", dedtypes_dim, parameters->dim);
if (ti->tiargs->dim)
printf("ti->tiargs->dim = %d, [0] = %p\n",
ti->tiargs->dim,
(*ti->tiargs)[0]);
#endif
dedtypes->zero();
if (errors)
return MATCHnomatch;
size_t parameters_dim = parameters->dim;
int variadic = isVariadic() != NULL;
// If more arguments than parameters, no match
if (ti->tiargs->dim > parameters_dim && !variadic)
{
#if LOGM
printf(" no match: more arguments than parameters\n");
#endif
return MATCHnomatch;
}
assert(dedtypes_dim == parameters_dim);
assert(dedtypes_dim >= ti->tiargs->dim || variadic);
// Set up scope for parameters
assert((size_t)scope > 0x10000);
ScopeDsymbol *paramsym = new ScopeDsymbol();
paramsym->parent = scope->parent;
Scope *paramscope = scope->push(paramsym);
paramscope->stc = 0;
// Attempt type deduction
m = MATCHexact;
for (size_t i = 0; i < dedtypes_dim; i++)
{ MATCH m2;
TemplateParameter *tp = (*parameters)[i];
Declaration *sparam;
//printf("\targument [%d]\n", i);
#if LOGM
//printf("\targument [%d] is %s\n", i, oarg ? oarg->toChars() : "null");
TemplateTypeParameter *ttp = tp->isTemplateTypeParameter();
if (ttp)
printf("\tparameter[%d] is %s : %s\n", i, tp->ident->toChars(), ttp->specType ? ttp->specType->toChars() : "");
#endif
m2 = tp->matchArg(paramscope, ti->tiargs, i, parameters, dedtypes, &sparam);
//printf("\tm2 = %d\n", m2);
if (m2 == MATCHnomatch)
{
#if 0
printf("\tmatchArg() for parameter %i failed\n", i);
#endif
goto Lnomatch;
}
if (m2 < m)
m = m2;
if (!flag)
sparam->semantic(paramscope);
if (!paramscope->insert(sparam))
goto Lnomatch;
}
if (!flag)
{
/* Any parameter left without a type gets the type of
* its corresponding arg
*/
for (size_t i = 0; i < dedtypes_dim; i++)
{
if (!(*dedtypes)[i])
{ assert(i < ti->tiargs->dim);
(*dedtypes)[i] = (Type *)(*ti->tiargs)[i];
}
}
}
#if DMDV2
if (m && constraint && !flag)
{ /* Check to see if constraint is satisfied.
*/
makeParamNamesVisibleInConstraint(paramscope, fargs);
Expression *e = constraint->syntaxCopy();
Scope *sc = paramscope->push();
/* There's a chicken-and-egg problem here. We don't know yet if this template
* instantiation will be a local one (isnested is set), and we won't know until
* after selecting the correct template. Thus, function we're nesting inside
* is not on the sc scope chain, and this can cause errors in FuncDeclaration::getLevel().
* Workaround the problem by setting a flag to relax the checking on frame errors.
*/
sc->flags |= SCOPEstaticif;
FuncDeclaration *fd = onemember && onemember->toAlias() ?
onemember->toAlias()->isFuncDeclaration() : NULL;
Dsymbol *s = parent;
while (s->isTemplateInstance() || s->isTemplateMixin())
s = s->parent;
AggregateDeclaration *ad = s->isAggregateDeclaration();
VarDeclaration *vthissave;
if (fd && ad)
{
vthissave = fd->vthis;
fd->vthis = fd->declareThis(paramscope, ad);
}
e = e->semantic(sc);
if (e->op == TOKerror)
goto Lnomatch;
if (fd && fd->vthis)
fd->vthis = vthissave;
sc->pop();
e = e->ctfeInterpret();
if (e->isBool(TRUE))
;
else if (e->isBool(FALSE))
goto Lnomatch;
else
{
e->error("constraint %s is not constant or does not evaluate to a bool", e->toChars());
}
}
#endif
#if LOGM
// Print out the results
printf("--------------------------\n");
printf("template %s\n", toChars());
printf("instance %s\n", ti->toChars());
if (m)
{
for (size_t i = 0; i < dedtypes_dim; i++)
{
TemplateParameter *tp = (*parameters)[i];
Object *oarg;
printf(" [%d]", i);
if (i < ti->tiargs->dim)
oarg = (*ti->tiargs)[i];
else
oarg = NULL;
tp->print(oarg, (*dedtypes)[i]);
}
}
else
goto Lnomatch;
#endif
#if LOGM
printf(" match = %d\n", m);
#endif
goto Lret;
Lnomatch:
#if LOGM
printf(" no match\n");
#endif
m = MATCHnomatch;
Lret:
paramscope->pop();
#if LOGM
printf("-TemplateDeclaration::matchWithInstance(this = %p, ti = %p) = %d\n", this, ti, m);
#endif
return m;
}
/********************************************
* Determine partial specialization order of 'this' vs td2.
* Returns:
* match this is at least as specialized as td2
* 0 td2 is more specialized than this
*/
MATCH TemplateDeclaration::leastAsSpecialized(TemplateDeclaration *td2, Expressions *fargs)
{
/* This works by taking the template parameters to this template
* declaration and feeding them to td2 as if it were a template
* instance.
* If it works, then this template is at least as specialized
* as td2.
*/
TemplateInstance ti(0, ident); // create dummy template instance
Objects dedtypes;
#define LOG_LEASTAS 0
#if LOG_LEASTAS
printf("%s.leastAsSpecialized(%s)\n", toChars(), td2->toChars());
#endif
// Set type arguments to dummy template instance to be types
// generated from the parameters to this template declaration
ti.tiargs = new Objects();
ti.tiargs->setDim(parameters->dim);
for (size_t i = 0; i < ti.tiargs->dim; i++)
{
TemplateParameter *tp = (*parameters)[i];
Object *p = (Object *)tp->dummyArg();
if (p)
(*ti.tiargs)[i] = p;
else
ti.tiargs->setDim(i);
}
// Temporary Array to hold deduced types
//dedtypes.setDim(parameters->dim);
dedtypes.setDim(td2->parameters->dim);
// Attempt a type deduction
MATCH m = td2->matchWithInstance(&ti, &dedtypes, fargs, 1);
if (m)
{
/* A non-variadic template is more specialized than a
* variadic one.
*/
if (isVariadic() && !td2->isVariadic())
goto L1;
#if LOG_LEASTAS
printf(" matches %d, so is least as specialized\n", m);
#endif
return m;
}
L1:
#if LOG_LEASTAS
printf(" doesn't match, so is not as specialized\n");
#endif
return MATCHnomatch;
}
/*************************************************
* Match function arguments against a specific template function.
* Input:
* loc instantiation location
* targsi Expression/Type initial list of template arguments
* ethis 'this' argument if !NULL
* fargs arguments to function
* Output:
* dedargs Expression/Type deduced template arguments
* Returns:
* match level
* bit 0-3 Match template parameters by inferred template arguments
* bit 4-7 Match template parameters by initial template arguments
*/
MATCH TemplateDeclaration::deduceFunctionTemplateMatch(Scope *sc, Loc loc, Objects *targsi,
Expression *ethis, Expressions *fargs,
Objects *dedargs)
{
size_t nfparams;
size_t nfargs;
size_t nargsi; // array size of targsi
int fptupindex = -1;
int tuple_dim = 0;
MATCH match = MATCHexact;
MATCH matchTargsi = MATCHexact;
FuncDeclaration *fd = onemember->toAlias()->isFuncDeclaration();
Parameters *fparameters; // function parameter list
int fvarargs; // function varargs
Objects dedtypes; // for T:T*, the dedargs is the T*, dedtypes is the T
unsigned wildmatch = 0;
TemplateParameters *inferparams = parameters;
TypeFunction *tf = (TypeFunction *)fd->type;
#if 0
printf("\nTemplateDeclaration::deduceFunctionTemplateMatch() %s\n", toChars());
for (size_t i = 0; i < fargs->dim; i++)
{ Expression *e = (*fargs)[i];
printf("\tfarg[%d] is %s, type is %s\n", i, e->toChars(), e->type->toChars());
}
printf("fd = %s\n", fd->toChars());
printf("fd->type = %s\n", fd->type->toChars());
if (ethis)
printf("ethis->type = %s\n", ethis->type->toChars());
#endif
assert((size_t)scope > 0x10000);
dedargs->setDim(parameters->dim);
dedargs->zero();
dedtypes.setDim(parameters->dim);
dedtypes.zero();
if (errors)
return MATCHnomatch;
// Set up scope for parameters
ScopeDsymbol *paramsym = new ScopeDsymbol();
paramsym->parent = scope->parent;
Scope *paramscope = scope->push(paramsym);
paramscope->stc = 0;
TemplateTupleParameter *tp = isVariadic();
int tp_is_declared = 0;
#if 0
for (size_t i = 0; i < dedargs->dim; i++)
{
printf("\tdedarg[%d] = ", i);
Object *oarg = (*dedargs)[i];
if (oarg) printf("%s", oarg->toChars());
printf("\n");
}
#endif
nargsi = 0;
if (targsi)
{ // Set initial template arguments
nargsi = targsi->dim;
size_t n = parameters->dim;
if (tp)
n--;
if (nargsi > n)
{ if (!tp)
goto Lnomatch;
/* The extra initial template arguments
* now form the tuple argument.
*/
Tuple *t = new Tuple();
assert(parameters->dim);
(*dedargs)[parameters->dim - 1] = t;
tuple_dim = nargsi - n;
t->objects.setDim(tuple_dim);
for (size_t i = 0; i < tuple_dim; i++)
{
t->objects[i] = (*targsi)[n + i];
}
declareParameter(paramscope, tp, t);
tp_is_declared = 1;
}
else
n = nargsi;
memcpy(dedargs->tdata(), targsi->tdata(), n * sizeof(*dedargs->tdata()));
for (size_t i = 0; i < n; i++)
{ assert(i < parameters->dim);
TemplateParameter *tp = (*parameters)[i];
MATCH m;
Declaration *sparam = NULL;
m = tp->matchArg(paramscope, dedargs, i, parameters, &dedtypes, &sparam);
//printf("\tdeduceType m = %d\n", m);
if (m == MATCHnomatch)
goto Lnomatch;
if (m < matchTargsi)
matchTargsi = m;
sparam->semantic(paramscope);
if (!paramscope->insert(sparam))
goto Lnomatch;
}
if (n < parameters->dim)
{
inferparams = new TemplateParameters();
inferparams->setDim(parameters->dim - n);
memcpy(inferparams->tdata(),
parameters->tdata() + n,
inferparams->dim * sizeof(*inferparams->tdata()));
}
else
inferparams = NULL;
}
#if 0
for (size_t i = 0; i < dedargs->dim; i++)
{
printf("\tdedarg[%d] = ", i);
Object *oarg = (*dedargs)[i];
if (oarg) printf("%s", oarg->toChars());
printf("\n");
}
#endif
fparameters = fd->getParameters(&fvarargs);
nfparams = Parameter::dim(fparameters); // number of function parameters
nfargs = fargs ? fargs->dim : 0; // number of function arguments
/* Check for match of function arguments with variadic template
* parameter, such as:
*
* template Foo(T, A...) { void Foo(T t, A a); }
* void main() { Foo(1,2,3); }
*/
if (tp) // if variadic
{
if (nfparams == 0 && nfargs != 0) // if no function parameters
{
if (tp_is_declared)
goto L2;
Tuple *t = new Tuple();
//printf("t = %p\n", t);
(*dedargs)[parameters->dim - 1] = t;
declareParameter(paramscope, tp, t);
goto L2;
}
else if (nfargs < nfparams - 1)
goto L1;
else
{
/* Figure out which of the function parameters matches
* the tuple template parameter. Do this by matching
* type identifiers.
* Set the index of this function parameter to fptupindex.
*/
for (fptupindex = 0; fptupindex < nfparams; fptupindex++)
{
Parameter *fparam = (*fparameters)[fptupindex];
if (fparam->type->ty != Tident)
continue;
TypeIdentifier *tid = (TypeIdentifier *)fparam->type;
if (!tp->ident->equals(tid->ident) || tid->idents.dim)
continue;
if (fvarargs) // variadic function doesn't
goto Lnomatch; // go with variadic template
if (tp_is_declared)
goto L2;
// Apply function parameter storage classes to parameter type
tid = (TypeIdentifier *)tid->addStorageClass(fparam->storageClass);
/* The types of the function arguments
* now form the tuple argument.
*/
Tuple *t = new Tuple();
(*dedargs)[parameters->dim - 1] = t;
tuple_dim = nfargs - (nfparams - 1);
t->objects.setDim(tuple_dim);
for (size_t i = 0; i < tuple_dim; i++)
{ Expression *farg = (*fargs)[fptupindex + i];
// Check invalid arguments to detect errors early.
if (farg->op == TOKerror || farg->type->ty == Terror)
goto Lnomatch;
if (!(fparam->storageClass & STClazy) && farg->type->ty == Tvoid)
goto Lnomatch;
unsigned mod = farg->type->mod;
Type *tt;
MATCH m;
#define X(U,T) ((U) << 4) | (T)
if (tid->mod & MODwild)
{
switch (X(tid->mod, mod))
{
case X(MODwild, MODwild):
case X(MODwild | MODshared, MODwild | MODshared):
case X(MODwild, 0):
case X(MODwild, MODconst):
case X(MODwild, MODimmutable):
case X(MODwild | MODshared, MODshared):
case X(MODwild | MODshared, MODconst | MODshared):
if (mod & MODwild)
wildmatch |= MODwild;
else if (mod == 0)
wildmatch |= MODmutable;
else
wildmatch |= (mod & ~MODshared);
tt = farg->type->mutableOf();
m = MATCHconst;
goto Lx;
default:
break;
}
}
switch (X(tid->mod, mod))
{
case X(0, 0):
case X(0, MODconst):
case X(0, MODimmutable):
case X(0, MODshared):
case X(0, MODconst | MODshared):
case X(0, MODwild):
case X(0, MODwild | MODshared):
// foo(U:U) T => T
// foo(U:U) const(T) => const(T)
// foo(U:U) immutable(T) => immutable(T)
// foo(U:U) shared(T) => shared(T)
// foo(U:U) const(shared(T)) => const(shared(T))
// foo(U:U) wild(T) => wild(T)
// foo(U:U) wild(shared(T)) => wild(shared(T))
tt = farg->type;
m = MATCHexact;
break;
case X(MODconst, MODconst):
case X(MODimmutable, MODimmutable):
case X(MODshared, MODshared):
case X(MODconst | MODshared, MODconst | MODshared):
case X(MODwild, MODwild):
case X(MODwild | MODshared, MODwild | MODshared):
// foo(U:const(U)) const(T) => T
// foo(U:immutable(U)) immutable(T) => T
// foo(U:shared(U)) shared(T) => T
// foo(U:const(shared(U)) const(shared(T)) => T
// foo(U:wild(U)) wild(T) => T
// foo(U:wild(shared(U)) wild(shared(T)) => T
tt = farg->type->mutableOf()->unSharedOf();
m = MATCHexact;
break;
case X(MODconst, 0):
case X(MODconst, MODimmutable):
case X(MODconst, MODconst | MODshared):
case X(MODconst | MODshared, MODimmutable):
case X(MODconst, MODwild):
case X(MODconst, MODwild | MODshared):
// foo(U:const(U)) T => T
// foo(U:const(U)) immutable(T) => T
// foo(U:const(U)) const(shared(T)) => shared(T)
// foo(U:const(shared(U)) immutable(T) => T
// foo(U:const(U)) wild(shared(T)) => shared(T)
tt = farg->type->mutableOf();
m = MATCHconst;
break;
case X(MODshared, MODconst | MODshared):
case X(MODconst | MODshared, MODshared):
case X(MODshared, MODwild | MODshared):
// foo(U:shared(U)) const(shared(T)) => const(T)
// foo(U:const(shared(U)) shared(T) => T
// foo(U:shared(U)) wild(shared(T)) => wild(T)
tt = farg->type->unSharedOf();
m = MATCHconst;
break;
case X(MODimmutable, 0):
case X(MODimmutable, MODconst):
case X(MODimmutable, MODshared):
case X(MODimmutable, MODconst | MODshared):
case X(MODconst, MODshared):
case X(MODshared, 0):
case X(MODshared, MODconst):
case X(MODshared, MODimmutable):
case X(MODconst | MODshared, 0):
case X(MODconst | MODshared, MODconst):
case X(MODimmutable, MODwild):
case X(MODshared, MODwild):
case X(MODconst | MODshared, MODwild):
case X(MODwild, 0):
case X(MODwild, MODconst):
case X(MODwild, MODimmutable):
case X(MODwild, MODshared):
case X(MODwild, MODconst | MODshared):
case X(MODwild | MODshared, 0):
case X(MODwild | MODshared, MODconst):
case X(MODwild | MODshared, MODimmutable):
case X(MODwild | MODshared, MODshared):
case X(MODwild | MODshared, MODconst | MODshared):
case X(MODwild | MODshared, MODwild):
case X(MODimmutable, MODwild | MODshared):
case X(MODconst | MODshared, MODwild | MODshared):
case X(MODwild, MODwild | MODshared):
// foo(U:immutable(U)) T => nomatch
// foo(U:immutable(U)) const(T) => nomatch
// foo(U:immutable(U)) shared(T) => nomatch
// foo(U:immutable(U)) const(shared(T)) => nomatch
// foo(U:const(U)) shared(T) => nomatch
// foo(U:shared(U)) T => nomatch
// foo(U:shared(U)) const(T) => nomatch
// foo(U:shared(U)) immutable(T) => nomatch
// foo(U:const(shared(U)) T => nomatch
// foo(U:const(shared(U)) const(T) => nomatch
// foo(U:immutable(U)) wild(T) => nomatch
// foo(U:shared(U)) wild(T) => nomatch
// foo(U:const(shared(U)) wild(T) => nomatch
// foo(U:wild(U)) T => nomatch
// foo(U:wild(U)) const(T) => nomatch
// foo(U:wild(U)) immutable(T) => nomatch
// foo(U:wild(U)) shared(T) => nomatch
// foo(U:wild(U)) const(shared(T)) => nomatch
// foo(U:wild(shared(U)) T => nomatch
// foo(U:wild(shared(U)) const(T) => nomatch
// foo(U:wild(shared(U)) immutable(T) => nomatch
// foo(U:wild(shared(U)) shared(T) => nomatch
// foo(U:wild(shared(U)) const(shared(T)) => nomatch
// foo(U:wild(shared(U)) wild(T) => nomatch
// foo(U:immutable(U)) wild(shared(T)) => nomatch
// foo(U:const(shared(U))) wild(shared(T)) => nomatch
// foo(U:wild(U)) wild(shared(T)) => nomatch
m = MATCHnomatch;
break;
default:
assert(0);
}
#undef X
Lx:
if (m == MATCHnomatch)
goto Lnomatch;
if (m < match)
match = m;
t->objects[i] = tt;
}
declareParameter(paramscope, tp, t);
goto L2;
}
fptupindex = -1;
}
}
L1:
if (nfparams == nfargs)
;
else if (nfargs > nfparams)
{
if (fvarargs == 0)
goto Lnomatch; // too many args, no match
match = MATCHconvert; // match ... with a conversion
}
L2:
#if DMDV2
if (ethis)
{
// Match 'ethis' to any TemplateThisParameter's
for (size_t i = 0; i < parameters->dim; i++)
{ TemplateParameter *tp = (*parameters)[i];
TemplateThisParameter *ttp = tp->isTemplateThisParameter();
if (ttp)
{ MATCH m;
Type *t = new TypeIdentifier(0, ttp->ident);
m = ethis->type->deduceType(paramscope, t, parameters, &dedtypes);
if (!m)
goto Lnomatch;
if (m < match)
match = m; // pick worst match
}
}
// Match attributes of ethis against attributes of fd
if (fd->type && !fd->isCtorDeclaration())
{
Type *tthis = ethis->type;
unsigned mod = fd->type->mod;
StorageClass stc = scope->stc | fd->storage_class2;
// Propagate parent storage class (see bug 5504)
Dsymbol *p = parent;
while (p->isTemplateDeclaration() || p->isTemplateInstance())
p = p->parent;
AggregateDeclaration *ad = p->isAggregateDeclaration();
if (ad)
stc |= ad->storage_class;
if (stc & (STCshared | STCsynchronized))
mod |= MODshared;
if (stc & STCimmutable)
mod |= MODimmutable;
if (stc & STCconst)
mod |= MODconst;
if (stc & STCwild)
mod |= MODwild;
// Fix mod
if (mod & MODimmutable)
mod = MODimmutable;
if (mod & MODconst)
mod &= ~STCwild;
if (tthis->mod != mod)
{
if (!MODmethodConv(tthis->mod, mod))
goto Lnomatch;
if (MATCHconst < match)
match = MATCHconst;
}
}
}
#endif
// Loop through the function parameters
for (size_t parami = 0; parami < nfparams; parami++)
{
/* Skip over function parameters which wound up
* as part of a template tuple parameter.
*/
if (parami == fptupindex)
continue;
/* Set i = index into function arguments
* Function parameters correspond to function arguments as follows.
* Note that tuple_dim may be zero, and there may be default or
* variadic arguments at the end.
* arg [0..fptupindex] == param[0..fptupindex]
* arg [fptupindex..fptupindex+tuple_dim] == param[fptupindex]
* arg[fputupindex+dim.. ] == param[fptupindex+1.. ]
*/
size_t i = parami;
if (fptupindex >= 0 && parami > fptupindex)
i += tuple_dim - 1;
Parameter *fparam = Parameter::getNth(fparameters, parami);
Type *prmtype = fparam->type;
if (i >= nfargs) // if not enough arguments
{
if (fparam->defaultArg)
{ /* Default arguments do not participate in template argument
* deduction.
*/
goto Lmatch;
}
}
else
{
Expression *farg = (*fargs)[i];
// Check invalid arguments to detect errors early.
if (farg->op == TOKerror || farg->type->ty == Terror)
goto Lnomatch;
Lretry:
#if 0
printf("\tfarg->type = %s\n", farg->type->toChars());
printf("\tfparam->type = %s\n", prmtype->toChars());
#endif
Type *argtype = farg->type;
// Apply function parameter storage classes to parameter types
prmtype = prmtype->addStorageClass(fparam->storageClass);
// If parameter type doesn't depend on inferred template parameters,
// semantic it to get actual type.
if (!inferparams || !prmtype->reliesOnTident(inferparams))
{
// should copy prmtype to avoid affecting semantic result
prmtype = prmtype->syntaxCopy()->semantic(loc, paramscope);
}
#if DMDV2
/* Allow string literals which are type [] to match with [dim]
*/
if (farg->op == TOKstring)
{ StringExp *se = (StringExp *)farg;
if (!se->committed && argtype->ty == Tarray &&
prmtype->toBasetype()->ty == Tsarray)
{
argtype = new TypeSArray(argtype->nextOf(), new IntegerExp(se->loc, se->len, Type::tindex));
argtype = argtype->semantic(se->loc, NULL);
argtype = argtype->invariantOf();
}
}
/* Allow implicit function literals to delegate conversion
*/
if (farg->op == TOKfunction)
{ FuncExp *fe = (FuncExp *)farg;
Type *tp = prmtype;
Expression *e = fe->inferType(tp, 1, parameters);
if (!e)
goto Lvarargs;
farg = e;
argtype = farg->type;
}
if (!(fparam->storageClass & STClazy) && argtype->ty == Tvoid)
goto Lnomatch;
/* Remove top const for dynamic array types and pointer types
*/
if ((argtype->ty == Tarray || argtype->ty == Tpointer) &&
!argtype->isMutable() &&
(!(fparam->storageClass & STCref) ||
(fparam->storageClass & STCauto) && !farg->isLvalue()))
{
argtype = argtype->mutableOf();
}
#endif
if (fvarargs == 2 && i + 1 == nfparams && i + 1 < nfargs)
goto Lvarargs;
unsigned wm = 0;
MATCH m = argtype->deduceType(paramscope, prmtype, parameters, &dedtypes, &wm);
//printf("\tdeduceType m = %d\n", m);
//printf("\twildmatch = x%x m = %d\n", wildmatch, m);
wildmatch |= wm;
/* If no match, see if the argument can be matched by using
* implicit conversions.
*/
if (!m)
m = farg->implicitConvTo(prmtype);
/* If no match, see if there's a conversion to a delegate
*/
if (!m)
{ Type *tbp = prmtype->toBasetype();
Type *tba = farg->type->toBasetype();
AggregateDeclaration *ad;
if (tbp->ty == Tdelegate)
{
TypeDelegate *td = (TypeDelegate *)prmtype->toBasetype();
TypeFunction *tf = (TypeFunction *)td->next;
if (!tf->varargs && Parameter::dim(tf->parameters) == 0)
{
m = farg->type->deduceType(paramscope, tf->next, parameters, &dedtypes);
if (!m && tf->next->toBasetype()->ty == Tvoid)
m = MATCHconvert;
}
//printf("\tm2 = %d\n", m);
}
else if (tba->ty == Tclass)
{
ad = ((TypeClass *)tba)->sym;
goto Lad;
}
else if (tba->ty == Tstruct)
{
ad = ((TypeStruct *)tba)->sym;
Lad:
if (ad->aliasthis)
{ /* If a semantic error occurs while doing alias this,
* eg purity(bug 7295), just regard it as not a match.
*/
unsigned olderrors = global.startGagging();
Expression *e = resolveAliasThis(sc, farg);
if (!global.endGagging(olderrors))
{ farg = e;
goto Lretry;
}
}
}
}
if (m && (fparam->storageClass & (STCref | STCauto)) == STCref)
{ if (!farg->isLvalue())
{
if (farg->op == TOKstructliteral)
m = MATCHconvert;
else if (farg->op == TOKcall)
{
CallExp *ce = (CallExp *)farg;
if (ce->e1->op == TOKdotvar &&
((DotVarExp *)ce->e1)->var->isCtorDeclaration())
{
m = MATCHconvert;
}
else
goto Lnomatch;
}
else
goto Lnomatch;
}
}
if (m && (fparam->storageClass & STCout))
{ if (!farg->isLvalue())
goto Lnomatch;
}
if (!m && (fparam->storageClass & STClazy) && prmtype->ty == Tvoid &&
farg->type->ty != Tvoid)
m = MATCHconvert;
if (m)
{ if (m < match)
match = m; // pick worst match
continue;
}
}
Lvarargs:
/* The following code for variadic arguments closely
* matches TypeFunction::callMatch()
*/
if (!(fvarargs == 2 && i + 1 == nfparams))
goto Lnomatch;
/* Check for match with function parameter T...
*/
Type *tb = prmtype->toBasetype();
switch (tb->ty)
{
// Perhaps we can do better with this, see TypeFunction::callMatch()
case Tsarray:
{ TypeSArray *tsa = (TypeSArray *)tb;
dinteger_t sz = tsa->dim->toInteger();
if (sz != nfargs - i)
goto Lnomatch;
}
case Tarray:
{ TypeArray *ta = (TypeArray *)tb;
for (; i < nfargs; i++)
{
Expression *arg = (*fargs)[i];
assert(arg);
if (arg->op == TOKfunction)
{ FuncExp *fe = (FuncExp *)arg;
Type *tp = tb->nextOf();
Expression *e = fe->inferType(tp, 1, parameters);
if (!e)
goto Lnomatch;
arg = e;
}
MATCH m;
/* If lazy array of delegates,
* convert arg(s) to delegate(s)
*/
Type *tret = fparam->isLazyArray();
if (tret)
{
if (ta->next->equals(arg->type))
{ m = MATCHexact;
}
else
{
m = arg->implicitConvTo(tret);
if (m == MATCHnomatch)
{
if (tret->toBasetype()->ty == Tvoid)
m = MATCHconvert;
}
}
}
else
{
m = arg->type->deduceType(paramscope, ta->next, parameters, &dedtypes);
//m = arg->implicitConvTo(ta->next);
}
if (m == MATCHnomatch)
goto Lnomatch;
if (m < match)
match = m;
}
goto Lmatch;
}
case Tclass:
case Tident:
goto Lmatch;
default:
goto Lnomatch;
}
}
Lmatch:
for (size_t i = nargsi; i < dedargs->dim; i++)
{
TemplateParameter *tparam = (*parameters)[i];
//printf("tparam[%d] = %s\n", i, tparam->ident->toChars());
/* For T:T*, the dedargs is the T*, dedtypes is the T
* But for function templates, we really need them to match
*/
Object *oarg = (*dedargs)[i];
Object *oded = dedtypes[i];
//printf("1dedargs[%d] = %p, dedtypes[%d] = %p\n", i, oarg, i, oded);
//if (oarg) printf("oarg: %s\n", oarg->toChars());
//if (oded) printf("oded: %s\n", oded->toChars());
if (!oarg)
{
if (oded)
{
if (tparam->specialization())
{ /* The specialization can work as long as afterwards
* the oded == oarg
*/
Declaration *sparam;
(*dedargs)[i] = oded;
MATCH m2 = tparam->matchArg(paramscope, dedargs, i, parameters, &dedtypes, &sparam);
//printf("m2 = %d\n", m2);
if (!m2)
goto Lnomatch;
if (m2 < match)
match = m2; // pick worst match
if (dedtypes[i] != oded)
error("specialization not allowed for deduced parameter %s", tparam->ident->toChars());
}
}
else
{ oded = tparam->defaultArg(loc, paramscope);
if (!oded)
{
if (tp && // if tuple parameter and
fptupindex < 0 && // tuple parameter was not in function parameter list and
nargsi == dedargs->dim - 1) // we're one argument short (i.e. no tuple argument)
{ // make tuple argument an empty tuple
oded = (Object *)new Tuple();
}
else
goto Lnomatch;
}
}
declareParameter(paramscope, tparam, oded);
(*dedargs)[i] = oded;
}
}
#if DMDV2
if (constraint)
{ /* Check to see if constraint is satisfied.
* Most of this code appears twice; this is a good candidate for refactoring.
*/
makeParamNamesVisibleInConstraint(paramscope, fargs);
Expression *e = constraint->syntaxCopy();
paramscope->ignoreTemplates++;
paramscope->flags |= SCOPEstaticif;
/* Detect recursive attempts to instantiate this template declaration,
* Bugzilla 4072
* void foo(T)(T x) if (is(typeof(foo(x)))) { }
* static assert(!is(typeof(foo(7))));
* Recursive attempts are regarded as a constraint failure.
*/
int nmatches = 0;
for (Previous *p = previous; p; p = p->prev)
{
if (arrayObjectMatch(p->dedargs, dedargs, this, sc))
{
//printf("recursive, no match p->sc=%p %p %s\n", p->sc, this, this->toChars());
/* It must be a subscope of p->sc, other scope chains are not recursive
* instantiations.
*/
for (Scope *scx = sc; scx; scx = scx->enclosing)
{
if (scx == p->sc)
goto Lnomatch;
}
}
/* BUG: should also check for ref param differences
*/
}
Previous pr;
pr.prev = previous;
pr.sc = paramscope;
pr.dedargs = dedargs;
previous = &pr; // add this to threaded list
int nerrors = global.errors;
FuncDeclaration *fd = onemember && onemember->toAlias() ?
onemember->toAlias()->isFuncDeclaration() : NULL;
Dsymbol *s = parent;
while (s->isTemplateInstance() || s->isTemplateMixin())
s = s->parent;
AggregateDeclaration *ad = s->isAggregateDeclaration();
VarDeclaration *vthissave;
if (fd && ad)
{
vthissave = fd->vthis;
fd->vthis = fd->declareThis(paramscope, ad);
}
e = e->semantic(paramscope);
if (fd && fd->vthis)
fd->vthis = vthissave;
previous = pr.prev; // unlink from threaded list
if (nerrors != global.errors) // if any errors from evaluating the constraint, no match
goto Lnomatch;
if (e->op == TOKerror)
goto Lnomatch;
e = e->ctfeInterpret();
if (e->isBool(TRUE))
;
else if (e->isBool(FALSE))
goto Lnomatch;
else
{
e->error("constraint %s is not constant or does not evaluate to a bool", e->toChars());
}
}
#endif
#if 0
for (i = 0; i < dedargs->dim; i++)
{ Type *t = (*dedargs)[i];
printf("\tdedargs[%d] = %d, %s\n", i, t->dyncast(), t->toChars());
}
#endif
paramscope->pop();
//printf("\tmatch %d\n", match);
return (MATCH)(match | (matchTargsi<<4));
Lnomatch:
paramscope->pop();
//printf("\tnomatch\n");
return MATCHnomatch;
}
/**************************************************
* Declare template parameter tp with value o, and install it in the scope sc.
*/
void TemplateDeclaration::declareParameter(Scope *sc, TemplateParameter *tp, Object *o)
{
//printf("TemplateDeclaration::declareParameter('%s', o = %p)\n", tp->ident->toChars(), o);
Type *targ = isType(o);
Expression *ea = isExpression(o);
Dsymbol *sa = isDsymbol(o);
Tuple *va = isTuple(o);
Dsymbol *s;
// See if tp->ident already exists with a matching definition
Dsymbol *scopesym;
s = sc->search(loc, tp->ident, &scopesym);
if (s && scopesym == sc->scopesym)
{
TupleDeclaration *td = s->isTupleDeclaration();
if (va && td)
{ Tuple tup;
tup.objects = *td->objects;
if (match(va, &tup, this, sc))
{
return;
}
}
}
if (ea && ea->op == TOKtype)
targ = ea->type;
else if (ea && ea->op == TOKimport)
sa = ((ScopeExp *)ea)->sds;
else if (ea && (ea->op == TOKthis || ea->op == TOKsuper))
sa = ((ThisExp *)ea)->var;
if (targ)
{
//printf("type %s\n", targ->toChars());
s = new AliasDeclaration(0, tp->ident, targ);
}
else if (sa)
{
//printf("Alias %s %s;\n", sa->ident->toChars(), tp->ident->toChars());
s = new AliasDeclaration(0, tp->ident, sa);
}
else if (ea && ea->op == TOKfunction)
{
if (((FuncExp *)ea)->td)
sa = ((FuncExp *)ea)->td;
else
sa = ((FuncExp *)ea)->fd;
s = new AliasDeclaration(0, tp->ident, sa);
}
else if (ea)
{
// tdtypes.data[i] always matches ea here
Initializer *init = new ExpInitializer(loc, ea);
TemplateValueParameter *tvp = tp->isTemplateValueParameter();
Type *t = tvp ? tvp->valType : NULL;
VarDeclaration *v = new VarDeclaration(loc, t, tp->ident, init);
v->storage_class = STCmanifest;
s = v;
}
else if (va)
{
//printf("\ttuple\n");
s = new TupleDeclaration(loc, tp->ident, &va->objects);
}
else
{
#ifdef DEBUG
o->print();
#endif
assert(0);
}
if (!sc->insert(s))
error("declaration %s is already defined", tp->ident->toChars());
s->semantic(sc);
}
/**************************************
* Determine if TemplateDeclaration is variadic.
*/
TemplateTupleParameter *isVariadic(TemplateParameters *parameters)
{ size_t dim = parameters->dim;
TemplateTupleParameter *tp = NULL;
if (dim)
tp = ((*parameters)[dim - 1])->isTemplateTupleParameter();
return tp;
}
TemplateTupleParameter *TemplateDeclaration::isVariadic()
{
return ::isVariadic(parameters);
}
/***********************************
* We can overload templates.
*/
int TemplateDeclaration::isOverloadable()
{
return 1;
}
/*************************************************
* Given function arguments, figure out which template function
* to expand, and return that function.
* If no match, give error message and return NULL.
* Input:
* sc instantiation scope
* loc instantiation location
* targsi initial list of template arguments
* ethis if !NULL, the 'this' pointer argument
* fargs arguments to function
* flags 1: do not issue error message on no match, just return NULL
*/
FuncDeclaration *TemplateDeclaration::deduceFunctionTemplate(Scope *sc, Loc loc,
Objects *targsi, Expression *ethis, Expressions *fargs, int flags)
{
MATCH m_best = MATCHnomatch;
MATCH m_best2 = MATCHnomatch;
TemplateDeclaration *td_ambig = NULL;
TemplateDeclaration *td_best = NULL;
Objects *tdargs = new Objects();
TemplateInstance *ti;
FuncDeclaration *fd_best;
#if 0
printf("TemplateDeclaration::deduceFunctionTemplate() %s\n", toChars());
printf(" targsi:\n");
if (targsi)
{ for (size_t i = 0; i < targsi->dim; i++)
{ Object *arg = (*targsi)[i];
printf("\t%s\n", arg->toChars());
}
}
printf(" fargs:\n");
for (size_t i = 0; i < fargs->dim; i++)
{ Expression *arg = (*fargs)[i];
printf("\t%s %s\n", arg->type->toChars(), arg->toChars());
//printf("\tty = %d\n", arg->type->ty);
}
printf("stc = %llx\n", scope->stc);
#endif
for (TemplateDeclaration *td = this; td; td = td->overnext)
{
if (!td->semanticRun)
{
error("forward reference to template %s", td->toChars());
goto Lerror;
}
if (!td->onemember || !td->onemember->toAlias()->isFuncDeclaration())
{
error("is not a function template");
goto Lerror;
}
MATCH m, m2;
Objects dedargs;
FuncDeclaration *fd = NULL;
m = td->deduceFunctionTemplateMatch(sc, loc, targsi, ethis, fargs, &dedargs);
m2 = (MATCH)(m >> 4);
m = (MATCH)(m & 0xF);
//printf("deduceFunctionTemplateMatch = %d, m2 = %d\n", m, m2);
if (!m) // if no match
continue;
if (m2 < m_best2)
goto Ltd_best;
if (m2 > m_best2)
goto Ltd;
if (m < m_best)
goto Ltd_best;
if (m > m_best)
goto Ltd;
{
// Disambiguate by picking the most specialized TemplateDeclaration
MATCH c1 = td->leastAsSpecialized(td_best, fargs);
MATCH c2 = td_best->leastAsSpecialized(td, fargs);
//printf("1: c1 = %d, c2 = %d\n", c1, c2);
if (c1 > c2)
goto Ltd;
else if (c1 < c2)
goto Ltd_best;
}
if (!fd_best)
{
fd_best = td_best->doHeaderInstantiation(sc, tdargs, fargs);
if (!fd_best)
goto Lerror;
}
{
fd = td->doHeaderInstantiation(sc, &dedargs, fargs);
if (!fd)
goto Lerror;
}
assert(fd && fd_best);
{
// Disambiguate by tf->callMatch
TypeFunction *tf1 = (TypeFunction *)fd->type;
TypeFunction *tf2 = (TypeFunction *)fd_best->type;
MATCH c1 = (MATCH) tf1->callMatch(fd->needThis() && !fd->isCtorDeclaration() ? ethis : NULL, fargs);
MATCH c2 = (MATCH) tf2->callMatch(fd_best->needThis() && !fd_best->isCtorDeclaration() ? ethis : NULL, fargs);
//printf("2: c1 = %d, c2 = %d\n", c1, c2);
if (c1 > c2)
goto Ltd;
if (c1 < c2)
goto Ltd_best;
}
{
// Disambiguate by picking the most specialized FunctionDeclaration
MATCH c1 = fd->leastAsSpecialized(fd_best);
MATCH c2 = fd_best->leastAsSpecialized(fd);
//printf("3: c1 = %d, c2 = %d\n", c1, c2);
if (c1 > c2)
goto Ltd;
if (c1 < c2)
goto Ltd_best;
}
Lambig: // td_best and td are ambiguous
td_ambig = td;
continue;
Ltd_best: // td_best is the best match so far
td_ambig = NULL;
continue;
Ltd: // td is the new best match
td_ambig = NULL;
assert((size_t)td->scope > 0x10000);
td_best = td;
fd_best = fd;
m_best = m;
m_best2 = m2;
tdargs->setDim(dedargs.dim);
memcpy(tdargs->tdata(), dedargs.tdata(), tdargs->dim * sizeof(void *));
continue;
}
if (!td_best)
{
if (!(flags & 1))
::error(loc, "%s %s.%s does not match any function template declaration",
kind(), parent->toPrettyChars(), ident->toChars());
goto Lerror;
}
if (td_ambig)
{
::error(loc, "%s %s.%s matches more than one template declaration, %s(%d):%s and %s(%d):%s",
kind(), parent->toPrettyChars(), ident->toChars(),
td_best->loc.filename, td_best->loc.linnum, td_best->toChars(),
td_ambig->loc.filename, td_ambig->loc.linnum, td_ambig->toChars());
}
/* The best match is td_best with arguments tdargs.
* Now instantiate the template.
*/
assert((size_t)td_best->scope > 0x10000);
ti = new TemplateInstance(loc, td_best, tdargs);
ti->semantic(sc, fargs);
fd_best = ti->toAlias()->isFuncDeclaration();
if (!fd_best)
goto Lerror;
if (!((TypeFunction*)fd_best->type)->callMatch(fd_best->needThis() && !fd_best->isCtorDeclaration() ? ethis : NULL, fargs))
goto Lerror;
if (FuncLiteralDeclaration *fld = fd_best->isFuncLiteralDeclaration())
{
// Inside template constraint, nested reference check doesn't work correctly.
if (!(sc->flags & SCOPEstaticif) && fld->tok == TOKreserved)
{ // change to non-nested
fld->tok = TOKfunction;
fld->vthis = NULL;
}
}
/* As Bugzilla 3682 shows, a template instance can be matched while instantiating
* that same template. Thus, the function type can be incomplete. Complete it.
*/
{ TypeFunction *tf = (TypeFunction *)fd_best->type;
assert(tf->ty == Tfunction);
if (tf->next)
fd_best->type = tf->semantic(loc, sc);
}
return fd_best;
Lerror:
#if DMDV2
if (!(flags & 1))
#endif
{
HdrGenState hgs;
OutBuffer bufa;
Objects *args = targsi;
if (args)
{ for (size_t i = 0; i < args->dim; i++)
{
if (i)
bufa.writeByte(',');
Object *oarg = (*args)[i];
ObjectToCBuffer(&bufa, &hgs, oarg);
}
}
OutBuffer buf;
argExpTypesToCBuffer(&buf, fargs, &hgs);
if (this->overnext)
::error(this->loc, "%s %s.%s cannot deduce template function from argument types !(%s)(%s)",
kind(), parent->toPrettyChars(), ident->toChars(),
bufa.toChars(), buf.toChars());
else
error("cannot deduce template function from argument types !(%s)(%s)",
bufa.toChars(), buf.toChars());
}
return NULL;
}
/*************************************************
* Limited function template instantiation for using fd->leastAsSpecialized()
*/
FuncDeclaration *TemplateDeclaration::doHeaderInstantiation(Scope *sc,
Objects *tdargs, Expressions *fargs)
{
FuncDeclaration *fd = onemember->toAlias()->isFuncDeclaration();
if (!fd)
return NULL;
#if 0
printf("doHeaderInstantiation this = %s\n", toChars());
for (size_t i = 0; i < tdargs->dim; ++i)
printf("\ttdargs[%d] = %s\n", i, ((Object *)tdargs->data[i])->toChars());
#endif
assert((size_t)scope > 0x10000);
TemplateInstance *ti = new TemplateInstance(loc, this, tdargs);
ti->tinst = sc->tinst;
{
ti->tdtypes.setDim(ti->tempdecl->parameters->dim);
if (!ti->tempdecl->matchWithInstance(ti, &ti->tdtypes, fargs, 2))
return NULL;
}
ti->parent = parent;
// function body and contracts are not need
//fd = fd->syntaxCopy(NULL)->isFuncDeclaration();
fd = new FuncDeclaration(fd->loc, fd->endloc, fd->ident, fd->storage_class, fd->type->syntaxCopy());
fd->parent = ti;
Scope *scope = this->scope;
ti->argsym = new ScopeDsymbol();
ti->argsym->parent = scope->parent;
scope = scope->push(ti->argsym);
Scope *paramscope = scope->push();
paramscope->stc = 0;
ti->declareParameters(paramscope);
paramscope->pop();
{
TypeFunction *tf = (TypeFunction *)fd->type;
if (tf && tf->ty == Tfunction)
tf->fargs = fargs;
}
Scope *sc2;
sc2 = scope->push(ti);
sc2->parent = /*isnested ? sc->parent :*/ ti;
sc2->tinst = ti;
{
Scope *sc = sc2;
sc = sc->push();
if (fd->isCtorDeclaration())
sc->flags |= SCOPEctor;
fd->type = fd->type->semantic(fd->loc, sc);
sc = sc->pop();
}
//printf("\t[%s] fd->type = %s, mod = %x, ", loc.toChars(), fd->type->toChars(), fd->type->mod);
//printf("fd->needThis() = %d\n", fd->needThis());
sc2->pop();
scope->pop();
return fd;
}
bool TemplateDeclaration::hasStaticCtorOrDtor()
{
return FALSE; // don't scan uninstantiated templates
}
void TemplateDeclaration::toCBuffer(OutBuffer *buf, HdrGenState *hgs)
{
#if 0 // Should handle template functions for doc generation
if (onemember && onemember->isFuncDeclaration())
buf->writestring("foo ");
#endif
if (hgs->ddoc)
buf->writestring(kind());
else
buf->writestring("template");
buf->writeByte(' ');
buf->writestring(ident->toChars());
buf->writeByte('(');
for (size_t i = 0; i < parameters->dim; i++)
{
TemplateParameter *tp = (*parameters)[i];
if (hgs->ddoc)
tp = (*origParameters)[i];
if (i)
buf->writeByte(',');
tp->toCBuffer(buf, hgs);
}
buf->writeByte(')');
#if DMDV2
if (constraint)
{ buf->writestring(" if (");
constraint->toCBuffer(buf, hgs);
buf->writeByte(')');
}
#endif
if (hgs->hdrgen)
{
hgs->tpltMember++;
buf->writenl();
buf->writebyte('{');
buf->writenl();
for (size_t i = 0; i < members->dim; i++)
{
Dsymbol *s = (*members)[i];
s->toCBuffer(buf, hgs);
}
buf->writebyte('}');
buf->writenl();
hgs->tpltMember--;
}
}
char *TemplateDeclaration::toChars()
{ OutBuffer buf;
HdrGenState hgs;
memset(&hgs, 0, sizeof(hgs));
buf.writestring(ident->toChars());
buf.writeByte('(');
for (size_t i = 0; i < parameters->dim; i++)
{
TemplateParameter *tp = (*parameters)[i];
if (i)
buf.writeByte(',');
tp->toCBuffer(&buf, &hgs);
}
buf.writeByte(')');
#if DMDV2
if (constraint)
{ buf.writestring(" if (");
constraint->toCBuffer(&buf, &hgs);
buf.writeByte(')');
}
#endif
buf.writeByte(0);
return (char *)buf.extractData();
}
/* ======================== Type ============================================ */
/****
* Given an identifier, figure out which TemplateParameter it is.
* Return -1 if not found.
*/
int templateIdentifierLookup(Identifier *id, TemplateParameters *parameters)
{
for (size_t i = 0; i < parameters->dim; i++)
{ TemplateParameter *tp = (*parameters)[i];
if (tp->ident->equals(id))
return i;
}
return -1;
}
int templateParameterLookup(Type *tparam, TemplateParameters *parameters)
{
assert(tparam->ty == Tident);
TypeIdentifier *tident = (TypeIdentifier *)tparam;
//printf("\ttident = '%s'\n", tident->toChars());
if (tident->idents.dim == 0)
{
return templateIdentifierLookup(tident->ident, parameters);
}
return -1;
}
/* These form the heart of template argument deduction.
* Given 'this' being the type argument to the template instance,
* it is matched against the template declaration parameter specialization
* 'tparam' to determine the type to be used for the parameter.
* Example:
* template Foo(T:T*) // template declaration
* Foo!(int*) // template instantiation
* Input:
* this = int*
* tparam = T*
* parameters = [ T:T* ] // Array of TemplateParameter's
* Output:
* dedtypes = [ int ] // Array of Expression/Type's
*/
MATCH Type::deduceType(Scope *sc, Type *tparam, TemplateParameters *parameters,
Objects *dedtypes, unsigned *wildmatch)
{
#if 0
printf("Type::deduceType()\n");
printf("\tthis = %d, ", ty); print();
printf("\ttparam = %d, ", tparam->ty); tparam->print();
#endif
if (!tparam)
goto Lnomatch;
if (this == tparam)
goto Lexact;
if (tparam->ty == Tident)
{
// Determine which parameter tparam is
int i = templateParameterLookup(tparam, parameters);
if (i == -1)
{
if (!sc)
goto Lnomatch;
/* Need a loc to go with the semantic routine.
*/
Loc loc;
if (parameters->dim)
{
TemplateParameter *tp = (*parameters)[0];
loc = tp->loc;
}
/* BUG: what if tparam is a template instance, that
* has as an argument another Tident?
*/
tparam = tparam->semantic(loc, sc);
assert(tparam->ty != Tident);
return deduceType(sc, tparam, parameters, dedtypes, wildmatch);
}
TemplateParameter *tp = (*parameters)[i];
// Found the corresponding parameter tp
if (!tp->isTemplateTypeParameter())
goto Lnomatch;
Type *tt = this;
Type *at = (Type *)(*dedtypes)[i];
// 7*7 == 49 cases
#define X(U,T) ((U) << 4) | (T)
if (wildmatch && (tparam->mod & MODwild))
{
switch (X(tparam->mod, mod))
{
case X(MODwild, 0):
case X(MODwild, MODshared):
case X(MODwild, MODconst):
case X(MODwild, MODconst | MODshared):
case X(MODwild, MODimmutable):
case X(MODwild, MODwild):
case X(MODwild, MODwild | MODshared):
case X(MODwild | MODshared, MODshared):
case X(MODwild | MODshared, MODconst | MODshared):
case X(MODwild | MODshared, MODimmutable):
case X(MODwild | MODshared, MODwild | MODshared):
if (!at)
{
if (mod & MODwild)
*wildmatch |= MODwild;
else if (mod == 0)
*wildmatch |= MODmutable;
else
*wildmatch |= (mod & ~MODshared);
tt = mutableOf()->substWildTo(MODmutable);
(*dedtypes)[i] = tt;
goto Lconst;
}
//printf("\t> tt = %s, at = %s\n", tt->toChars(), at->toChars());
//printf("\t> tt->implicitConvTo(at->constOf()) = %d\n", tt->implicitConvTo(at->constOf()));
//printf("\t> at->implicitConvTo(tt->constOf()) = %d\n", at->implicitConvTo(tt->constOf()));
if (tt->equals(at))
{
goto Lconst;
}
else if (tt->implicitConvTo(at->constOf()))
{
(*dedtypes)[i] = at->constOf()->mutableOf();
*wildmatch |= MODconst;
goto Lconst;
}
else if (at->implicitConvTo(tt->constOf()))
{
(*dedtypes)[i] = tt->constOf()->mutableOf();
*wildmatch |= MODconst;
goto Lconst;
}
goto Lnomatch;
default:
break;
}
}
switch (X(tparam->mod, mod))
{
case X(0, 0):
case X(0, MODconst):
case X(0, MODimmutable):
case X(0, MODshared):
case X(0, MODconst | MODshared):
case X(0, MODwild):
case X(0, MODwild | MODshared):
// foo(U:U) T => T
// foo(U:U) const(T) => const(T)
// foo(U:U) immutable(T) => immutable(T)
// foo(U:U) shared(T) => shared(T)
// foo(U:U) const(shared(T)) => const(shared(T))
// foo(U:U) wild(T) => wild(T)
// foo(U:U) wild(shared(T)) => wild(shared(T))
if (!at)
{ (*dedtypes)[i] = tt;
goto Lexact;
}
break;
case X(MODconst, MODconst):
case X(MODimmutable, MODimmutable):
case X(MODshared, MODshared):
case X(MODconst | MODshared, MODconst | MODshared):
case X(MODwild, MODwild):
case X(MODwild | MODshared, MODwild | MODshared):
// foo(U:const(U)) const(T) => T
// foo(U:immutable(U)) immutable(T) => T
// foo(U:shared(U)) shared(T) => T
// foo(U:const(shared(U)) const(shared(T)) => T
// foo(U:wild(U)) wild(T) => T
// foo(U:wild(shared(U)) wild(shared(T)) => T
tt = mutableOf()->unSharedOf();
if (!at)
{ (*dedtypes)[i] = tt;
goto Lexact;
}
break;
case X(MODconst, 0):
case X(MODconst, MODimmutable):
case X(MODconst, MODconst | MODshared):
case X(MODconst | MODshared, MODimmutable):
case X(MODconst, MODwild):
case X(MODconst, MODwild | MODshared):
// foo(U:const(U)) T => T
// foo(U:const(U)) immutable(T) => T
// foo(U:const(U)) const(shared(T)) => shared(T)
// foo(U:const(shared(U)) immutable(T) => T
// foo(U:const(U)) wild(shared(T)) => shared(T)
tt = mutableOf();
if (!at)
{ (*dedtypes)[i] = tt;
goto Lconst;
}
break;
case X(MODshared, MODconst | MODshared):
case X(MODconst | MODshared, MODshared):
case X(MODshared, MODwild | MODshared):
// foo(U:shared(U)) const(shared(T)) => const(T)
// foo(U:const(shared(U)) shared(T) => T
// foo(U:shared(U)) wild(shared(T)) => wild(T)
tt = unSharedOf();
if (!at)
{ (*dedtypes)[i] = tt;
goto Lconst;
}
break;
case X(MODconst, MODshared):
// foo(U:const(U)) shared(T) => shared(T)
if (!at)
{ (*dedtypes)[i] = tt;
goto Lconst;
}
break;
case X(MODimmutable, 0):
case X(MODimmutable, MODconst):
case X(MODimmutable, MODshared):
case X(MODimmutable, MODconst | MODshared):
case X(MODshared, 0):
case X(MODshared, MODconst):
case X(MODshared, MODimmutable):
case X(MODconst | MODshared, 0):
case X(MODconst | MODshared, MODconst):
case X(MODimmutable, MODwild):
case X(MODshared, MODwild):
case X(MODconst | MODshared, MODwild):
case X(MODwild, 0):
case X(MODwild, MODconst):
case X(MODwild, MODimmutable):
case X(MODwild, MODshared):
case X(MODwild, MODconst | MODshared):
case X(MODwild | MODshared, 0):
case X(MODwild | MODshared, MODconst):
case X(MODwild | MODshared, MODimmutable):
case X(MODwild | MODshared, MODshared):
case X(MODwild | MODshared, MODconst | MODshared):
case X(MODwild | MODshared, MODwild):
case X(MODimmutable, MODwild | MODshared):
case X(MODconst | MODshared, MODwild | MODshared):
case X(MODwild, MODwild | MODshared):
// foo(U:immutable(U)) T => nomatch
// foo(U:immutable(U)) const(T) => nomatch
// foo(U:immutable(U)) shared(T) => nomatch
// foo(U:immutable(U)) const(shared(T)) => nomatch
// foo(U:const(U)) shared(T) => nomatch
// foo(U:shared(U)) T => nomatch
// foo(U:shared(U)) const(T) => nomatch
// foo(U:shared(U)) immutable(T) => nomatch
// foo(U:const(shared(U)) T => nomatch
// foo(U:const(shared(U)) const(T) => nomatch
// foo(U:immutable(U)) wild(T) => nomatch
// foo(U:shared(U)) wild(T) => nomatch
// foo(U:const(shared(U)) wild(T) => nomatch
// foo(U:wild(U)) T => nomatch
// foo(U:wild(U)) const(T) => nomatch
// foo(U:wild(U)) immutable(T) => nomatch
// foo(U:wild(U)) shared(T) => nomatch
// foo(U:wild(U)) const(shared(T)) => nomatch
// foo(U:wild(shared(U)) T => nomatch
// foo(U:wild(shared(U)) const(T) => nomatch
// foo(U:wild(shared(U)) immutable(T) => nomatch
// foo(U:wild(shared(U)) shared(T) => nomatch
// foo(U:wild(shared(U)) const(shared(T)) => nomatch
// foo(U:wild(shared(U)) wild(T) => nomatch
// foo(U:immutable(U)) wild(shared(T)) => nomatch
// foo(U:const(shared(U))) wild(shared(T)) => nomatch
// foo(U:wild(U)) wild(shared(T)) => nomatch
//if (!at)
goto Lnomatch;
break;
default:
assert(0);
}
#undef X
if (tt->equals(at))
goto Lexact;
else if (tt->ty == Tclass && at->ty == Tclass)
{
return tt->implicitConvTo(at);
}
else if (tt->ty == Tsarray && at->ty == Tarray &&
tt->nextOf()->implicitConvTo(at->nextOf()) >= MATCHconst)
{
goto Lexact;
}
else
goto Lnomatch;
}
else if (tparam->ty == Ttypeof)
{
/* Need a loc to go with the semantic routine.
*/
Loc loc;
if (parameters->dim)
{
TemplateParameter *tp = (*parameters)[0];
loc = tp->loc;
}
tparam = tparam->semantic(loc, sc);
}
if (ty != tparam->ty)
{
#if DMDV2
// Can't instantiate AssociativeArray!() without a scope
if (tparam->ty == Taarray && !((TypeAArray*)tparam)->sc)
((TypeAArray*)tparam)->sc = sc;
MATCH m = implicitConvTo(tparam);
if (m == MATCHnomatch)
{
Type *at = aliasthisOf();
if (at)
m = at->deduceType(sc, tparam, parameters, dedtypes, wildmatch);
}
return m;
#else
return implicitConvTo(tparam);
#endif
}
if (nextOf())
return nextOf()->deduceType(sc, tparam->nextOf(), parameters, dedtypes, wildmatch);
Lexact:
return MATCHexact;
Lnomatch:
return MATCHnomatch;
#if DMDV2
Lconst:
return MATCHconst;
#endif
}
#if DMDV2
MATCH TypeVector::deduceType(Scope *sc, Type *tparam, TemplateParameters *parameters,
Objects *dedtypes, unsigned *wildmatch)
{
#if 0
printf("TypeVector::deduceType()\n");
printf("\tthis = %d, ", ty); print();
printf("\ttparam = %d, ", tparam->ty); tparam->print();
#endif
if (tparam->ty == Tvector)
{ TypeVector *tp = (TypeVector *)tparam;
return basetype->deduceType(sc, tp->basetype, parameters, dedtypes, wildmatch);
}
return Type::deduceType(sc, tparam, parameters, dedtypes, wildmatch);
}
#endif
#if DMDV2
MATCH TypeDArray::deduceType(Scope *sc, Type *tparam, TemplateParameters *parameters,
Objects *dedtypes, unsigned *wildmatch)
{
#if 0
printf("TypeDArray::deduceType()\n");
printf("\tthis = %d, ", ty); print();
printf("\ttparam = %d, ", tparam->ty); tparam->print();
#endif
return Type::deduceType(sc, tparam, parameters, dedtypes, wildmatch);
}
#endif
MATCH TypeSArray::deduceType(Scope *sc, Type *tparam, TemplateParameters *parameters,
Objects *dedtypes, unsigned *wildmatch)
{
#if 0
printf("TypeSArray::deduceType()\n");
printf("\tthis = %d, ", ty); print();
printf("\ttparam = %d, ", tparam->ty); tparam->print();
#endif
// Extra check that array dimensions must match
if (tparam)
{
if (tparam->ty == Tarray)
{ MATCH m;
m = next->deduceType(sc, tparam->nextOf(), parameters, dedtypes, wildmatch);
if (m == MATCHexact)
m = MATCHconvert;
return m;
}
Identifier *id = NULL;
if (tparam->ty == Tsarray)
{
TypeSArray *tp = (TypeSArray *)tparam;
if (tp->dim->op == TOKvar &&
((VarExp *)tp->dim)->var->storage_class & STCtemplateparameter)
{
id = ((VarExp *)tp->dim)->var->ident;
}
else if (dim->toInteger() != tp->dim->toInteger())
return MATCHnomatch;
}
else if (tparam->ty == Taarray)
{
TypeAArray *tp = (TypeAArray *)tparam;
if (tp->index->ty == Tident &&
((TypeIdentifier *)tp->index)->idents.dim == 0)
{
id = ((TypeIdentifier *)tp->index)->ident;
}
}
if (id)
{
// This code matches code in TypeInstance::deduceType()
int i = templateIdentifierLookup(id, parameters);
if (i == -1)
goto Lnomatch;
TemplateParameter *tprm = (*parameters)[i];
TemplateValueParameter *tvp = tprm->isTemplateValueParameter();
if (!tvp)
goto Lnomatch;
Expression *e = (Expression *)(*dedtypes)[i];
if (e)
{
if (!dim->equals(e))
goto Lnomatch;
}
else
{
Type *vt = tvp->valType->semantic(0, sc);
MATCH m = (MATCH)dim->implicitConvTo(vt);
if (!m)
goto Lnomatch;
(*dedtypes)[i] = dim;
}
return next->deduceType(sc, tparam->nextOf(), parameters, dedtypes, wildmatch);
}
}
return Type::deduceType(sc, tparam, parameters, dedtypes, wildmatch);
Lnomatch:
return MATCHnomatch;
}
MATCH TypeAArray::deduceType(Scope *sc, Type *tparam, TemplateParameters *parameters, Objects *dedtypes, unsigned *wildmatch)
{
#if 0
printf("TypeAArray::deduceType()\n");
printf("\tthis = %d, ", ty); print();
printf("\ttparam = %d, ", tparam->ty); tparam->print();
#endif
// Extra check that index type must match
if (tparam && tparam->ty == Taarray)
{
TypeAArray *tp = (TypeAArray *)tparam;
if (!index->deduceType(sc, tp->index, parameters, dedtypes, wildmatch))
{
return MATCHnomatch;
}
}
return Type::deduceType(sc, tparam, parameters, dedtypes, wildmatch);
}
MATCH TypeFunction::deduceType(Scope *sc, Type *tparam, TemplateParameters *parameters, Objects *dedtypes, unsigned *wildmatch)
{
//printf("TypeFunction::deduceType()\n");
//printf("\tthis = %d, ", ty); print();
//printf("\ttparam = %d, ", tparam->ty); tparam->print();
// Extra check that function characteristics must match
if (tparam && tparam->ty == Tfunction)
{
TypeFunction *tp = (TypeFunction *)tparam;
if (varargs != tp->varargs ||
linkage != tp->linkage)
return MATCHnomatch;
size_t nfargs = Parameter::dim(this->parameters);
size_t nfparams = Parameter::dim(tp->parameters);
// bug 2579 fix: Apply function parameter storage classes to parameter types
for (size_t i = 0; i < nfparams; i++)
{
Parameter *fparam = Parameter::getNth(tp->parameters, i);
fparam->type = fparam->type->addStorageClass(fparam->storageClass);
fparam->storageClass &= ~(STC_TYPECTOR | STCin);
}
//printf("\t-> this = %d, ", ty); print();
//printf("\t-> tparam = %d, ", tparam->ty); tparam->print();
/* See if tuple match
*/
if (nfparams > 0 && nfargs >= nfparams - 1)
{
/* See if 'A' of the template parameter matches 'A'
* of the type of the last function parameter.
*/
Parameter *fparam = Parameter::getNth(tp->parameters, nfparams - 1);
assert(fparam);
assert(fparam->type);
if (fparam->type->ty != Tident)
goto L1;
TypeIdentifier *tid = (TypeIdentifier *)fparam->type;
if (tid->idents.dim)
goto L1;
/* Look through parameters to find tuple matching tid->ident
*/
size_t tupi = 0;
for (; 1; tupi++)
{ if (tupi == parameters->dim)
goto L1;
TemplateParameter *t = (*parameters)[tupi];
TemplateTupleParameter *tup = t->isTemplateTupleParameter();
if (tup && tup->ident->equals(tid->ident))
break;
}
/* The types of the function arguments [nfparams - 1 .. nfargs]
* now form the tuple argument.
*/
size_t tuple_dim = nfargs - (nfparams - 1);
/* See if existing tuple, and whether it matches or not
*/
Object *o = (*dedtypes)[tupi];
if (o)
{ // Existing deduced argument must be a tuple, and must match
Tuple *t = isTuple(o);
if (!t || t->objects.dim != tuple_dim)
return MATCHnomatch;
for (size_t i = 0; i < tuple_dim; i++)
{ Parameter *arg = Parameter::getNth(this->parameters, nfparams - 1 + i);
if (!arg->type->equals(t->objects[i]))
return MATCHnomatch;
}
}
else
{ // Create new tuple
Tuple *t = new Tuple();
t->objects.setDim(tuple_dim);
for (size_t i = 0; i < tuple_dim; i++)
{ Parameter *arg = Parameter::getNth(this->parameters, nfparams - 1 + i);
t->objects[i] = arg->type;
}
(*dedtypes)[tupi] = t;
}
nfparams--; // don't consider the last parameter for type deduction
goto L2;
}
L1:
if (nfargs != nfparams)
return MATCHnomatch;
L2:
for (size_t i = 0; i < nfparams; i++)
{
Parameter *a = Parameter::getNth(this->parameters, i);
Parameter *ap = Parameter::getNth(tp->parameters, i);
if (a->storageClass != ap->storageClass ||
!a->type->deduceType(sc, ap->type, parameters, dedtypes, wildmatch))
return MATCHnomatch;
}
}
return Type::deduceType(sc, tparam, parameters, dedtypes, wildmatch);
}
MATCH TypeIdentifier::deduceType(Scope *sc, Type *tparam, TemplateParameters *parameters, Objects *dedtypes, unsigned *wildmatch)
{
// Extra check
if (tparam && tparam->ty == Tident)
{
TypeIdentifier *tp = (TypeIdentifier *)tparam;
for (size_t i = 0; i < idents.dim; i++)
{
Identifier *id1 = idents[i];
Identifier *id2 = tp->idents[i];
if (!id1->equals(id2))
return MATCHnomatch;
}
}
return Type::deduceType(sc, tparam, parameters, dedtypes, wildmatch);
}
MATCH TypeInstance::deduceType(Scope *sc,
Type *tparam, TemplateParameters *parameters,
Objects *dedtypes, unsigned *wildmatch)
{
#if 0
printf("TypeInstance::deduceType()\n");
printf("\tthis = %d, ", ty); print();
printf("\ttparam = %d, ", tparam->ty); tparam->print();
#endif
// Extra check
if (tparam && tparam->ty == Tinstance)
{
TypeInstance *tp = (TypeInstance *)tparam;
//printf("tempinst->tempdecl = %p\n", tempinst->tempdecl);
//printf("tp->tempinst->tempdecl = %p\n", tp->tempinst->tempdecl);
if (!tp->tempinst->tempdecl)
{ //printf("tp->tempinst->name = '%s'\n", tp->tempinst->name->toChars());
if (!tp->tempinst->name->equals(tempinst->name))
{
/* Handle case of:
* template Foo(T : sa!(T), alias sa)
*/
int i = templateIdentifierLookup(tp->tempinst->name, parameters);
if (i == -1)
{ /* Didn't find it as a parameter identifier. Try looking
* it up and seeing if is an alias. See Bugzilla 1454
*/
TypeIdentifier *tid = new TypeIdentifier(0, tp->tempinst->name);
Type *t;
Expression *e;
Dsymbol *s;
tid->resolve(0, sc, &e, &t, &s);
if (t)
{
s = t->toDsymbol(sc);
if (s)
{ TemplateInstance *ti = s->parent->isTemplateInstance();
s = ti ? ti->tempdecl : NULL;
}
}
if (s)
{
s = s->toAlias();
TemplateDeclaration *td = s->isTemplateDeclaration();
if (td && td == tempinst->tempdecl)
goto L2;
}
goto Lnomatch;
}
TemplateParameter *tpx = (*parameters)[i];
// This logic duplicates tpx->matchArg()
TemplateAliasParameter *ta = tpx->isTemplateAliasParameter();
if (!ta)
goto Lnomatch;
Object *sa = tempinst->tempdecl;
if (!sa)
goto Lnomatch;
if (ta->specAlias && sa != ta->specAlias)
goto Lnomatch;
if ((*dedtypes)[i])
{ // Must match already deduced symbol
Object *s = (*dedtypes)[i];
if (s != sa)
goto Lnomatch;
}
(*dedtypes)[i] = sa;
}
}
else if (tempinst->tempdecl != tp->tempinst->tempdecl)
goto Lnomatch;
L2:
for (size_t i = 0; 1; i++)
{
//printf("\ttest: tempinst->tiargs[%d]\n", i);
Object *o1 = NULL;
if (i < tempinst->tiargs->dim)
o1 = (*tempinst->tiargs)[i];
else if (i < tempinst->tdtypes.dim && i < tp->tempinst->tiargs->dim)
// Pick up default arg
o1 = tempinst->tdtypes[i];
else if (i >= tp->tempinst->tiargs->dim)
break;
if (i >= tp->tempinst->tiargs->dim)
goto Lnomatch;
Object *o2 = (*tp->tempinst->tiargs)[i];
Type *t2 = isType(o2);
int j;
if (t2 &&
t2->ty == Tident &&
i == tp->tempinst->tiargs->dim - 1 &&
(j = templateParameterLookup(t2, parameters), j != -1) &&
j == parameters->dim - 1 &&
(*parameters)[j]->isTemplateTupleParameter())
{
/* Given:
* struct A(B...) {}
* alias A!(int, float) X;
* static if (is(X Y == A!(Z), Z...)) {}
* deduce that Z is a tuple(int, float)
*/
/* Create tuple from remaining args
*/
Tuple *vt = new Tuple();
size_t vtdim = (tempinst->tempdecl->isVariadic()
? tempinst->tiargs->dim : tempinst->tdtypes.dim) - i;
vt->objects.setDim(vtdim);
for (size_t k = 0; k < vtdim; k++)
{
Object *o;
if (k < tempinst->tiargs->dim)
o = (*tempinst->tiargs)[i + k];
else // Pick up default arg
o = tempinst->tdtypes[i + k];
vt->objects[k] = o;
}
Tuple *v = (Tuple *)(*dedtypes)[j];
if (v)
{
if (!match(v, vt, tempinst->tempdecl, sc))
goto Lnomatch;
}
else
(*dedtypes)[j] = vt;
break; //return MATCHexact;
}
else if (!o1)
break;
Type *t1 = isType(o1);
Expression *e1 = isExpression(o1);
Expression *e2 = isExpression(o2);
Dsymbol *s1 = isDsymbol(o1);
Dsymbol *s2 = isDsymbol(o2);
Tuple *v1 = isTuple(o1);
Tuple *v2 = isTuple(o2);
#if 0
if (t1) printf("t1 = %s\n", t1->toChars());
if (t2) printf("t2 = %s\n", t2->toChars());
if (e1) printf("e1 = %s\n", e1->toChars());
if (e2) printf("e2 = %s\n", e2->toChars());
if (s1) printf("s1 = %s\n", s1->toChars());
if (s2) printf("s2 = %s\n", s2->toChars());
if (v1) printf("v1 = %s\n", v1->toChars());
if (v2) printf("v2 = %s\n", v2->toChars());
#endif
if (t1 && t2)
{
if (!t1->deduceType(sc, t2, parameters, dedtypes, wildmatch))
goto Lnomatch;
}
else if (e1 && e2)
{
Le:
e1 = e1->ctfeInterpret();
e2 = e2->ctfeInterpret();
//printf("e1 = %s, type = %s %d\n", e1->toChars(), e1->type->toChars(), e1->type->ty);
//printf("e2 = %s, type = %s %d\n", e2->toChars(), e2->type->toChars(), e2->type->ty);
if (!e1->equals(e2))
{ if (e2->op == TOKvar)
{
/*
* (T:Number!(e2), int e2)
*/
j = templateIdentifierLookup(((VarExp *)e2)->var->ident, parameters);
goto L1;
}
if (!e2->implicitConvTo(e1->type))
goto Lnomatch;
e2 = e2->implicitCastTo(sc, e1->type);
e2 = e2->ctfeInterpret();
if (!e1->equals(e2))
goto Lnomatch;
}
}
else if (e1 && t2 && t2->ty == Tident)
{
j = templateParameterLookup(t2, parameters);
L1:
if (j == -1)
{
t2->resolve(loc, sc, &e2, &t2, &s2);
if (e2)
goto Le;
goto Lnomatch;
}
TemplateParameter *tp = (*parameters)[j];
// BUG: use tp->matchArg() instead of the following
TemplateValueParameter *tv = tp->isTemplateValueParameter();
if (!tv)
goto Lnomatch;
Expression *e = (Expression *)(*dedtypes)[j];
if (e)
{
if (!e1->equals(e))
goto Lnomatch;
}
else
{ Type *vt = tv->valType->semantic(0, sc);
MATCH m = (MATCH)e1->implicitConvTo(vt);
if (!m)
goto Lnomatch;
(*dedtypes)[j] = e1;
}
}
else if (s1 && s2)
{
Ls:
if (!s1->equals(s2))
goto Lnomatch;
}
else if (s1 && t2 && t2->ty == Tident)
{
j = templateParameterLookup(t2, parameters);
if (j == -1)
{
t2->resolve(loc, sc, &e2, &t2, &s2);
if (s2)
goto Ls;
goto Lnomatch;
}
TemplateParameter *tp = (*parameters)[j];
// BUG: use tp->matchArg() instead of the following
TemplateAliasParameter *ta = tp->isTemplateAliasParameter();
if (!ta)
goto Lnomatch;
Dsymbol *s = (Dsymbol *)(*dedtypes)[j];
if (s)
{
if (!s1->equals(s))
goto Lnomatch;
}
else
{
(*dedtypes)[j] = s1;
}
}
else
goto Lnomatch;
}
}
return Type::deduceType(sc, tparam, parameters, dedtypes, wildmatch);
Lnomatch:
//printf("no match\n");
return MATCHnomatch;
}
MATCH TypeStruct::deduceType(Scope *sc, Type *tparam, TemplateParameters *parameters, Objects *dedtypes, unsigned *wildmatch)
{
//printf("TypeStruct::deduceType()\n");
//printf("\tthis->parent = %s, ", sym->parent->toChars()); print();
//printf("\ttparam = %d, ", tparam->ty); tparam->print();
/* If this struct is a template struct, and we're matching
* it against a template instance, convert the struct type
* to a template instance, too, and try again.
*/
TemplateInstance *ti = sym->parent->isTemplateInstance();
if (tparam && tparam->ty == Tinstance)
{
if (ti && ti->toAlias() == sym)
{
TypeInstance *t = new TypeInstance(0, ti);
return t->deduceType(sc, tparam, parameters, dedtypes, wildmatch);
}
/* Match things like:
* S!(T).foo
*/
TypeInstance *tpi = (TypeInstance *)tparam;
if (tpi->idents.dim)
{ Identifier *id = tpi->idents[tpi->idents.dim - 1];
if (id->dyncast() == DYNCAST_IDENTIFIER && sym->ident->equals(id))
{
Type *tparent = sym->parent->getType();
if (tparent)
{
/* Slice off the .foo in S!(T).foo
*/
tpi->idents.dim--;
MATCH m = tparent->deduceType(sc, tpi, parameters, dedtypes, wildmatch);
tpi->idents.dim++;
return m;
}
}
}
}
// Extra check
if (tparam && tparam->ty == Tstruct)
{
TypeStruct *tp = (TypeStruct *)tparam;
//printf("\t%d\n", (MATCH) implicitConvTo(tp));
return implicitConvTo(tp);
}
return Type::deduceType(sc, tparam, parameters, dedtypes, wildmatch);
}
MATCH TypeEnum::deduceType(Scope *sc, Type *tparam, TemplateParameters *parameters, Objects *dedtypes, unsigned *wildmatch)
{
// Extra check
if (tparam && tparam->ty == Tenum)
{
TypeEnum *tp = (TypeEnum *)tparam;
if (sym != tp->sym)
return MATCHnomatch;
}
return Type::deduceType(sc, tparam, parameters, dedtypes, wildmatch);
}
MATCH TypeTypedef::deduceType(Scope *sc, Type *tparam, TemplateParameters *parameters, Objects *dedtypes, unsigned *wildmatch)
{
// Extra check
if (tparam && tparam->ty == Ttypedef)
{
TypeTypedef *tp = (TypeTypedef *)tparam;
if (sym != tp->sym)
return MATCHnomatch;
}
return Type::deduceType(sc, tparam, parameters, dedtypes, wildmatch);
}
/* Helper for TypeClass::deduceType().
* Classes can match with implicit conversion to a base class or interface.
* This is complicated, because there may be more than one base class which
* matches. In such cases, one or more parameters remain ambiguous.
* For example,
*
* interface I(X, Y) {}
* class C : I(uint, double), I(char, double) {}
* C x;
* foo(T, U)( I!(T, U) x)
*
* deduces that U is double, but T remains ambiguous (could be char or uint).
*
* Given a baseclass b, and initial deduced types 'dedtypes', this function
* tries to match tparam with b, and also tries all base interfaces of b.
* If a match occurs, numBaseClassMatches is incremented, and the new deduced
* types are ANDed with the current 'best' estimate for dedtypes.
*/
void deduceBaseClassParameters(BaseClass *b,
Scope *sc, Type *tparam, TemplateParameters *parameters, Objects *dedtypes,
Objects *best, int &numBaseClassMatches)
{
TemplateInstance *parti = b->base ? b->base->parent->isTemplateInstance() : NULL;
if (parti)
{
// Make a temporary copy of dedtypes so we don't destroy it
Objects *tmpdedtypes = new Objects();
tmpdedtypes->setDim(dedtypes->dim);
memcpy(tmpdedtypes->tdata(), dedtypes->tdata(), dedtypes->dim * sizeof(void *));
TypeInstance *t = new TypeInstance(0, parti);
MATCH m = t->deduceType(sc, tparam, parameters, tmpdedtypes);
if (m != MATCHnomatch)
{
// If this is the first ever match, it becomes our best estimate
if (numBaseClassMatches==0)
memcpy(best->tdata(), tmpdedtypes->tdata(), tmpdedtypes->dim * sizeof(void *));
else for (size_t k = 0; k < tmpdedtypes->dim; ++k)
{
// If we've found more than one possible type for a parameter,
// mark it as unknown.
if ((*tmpdedtypes)[k] != (*best)[k])
(*best)[k] = (*dedtypes)[k];
}
++numBaseClassMatches;
}
}
// Now recursively test the inherited interfaces
for (size_t j = 0; j < b->baseInterfaces_dim; ++j)
{
deduceBaseClassParameters( &(b->baseInterfaces)[j],
sc, tparam, parameters, dedtypes,
best, numBaseClassMatches);
}
}
MATCH TypeClass::deduceType(Scope *sc, Type *tparam, TemplateParameters *parameters, Objects *dedtypes, unsigned *wildmatch)
{
//printf("TypeClass::deduceType(this = %s)\n", toChars());
/* If this class is a template class, and we're matching
* it against a template instance, convert the class type
* to a template instance, too, and try again.
*/
TemplateInstance *ti = sym->parent->isTemplateInstance();
if (tparam && tparam->ty == Tinstance)
{
if (ti && ti->toAlias() == sym)
{
TypeInstance *t = new TypeInstance(0, ti);
MATCH m = t->deduceType(sc, tparam, parameters, dedtypes, wildmatch);
// Even if the match fails, there is still a chance it could match
// a base class.
if (m != MATCHnomatch)
return m;
}
/* Match things like:
* S!(T).foo
*/
TypeInstance *tpi = (TypeInstance *)tparam;
if (tpi->idents.dim)
{ Identifier *id = tpi->idents[tpi->idents.dim - 1];
if (id->dyncast() == DYNCAST_IDENTIFIER && sym->ident->equals(id))
{
Type *tparent = sym->parent->getType();
if (tparent)
{
/* Slice off the .foo in S!(T).foo
*/
tpi->idents.dim--;
MATCH m = tparent->deduceType(sc, tpi, parameters, dedtypes, wildmatch);
tpi->idents.dim++;
return m;
}
}
}
// If it matches exactly or via implicit conversion, we're done
MATCH m = Type::deduceType(sc, tparam, parameters, dedtypes, wildmatch);
if (m != MATCHnomatch)
return m;
/* There is still a chance to match via implicit conversion to
* a base class or interface. Because there could be more than one such
* match, we need to check them all.
*/
int numBaseClassMatches = 0; // Have we found an interface match?
// Our best guess at dedtypes
Objects *best = new Objects();
best->setDim(dedtypes->dim);
ClassDeclaration *s = sym;
while(s && s->baseclasses->dim > 0)
{
// Test the base class
deduceBaseClassParameters((*s->baseclasses)[0],
sc, tparam, parameters, dedtypes,
best, numBaseClassMatches);
// Test the interfaces inherited by the base class
for (size_t i = 0; i < s->interfaces_dim; ++i)
{
BaseClass *b = s->interfaces[i];
deduceBaseClassParameters(b, sc, tparam, parameters, dedtypes,
best, numBaseClassMatches);
}
s = (*s->baseclasses)[0]->base;
}
if (numBaseClassMatches == 0)
return MATCHnomatch;
// If we got at least one match, copy the known types into dedtypes
memcpy(dedtypes->tdata(), best->tdata(), best->dim * sizeof(void *));
return MATCHconvert;
}
// Extra check
if (tparam && tparam->ty == Tclass)
{
TypeClass *tp = (TypeClass *)tparam;
//printf("\t%d\n", (MATCH) implicitConvTo(tp));
return implicitConvTo(tp);
}
return Type::deduceType(sc, tparam, parameters, dedtypes, wildmatch);
}
/* ======================== TemplateParameter =============================== */
TemplateParameter::TemplateParameter(Loc loc, Identifier *ident)
{
this->loc = loc;
this->ident = ident;
this->sparam = NULL;
}
TemplateTypeParameter *TemplateParameter::isTemplateTypeParameter()
{
return NULL;
}
TemplateValueParameter *TemplateParameter::isTemplateValueParameter()
{
return NULL;
}
TemplateAliasParameter *TemplateParameter::isTemplateAliasParameter()
{
return NULL;
}
TemplateTupleParameter *TemplateParameter::isTemplateTupleParameter()
{
return NULL;
}
#if DMDV2
TemplateThisParameter *TemplateParameter::isTemplateThisParameter()
{
return NULL;
}
#endif
/* ======================== TemplateTypeParameter =========================== */
// type-parameter
Type *TemplateTypeParameter::tdummy = NULL;
TemplateTypeParameter::TemplateTypeParameter(Loc loc, Identifier *ident, Type *specType,
Type *defaultType)
: TemplateParameter(loc, ident)
{
this->ident = ident;
this->specType = specType;
this->defaultType = defaultType;
}
TemplateTypeParameter *TemplateTypeParameter::isTemplateTypeParameter()
{
return this;
}
TemplateParameter *TemplateTypeParameter::syntaxCopy()
{
TemplateTypeParameter *tp = new TemplateTypeParameter(loc, ident, specType, defaultType);
if (tp->specType)
tp->specType = specType->syntaxCopy();
if (defaultType)
tp->defaultType = defaultType->syntaxCopy();
return tp;
}
void TemplateTypeParameter::declareParameter(Scope *sc)
{
//printf("TemplateTypeParameter::declareParameter('%s')\n", ident->toChars());
TypeIdentifier *ti = new TypeIdentifier(loc, ident);
sparam = new AliasDeclaration(loc, ident, ti);
if (!sc->insert(sparam))
error(loc, "parameter '%s' multiply defined", ident->toChars());
}
void TemplateTypeParameter::semantic(Scope *sc)
{
//printf("TemplateTypeParameter::semantic('%s')\n", ident->toChars());
if (specType)
{
specType = specType->semantic(loc, sc);
}
#if 0 // Don't do semantic() until instantiation
if (defaultType)
{
defaultType = defaultType->semantic(loc, sc);
}
#endif
}
/****************************************
* Determine if two TemplateParameters are the same
* as far as TemplateDeclaration overloading goes.
* Returns:
* 1 match
* 0 no match
*/
int TemplateTypeParameter::overloadMatch(TemplateParameter *tp)
{
TemplateTypeParameter *ttp = tp->isTemplateTypeParameter();
if (ttp)
{
if (specType != ttp->specType)
goto Lnomatch;
if (specType && !specType->equals(ttp->specType))
goto Lnomatch;
return 1; // match
}
Lnomatch:
return 0;
}
/*******************************************
* Match to a particular TemplateParameter.
* Input:
* i i'th argument
* tiargs[] actual arguments to template instance
* parameters[] template parameters
* dedtypes[] deduced arguments to template instance
* *psparam set to symbol declared and initialized to dedtypes[i]
*/
MATCH TemplateTypeParameter::matchArg(Scope *sc, Objects *tiargs,
size_t i, TemplateParameters *parameters, Objects *dedtypes,
Declaration **psparam)
{
//printf("TemplateTypeParameter::matchArg()\n");
Object *oarg;
MATCH m = MATCHexact;
Type *ta;
if (i < tiargs->dim)
oarg = (*tiargs)[i];
else
{ // Get default argument instead
oarg = defaultArg(loc, sc);
if (!oarg)
{ assert(i < dedtypes->dim);
// It might have already been deduced
oarg = (*dedtypes)[i];
if (!oarg)
{
goto Lnomatch;
}
}
}
ta = isType(oarg);
if (!ta)
{
//printf("%s %p %p %p\n", oarg->toChars(), isExpression(oarg), isDsymbol(oarg), isTuple(oarg));
goto Lnomatch;
}
//printf("ta is %s\n", ta->toChars());
if (specType)
{
if (!ta || ta == tdummy)
goto Lnomatch;
//printf("\tcalling deduceType(): ta is %s, specType is %s\n", ta->toChars(), specType->toChars());
MATCH m2 = ta->deduceType(sc, specType, parameters, dedtypes);
if (m2 == MATCHnomatch)
{ //printf("\tfailed deduceType\n");
goto Lnomatch;
}
if (m2 < m)
m = m2;
if ((*dedtypes)[i])
ta = (Type *)(*dedtypes)[i];
}
else
{
if ((*dedtypes)[i])
{ // Must match already deduced type
Type *t = (Type *)(*dedtypes)[i];
if (!t->equals(ta))
{ //printf("t = %s ta = %s\n", t->toChars(), ta->toChars());
goto Lnomatch;
}
}
else
{
// So that matches with specializations are better
m = MATCHconvert;
}
}
(*dedtypes)[i] = ta;
*psparam = new AliasDeclaration(loc, ident, ta);
//printf("\tm = %d\n", m);
return m;
Lnomatch:
*psparam = NULL;
//printf("\tm = %d\n", MATCHnomatch);
return MATCHnomatch;
}
void TemplateTypeParameter::print(Object *oarg, Object *oded)
{
printf(" %s\n", ident->toChars());
Type *t = isType(oarg);
Type *ta = isType(oded);
assert(ta);
if (specType)
printf("\tSpecialization: %s\n", specType->toChars());
if (defaultType)
printf("\tDefault: %s\n", defaultType->toChars());
printf("\tParameter: %s\n", t ? t->toChars() : "NULL");
printf("\tDeduced Type: %s\n", ta->toChars());
}
void TemplateTypeParameter::toCBuffer(OutBuffer *buf, HdrGenState *hgs)
{
buf->writestring(ident->toChars());
if (specType)
{
buf->writestring(" : ");
specType->toCBuffer(buf, NULL, hgs);
}
if (defaultType)
{
buf->writestring(" = ");
defaultType->toCBuffer(buf, NULL, hgs);
}
}
void *TemplateTypeParameter::dummyArg()
{ Type *t;
if (specType)
t = specType;
else
{ // Use this for alias-parameter's too (?)
if (!tdummy)
tdummy = new TypeIdentifier(loc, ident);
t = tdummy;
}
return (void *)t;
}
Object *TemplateTypeParameter::specialization()
{
return specType;
}
Object *TemplateTypeParameter::defaultArg(Loc loc, Scope *sc)
{
Type *t;
t = defaultType;
if (t)
{
t = t->syntaxCopy();
t = t->semantic(loc, sc);
}
return t;
}
/* ======================== TemplateThisParameter =========================== */
#if DMDV2
// this-parameter
TemplateThisParameter::TemplateThisParameter(Loc loc, Identifier *ident,
Type *specType,
Type *defaultType)
: TemplateTypeParameter(loc, ident, specType, defaultType)
{
}
TemplateThisParameter *TemplateThisParameter::isTemplateThisParameter()
{
return this;
}
TemplateParameter *TemplateThisParameter::syntaxCopy()
{
TemplateThisParameter *tp = new TemplateThisParameter(loc, ident, specType, defaultType);
if (tp->specType)
tp->specType = specType->syntaxCopy();
if (defaultType)
tp->defaultType = defaultType->syntaxCopy();
return tp;
}
void TemplateThisParameter::toCBuffer(OutBuffer *buf, HdrGenState *hgs)
{
buf->writestring("this ");
TemplateTypeParameter::toCBuffer(buf, hgs);
}
#endif
/* ======================== TemplateAliasParameter ========================== */
// alias-parameter
Dsymbol *TemplateAliasParameter::sdummy = NULL;
TemplateAliasParameter::TemplateAliasParameter(Loc loc, Identifier *ident,
Type *specType, Object *specAlias, Object *defaultAlias)
: TemplateParameter(loc, ident)
{
this->ident = ident;
this->specType = specType;
this->specAlias = specAlias;
this->defaultAlias = defaultAlias;
}
TemplateAliasParameter *TemplateAliasParameter::isTemplateAliasParameter()
{
return this;
}
TemplateParameter *TemplateAliasParameter::syntaxCopy()
{
TemplateAliasParameter *tp = new TemplateAliasParameter(loc, ident, specType, specAlias, defaultAlias);
if (tp->specType)
tp->specType = specType->syntaxCopy();
tp->specAlias = objectSyntaxCopy(specAlias);
tp->defaultAlias = objectSyntaxCopy(defaultAlias);
return tp;
}
void TemplateAliasParameter::declareParameter(Scope *sc)
{
TypeIdentifier *ti = new TypeIdentifier(loc, ident);
sparam = new AliasDeclaration(loc, ident, ti);
if (!sc->insert(sparam))
error(loc, "parameter '%s' multiply defined", ident->toChars());
}
Object *aliasParameterSemantic(Loc loc, Scope *sc, Object *o)
{
if (o)
{
Expression *ea = isExpression(o);
Type *ta = isType(o);
if (ta)
{ Dsymbol *s = ta->toDsymbol(sc);
if (s)
o = s;
else
o = ta->semantic(loc, sc);
}
else if (ea)
{
ea = ea->semantic(sc);
o = ea->ctfeInterpret();
}
}
return o;
}
void TemplateAliasParameter::semantic(Scope *sc)
{
if (specType)
{
specType = specType->semantic(loc, sc);
}
specAlias = aliasParameterSemantic(loc, sc, specAlias);
#if 0 // Don't do semantic() until instantiation
if (defaultAlias)
defaultAlias = defaultAlias->semantic(loc, sc);
#endif
}
int TemplateAliasParameter::overloadMatch(TemplateParameter *tp)
{
TemplateAliasParameter *tap = tp->isTemplateAliasParameter();
if (tap)
{
if (specAlias != tap->specAlias)
goto Lnomatch;
return 1; // match
}
Lnomatch:
return 0;
}
MATCH TemplateAliasParameter::matchArg(Scope *sc, Objects *tiargs,
size_t i, TemplateParameters *parameters, Objects *dedtypes,
Declaration **psparam)
{
Object *sa;
Object *oarg;
Expression *ea;
Dsymbol *s;
//printf("TemplateAliasParameter::matchArg()\n");
if (i < tiargs->dim)
oarg = (*tiargs)[i];
else
{ // Get default argument instead
oarg = defaultArg(loc, sc);
if (!oarg)
{ assert(i < dedtypes->dim);
// It might have already been deduced
oarg = (*dedtypes)[i];
if (!oarg)
goto Lnomatch;
}
}
sa = getDsymbol(oarg);
ea = isExpression(oarg);
if (ea && (ea->op == TOKthis || ea->op == TOKsuper))
sa = ((ThisExp *)ea)->var;
else if (ea && ea->op == TOKimport)
sa = ((ScopeExp *)ea)->sds;
if (sa)
{
/* specType means the alias must be a declaration with a type
* that matches specType.
*/
if (specType)
{ Declaration *d = ((Dsymbol *)sa)->isDeclaration();
if (!d)
goto Lnomatch;
if (!d->type->equals(specType))
goto Lnomatch;
}
}
else
{
sa = oarg;
if (ea)
{ if (specType)
{
if (!ea->type->equals(specType))
goto Lnomatch;
}
}
else
goto Lnomatch;
}
if (specAlias)
{
if (sa == sdummy)
goto Lnomatch;
if (sa != specAlias && isDsymbol(sa))
{
TemplateInstance *ti = isDsymbol(sa)->isTemplateInstance();
Type *ta = isType(specAlias);
if (!ti || !ta)
goto Lnomatch;
Type *t = new TypeInstance(0, ti);
MATCH m = t->deduceType(sc, ta, parameters, dedtypes);
if (m == MATCHnomatch)
goto Lnomatch;
}
}
else if ((*dedtypes)[i])
{ // Must match already deduced symbol
Object *si = (*dedtypes)[i];
if (!sa || si != sa)
goto Lnomatch;
}
(*dedtypes)[i] = sa;
s = isDsymbol(sa);
if (s)
*psparam = new AliasDeclaration(loc, ident, s);
else
{
assert(ea);
// Declare manifest constant
Initializer *init = new ExpInitializer(loc, ea);
VarDeclaration *v = new VarDeclaration(loc, NULL, ident, init);
v->storage_class = STCmanifest;
v->semantic(sc);
*psparam = v;
}
return MATCHexact;
Lnomatch:
*psparam = NULL;
//printf("\tm = %d\n", MATCHnomatch);
return MATCHnomatch;
}
void TemplateAliasParameter::print(Object *oarg, Object *oded)
{
printf(" %s\n", ident->toChars());
Dsymbol *sa = isDsymbol(oded);
assert(sa);
printf("\tParameter alias: %s\n", sa->toChars());
}
void TemplateAliasParameter::toCBuffer(OutBuffer *buf, HdrGenState *hgs)
{
buf->writestring("alias ");
if (specType)
{ HdrGenState hgs1;
specType->toCBuffer(buf, ident, &hgs1);
}
else
buf->writestring(ident->toChars());
if (specAlias)
{
buf->writestring(" : ");
ObjectToCBuffer(buf, hgs, specAlias);
}
if (defaultAlias)
{
buf->writestring(" = ");
ObjectToCBuffer(buf, hgs, defaultAlias);
}
}
void *TemplateAliasParameter::dummyArg()
{ Object *s;
s = specAlias;
if (!s)
{
if (!sdummy)
sdummy = new Dsymbol();
s = sdummy;
}
return (void*)s;
}
Object *TemplateAliasParameter::specialization()
{
return specAlias;
}
Object *TemplateAliasParameter::defaultArg(Loc loc, Scope *sc)
{
Object *da = defaultAlias;
Type *ta = isType(defaultAlias);
if (ta)
{
if (ta->ty == Tinstance)
{
// If the default arg is a template, instantiate for each type
da = ta->syntaxCopy();
}
}
Object *o = aliasParameterSemantic(loc, sc, da);
return o;
}
/* ======================== TemplateValueParameter ========================== */
// value-parameter
AA *TemplateValueParameter::edummies = NULL;
TemplateValueParameter::TemplateValueParameter(Loc loc, Identifier *ident, Type *valType,
Expression *specValue, Expression *defaultValue)
: TemplateParameter(loc, ident)
{
this->ident = ident;
this->valType = valType;
this->specValue = specValue;
this->defaultValue = defaultValue;
}
TemplateValueParameter *TemplateValueParameter::isTemplateValueParameter()
{
return this;
}
TemplateParameter *TemplateValueParameter::syntaxCopy()
{
TemplateValueParameter *tp =
new TemplateValueParameter(loc, ident, valType, specValue, defaultValue);
tp->valType = valType->syntaxCopy();
if (specValue)
tp->specValue = specValue->syntaxCopy();
if (defaultValue)
tp->defaultValue = defaultValue->syntaxCopy();
return tp;
}
void TemplateValueParameter::declareParameter(Scope *sc)
{
VarDeclaration *v = new VarDeclaration(loc, valType, ident, NULL);
v->storage_class = STCtemplateparameter;
if (!sc->insert(v))
error(loc, "parameter '%s' multiply defined", ident->toChars());
sparam = v;
}
void TemplateValueParameter::semantic(Scope *sc)
{
bool wasSame = (sparam->type == valType);
sparam->semantic(sc);
if (sparam->type == Type::terror && wasSame)
{ /* If sparam has a type error, avoid duplicate errors
* The simple solution of leaving that function if sparam->type == Type::terror
* doesn't quite work because it causes failures in xtest46 for bug 6295
*/
valType = Type::terror;
return;
}
valType = valType->semantic(loc, sc);
if (!(valType->isintegral() || valType->isfloating() || valType->isString()) &&
valType->ty != Tident)
{
if (valType != Type::terror)
error(loc, "arithmetic/string type expected for value-parameter, not %s", valType->toChars());
}
#if 0 // defer semantic analysis to arg match
if (specValue)
{ Expression *e = specValue;
e = e->semantic(sc);
e = e->implicitCastTo(sc, valType);
e = e->ctfeInterpret();
if (e->op == TOKint64 || e->op == TOKfloat64 ||
e->op == TOKcomplex80 || e->op == TOKnull || e->op == TOKstring)
specValue = e;
//e->toInteger();
}
if (defaultValue)
{ Expression *e = defaultValue;
e = e->semantic(sc);
e = e->implicitCastTo(sc, valType);
e = e->ctfeInterpret();
if (e->op == TOKint64)
defaultValue = e;
//e->toInteger();
}
#endif
}
int TemplateValueParameter::overloadMatch(TemplateParameter *tp)
{
TemplateValueParameter *tvp = tp->isTemplateValueParameter();
if (tvp)
{
if (valType != tvp->valType)
goto Lnomatch;
if (valType && !valType->equals(tvp->valType))
goto Lnomatch;
if (specValue != tvp->specValue)
goto Lnomatch;
return 1; // match
}
Lnomatch:
return 0;
}
MATCH TemplateValueParameter::matchArg(Scope *sc,
Objects *tiargs, size_t i, TemplateParameters *parameters, Objects *dedtypes,
Declaration **psparam)
{
//printf("TemplateValueParameter::matchArg()\n");
Initializer *init;
Declaration *sparam;
MATCH m = MATCHexact;
Expression *ei;
Object *oarg;
if (i < tiargs->dim)
oarg = (*tiargs)[i];
else
{ // Get default argument instead
oarg = defaultArg(loc, sc);
if (!oarg)
{ assert(i < dedtypes->dim);
// It might have already been deduced
oarg = (*dedtypes)[i];
if (!oarg)
goto Lnomatch;
}
}
ei = isExpression(oarg);
Type *vt;
if (!ei && oarg)
goto Lnomatch;
if (ei && ei->op == TOKvar)
{ // Resolve const variables that we had skipped earlier
ei = ei->ctfeInterpret();
}
//printf("\tvalType: %s, ty = %d\n", valType->toChars(), valType->ty);
vt = valType->semantic(0, sc);
//printf("ei: %s, ei->type: %s\n", ei->toChars(), ei->type->toChars());
//printf("vt = %s\n", vt->toChars());
if (ei->type)
{
m = (MATCH)ei->implicitConvTo(vt);
//printf("m: %d\n", m);
if (!m)
goto Lnomatch;
}
if (specValue)
{
if (!ei || _aaGetRvalue(edummies, ei->type) == ei)
goto Lnomatch;
Expression *e = specValue;
e = e->semantic(sc);
e = e->implicitCastTo(sc, vt);
e = e->ctfeInterpret();
ei = ei->syntaxCopy();
ei = ei->semantic(sc);
ei = ei->implicitCastTo(sc, vt);
ei = ei->ctfeInterpret();
//printf("\tei: %s, %s\n", ei->toChars(), ei->type->toChars());
//printf("\te : %s, %s\n", e->toChars(), e->type->toChars());
if (!ei->equals(e))
goto Lnomatch;
}
else
{
if ((*dedtypes)[i])
{ // Must match already deduced value
Expression *e = (Expression *)(*dedtypes)[i];
if (!ei || !ei->equals(e))
goto Lnomatch;
}
else if (m != MATCHexact)
{
ei = ei->implicitCastTo(sc, vt);
ei = ei->ctfeInterpret();
}
}
(*dedtypes)[i] = ei;
init = new ExpInitializer(loc, ei);
sparam = new VarDeclaration(loc, vt, ident, init);
sparam->storage_class = STCmanifest;
*psparam = sparam;
return m;
Lnomatch:
//printf("\tno match\n");
*psparam = NULL;
return MATCHnomatch;
}
void TemplateValueParameter::print(Object *oarg, Object *oded)
{
printf(" %s\n", ident->toChars());
Expression *ea = isExpression(oded);
if (specValue)
printf("\tSpecialization: %s\n", specValue->toChars());
printf("\tParameter Value: %s\n", ea ? ea->toChars() : "NULL");
}
void TemplateValueParameter::toCBuffer(OutBuffer *buf, HdrGenState *hgs)
{
valType->toCBuffer(buf, ident, hgs);
if (specValue)
{
buf->writestring(" : ");
specValue->toCBuffer(buf, hgs);
}
if (defaultValue)
{
buf->writestring(" = ");
defaultValue->toCBuffer(buf, hgs);
}
}
void *TemplateValueParameter::dummyArg()
{ Expression *e;
e = specValue;
if (!e)
{
// Create a dummy value
Expression **pe = (Expression **)_aaGet(&edummies, valType);
if (!*pe)
*pe = valType->defaultInit();
e = *pe;
}
return (void *)e;
}
Object *TemplateValueParameter::specialization()
{
return specValue;
}
Object *TemplateValueParameter::defaultArg(Loc loc, Scope *sc)
{
Expression *e = defaultValue;
if (e)
{
e = e->syntaxCopy();
e = e->semantic(sc);
#if DMDV2
e = e->resolveLoc(loc, sc);
#endif
}
return e;
}
/* ======================== TemplateTupleParameter ========================== */
// variadic-parameter
TemplateTupleParameter::TemplateTupleParameter(Loc loc, Identifier *ident)
: TemplateParameter(loc, ident)
{
this->ident = ident;
}
TemplateTupleParameter *TemplateTupleParameter::isTemplateTupleParameter()
{
return this;
}
TemplateParameter *TemplateTupleParameter::syntaxCopy()
{
TemplateTupleParameter *tp = new TemplateTupleParameter(loc, ident);
return tp;
}
void TemplateTupleParameter::declareParameter(Scope *sc)
{
TypeIdentifier *ti = new TypeIdentifier(loc, ident);
sparam = new AliasDeclaration(loc, ident, ti);
if (!sc->insert(sparam))
error(loc, "parameter '%s' multiply defined", ident->toChars());
}
void TemplateTupleParameter::semantic(Scope *sc)
{
}
int TemplateTupleParameter::overloadMatch(TemplateParameter *tp)
{
TemplateTupleParameter *tvp = tp->isTemplateTupleParameter();
if (tvp)
{
return 1; // match
}
return 0;
}
MATCH TemplateTupleParameter::matchArg(Scope *sc, Objects *tiargs,
size_t i, TemplateParameters *parameters, Objects *dedtypes,
Declaration **psparam)
{
//printf("TemplateTupleParameter::matchArg()\n");
/* The rest of the actual arguments (tiargs[]) form the match
* for the variadic parameter.
*/
assert(i + 1 == dedtypes->dim); // must be the last one
Tuple *ovar;
if ((*dedtypes)[i] && isTuple((*dedtypes)[i]))
// It was already been deduced
ovar = isTuple((*dedtypes)[i]);
else if (i + 1 == tiargs->dim && isTuple((*tiargs)[i]))
ovar = isTuple((*tiargs)[i]);
else
{
ovar = new Tuple();
//printf("ovar = %p\n", ovar);
if (i < tiargs->dim)
{
//printf("i = %d, tiargs->dim = %d\n", i, tiargs->dim);
ovar->objects.setDim(tiargs->dim - i);
for (size_t j = 0; j < ovar->objects.dim; j++)
ovar->objects[j] = (*tiargs)[i + j];
}
}
*psparam = new TupleDeclaration(loc, ident, &ovar->objects);
(*dedtypes)[i] = ovar;
return MATCHexact;
}
void TemplateTupleParameter::print(Object *oarg, Object *oded)
{
printf(" %s... [", ident->toChars());
Tuple *v = isTuple(oded);
assert(v);
//printf("|%d| ", v->objects.dim);
for (size_t i = 0; i < v->objects.dim; i++)
{
if (i)
printf(", ");
Object *o = v->objects[i];
Dsymbol *sa = isDsymbol(o);
if (sa)
printf("alias: %s", sa->toChars());
Type *ta = isType(o);
if (ta)
printf("type: %s", ta->toChars());
Expression *ea = isExpression(o);
if (ea)
printf("exp: %s", ea->toChars());
assert(!isTuple(o)); // no nested Tuple arguments
}
printf("]\n");
}
void TemplateTupleParameter::toCBuffer(OutBuffer *buf, HdrGenState *hgs)
{
buf->writestring(ident->toChars());
buf->writestring("...");
}
void *TemplateTupleParameter::dummyArg()
{
return NULL;
}
Object *TemplateTupleParameter::specialization()
{
return NULL;
}
Object *TemplateTupleParameter::defaultArg(Loc loc, Scope *sc)
{
return NULL;
}
/* ======================== TemplateInstance ================================ */
TemplateInstance::TemplateInstance(Loc loc, Identifier *ident)
: ScopeDsymbol(NULL)
{
#if LOG
printf("TemplateInstance(this = %p, ident = '%s')\n", this, ident ? ident->toChars() : "null");
#endif
this->loc = loc;
this->name = ident;
this->tiargs = NULL;
this->tempdecl = NULL;
this->inst = NULL;
this->tinst = NULL;
this->argsym = NULL;
this->aliasdecl = NULL;
this->semanticRun = PASSinit;
this->semantictiargsdone = 0;
this->withsym = NULL;
this->nest = 0;
this->havetempdecl = 0;
this->isnested = NULL;
this->speculative = 0;
this->ignore = true;
#if IN_LLVM
this->emittedInModule = NULL;
this->tmodule = NULL;
#endif
}
/*****************
* This constructor is only called when we figured out which function
* template to instantiate.
*/
TemplateInstance::TemplateInstance(Loc loc, TemplateDeclaration *td, Objects *tiargs)
: ScopeDsymbol(NULL)
{
#if LOG
printf("TemplateInstance(this = %p, tempdecl = '%s')\n", this, td->toChars());
#endif
this->loc = loc;
this->name = td->ident;
this->tiargs = tiargs;
this->tempdecl = td;
this->inst = NULL;
this->tinst = NULL;
this->argsym = NULL;
this->aliasdecl = NULL;
this->semanticRun = PASSinit;
this->semantictiargsdone = 1;
this->withsym = NULL;
this->nest = 0;
this->havetempdecl = 1;
this->isnested = NULL;
this->speculative = 0;
this->ignore = true;
#if IN_LLVM
this->tinst = NULL;
this->emittedInModule = NULL;
this->tmodule = NULL;
#endif
assert((size_t)tempdecl->scope > 0x10000);
}
Objects *TemplateInstance::arraySyntaxCopy(Objects *objs)
{
Objects *a = NULL;
if (objs)
{ a = new Objects();
a->setDim(objs->dim);
for (size_t i = 0; i < objs->dim; i++)
{
(*a)[i] = objectSyntaxCopy((*objs)[i]);
}
}
return a;
}
Dsymbol *TemplateInstance::syntaxCopy(Dsymbol *s)
{
TemplateInstance *ti;
if (s)
ti = (TemplateInstance *)s;
else
ti = new TemplateInstance(loc, name);
ti->tiargs = arraySyntaxCopy(tiargs);
ScopeDsymbol::syntaxCopy(ti);
return ti;
}
void TemplateInstance::semantic(Scope *sc)
{
semantic(sc, NULL);
}
void TemplateInstance::expandMembers(Scope *sc2)
{
for (size_t i = 0; i < members->dim; i++)
{ Dsymbol *s = (*members)[i];
s->setScope(sc2);
}
for (size_t i = 0; i < members->dim; i++)
{
Dsymbol *s = (*members)[i];
//printf("\t[%d] semantic on '%s' %p kind %s in '%s'\n", i, s->toChars(), s, s->kind(), this->toChars());
//printf("test: isnested = %d, sc2->parent = %s\n", isnested, sc2->parent->toChars());
// if (isnested)
// s->parent = sc->parent;
//printf("test3: isnested = %d, s->parent = %s\n", isnested, s->parent->toChars());
s->semantic(sc2);
//printf("test4: isnested = %d, s->parent = %s\n", isnested, s->parent->toChars());
sc2->module->runDeferredSemantic();
}
}
void TemplateInstance::tryExpandMembers(Scope *sc2)
{
static int nest;
// extracted to a function to allow windows SEH to work without destructors in the same function
//printf("%d\n", nest);
if (++nest > 500)
{
global.gag = 0; // ensure error message gets printed
error("recursive expansion");
fatal();
}
#if WINDOWS_SEH
if(nest == 1)
{
// do not catch at every nesting level, because generating the output error might cause more stack
// errors in the __except block otherwise
__try
{
expandMembers(sc2);
}
__except (__ehfilter(GetExceptionInformation()))
{
global.gag = 0; // ensure error message gets printed
error("recursive expansion");
fatal();
}
}
else
#endif
expandMembers(sc2);
nest--;
}
void TemplateInstance::trySemantic3(Scope *sc2)
{
// extracted to a function to allow windows SEH to work without destructors in the same function
static int nest;
if (++nest > 300)
{
global.gag = 0; // ensure error message gets printed
error("recursive expansion");
fatal();
}
#if WINDOWS_SEH
if(nest == 1)
{
// do not catch at every nesting level, because generating the output error might cause more stack
// errors in the __except block otherwise
__try
{
semantic3(sc2);
}
__except (__ehfilter(GetExceptionInformation()))
{
global.gag = 0; // ensure error message gets printed
error("recursive expansion");
fatal();
}
}
else
#endif
semantic3(sc2);
--nest;
}
void TemplateInstance::semantic(Scope *sc, Expressions *fargs)
{
//printf("TemplateInstance::semantic('%s', this=%p, gag = %d, sc = %p)\n", toChars(), this, global.gag, sc);
#if LOG
printf("\n+TemplateInstance::semantic('%s', this=%p)\n", toChars(), this);
#endif
if (inst) // if semantic() was already run
{
#if LOG
printf("-TemplateInstance::semantic('%s', this=%p) already run\n", inst->toChars(), inst);
#endif
return;
}
if (!sc->ignoreTemplates)
ignore = false;
// get the enclosing template instance from the scope tinst
tinst = sc->tinst;
if (semanticRun != PASSinit)
{
#if LOG
printf("Recursive template expansion\n");
#endif
error(loc, "recursive template expansion");
// inst = this;
return;
}
semanticRun = PASSsemantic;
#if IN_LLVM
// get the enclosing template instance from the scope tinst
tinst = sc->tinst;
// get the module of the outermost enclosing instantiation
if (tinst)
tmodule = tinst->tmodule;
else
tmodule = sc->module;
//printf("%s in %s\n", toChars(), tmodule->toChars());
#endif
#if LOG
printf("\tdo semantic\n");
#endif
if (havetempdecl)
{
assert((size_t)tempdecl->scope > 0x10000);
// Deduce tdtypes
tdtypes.setDim(tempdecl->parameters->dim);
if (!tempdecl->matchWithInstance(this, &tdtypes, fargs, 2))
{
error("incompatible arguments for template instantiation");
inst = this;
return;
}
}
else
{
/* Find template declaration first.
*/
tempdecl = findTemplateDeclaration(sc);
if (!tempdecl)
{ if (!sc->parameterSpecialization)
inst = this;
//printf("error return %p, %d\n", tempdecl, global.errors);
return; // error recovery
}
/* Run semantic on each argument, place results in tiargs[]
* (if we have tempdecl, then tiargs is already evaluated)
*/
semanticTiargs(sc);
if (arrayObjectIsError(tiargs))
{ if (!sc->parameterSpecialization)
inst = this;
//printf("error return %p, %d\n", tempdecl, global.errors);
if (inst)
++inst->errors;
return; // error recovery
}
unsigned errs = global.errors;
tempdecl = findBestMatch(sc, fargs);
if (!tempdecl || (errs != global.errors))
{ if (!sc->parameterSpecialization)
inst = this;
//printf("error return %p, %d\n", tempdecl, global.errors);
return; // error recovery
}
}
// If tempdecl is a mixin, disallow it
if (tempdecl->ismixin)
error("mixin templates are not regular templates");
hasNestedArgs(tiargs);
/* See if there is an existing TemplateInstantiation that already
* implements the typeargs. If so, just refer to that one instead.
*/
for (size_t i = 0; i < tempdecl->instances.dim; i++)
{
TemplateInstance *ti = tempdecl->instances[i];
#if LOG
printf("\t%s: checking for match with instance %d (%p): '%s'\n", toChars(), i, ti, ti->toChars());
#endif
assert(tdtypes.dim == ti->tdtypes.dim);
// Nesting must match
if (isnested != ti->isnested)
{
//printf("test2 isnested %s ti->isnested %s\n", isnested ? isnested->toChars() : "", ti->isnested ? ti->isnested->toChars() : "");
continue;
}
//printf("parent = %s, ti->parent = %s\n", tempdecl->parent->toPrettyChars(), ti->parent->toPrettyChars());
if (!arrayObjectMatch(&tdtypes, &ti->tdtypes, tempdecl, sc))
goto L1;
/* Template functions may have different instantiations based on
* "auto ref" parameters.
*/
if (fargs)
{
FuncDeclaration *fd = ti->toAlias()->isFuncDeclaration();
if (fd)
{
Parameters *fparameters = fd->getParameters(NULL);
size_t nfparams = Parameter::dim(fparameters); // Num function parameters
for (size_t j = 0; j < nfparams && j < fargs->dim; j++)
{ Parameter *fparam = Parameter::getNth(fparameters, j);
Expression *farg = (*fargs)[j];
if (fparam->storageClass & STCauto) // if "auto ref"
{
if (farg->isLvalue())
{ if (!(fparam->storageClass & STCref))
goto L1; // auto ref's don't match
}
else
{ if (fparam->storageClass & STCref)
goto L1; // auto ref's don't match
}
}
}
}
}
// It's a match
inst = ti;
parent = ti->parent;
// If both this and the previous instantiation were speculative,
// use the number of errors that happened last time.
if (inst->speculative && global.gag)
{
global.errors += inst->errors;
global.gaggedErrors += inst->errors;
}
// If the first instantiation was speculative, but this is not:
if (inst->speculative && !global.gag)
{
// If the first instantiation had failed, re-run semantic,
// so that error messages are shown.
if (inst->errors)
goto L1;
// It had succeeded, mark it is a non-speculative instantiation,
// and reuse it.
inst->speculative = 0;
}
#if LOG
printf("\tit's a match with instance %p, %d\n", inst, inst->semanticRun);
#endif
return;
L1:
;
}
/* So, we need to implement 'this' instance.
*/
#if LOG
printf("\timplement template instance %s '%s'\n", tempdecl->parent->toChars(), toChars());
printf("\ttempdecl %s\n", tempdecl->toChars());
#endif
unsigned errorsave = global.errors;
inst = this;
// Mark as speculative if we are instantiated from inside is(typeof())
if (global.gag && sc->speculative)
speculative = 1;
int tempdecl_instance_idx = tempdecl->instances.dim;
tempdecl->instances.push(this);
parent = tempdecl->parent;
//printf("parent = '%s'\n", parent->kind());
ident = genIdent(tiargs); // need an identifier for name mangling purposes.
#if 1
if (isnested)
parent = isnested;
#endif
//printf("parent = '%s'\n", parent->kind());
// Add 'this' to the enclosing scope's members[] so the semantic routines
// will get called on the instance members. Store the place we added it to
// in target_symbol_list(_idx) so we can remove it later if we encounter
// an error.
#if 1
int dosemantic3 = 0;
Dsymbols *target_symbol_list = NULL;
int target_symbol_list_idx;
if (!sc->parameterSpecialization)
{ Dsymbols *a;
Scope *scx = sc;
#if 0
for (scx = sc; scx; scx = scx->enclosing)
if (scx->scopesym)
break;
#endif
//if (scx && scx->scopesym) printf("3: scx is %s %s\n", scx->scopesym->kind(), scx->scopesym->toChars());
if (scx && scx->scopesym &&
scx->scopesym->members && !scx->scopesym->isTemplateMixin()
#if 0 // removed because it bloated compile times
/* The problem is if A imports B, and B imports A, and both A
* and B instantiate the same template, does the compilation of A
* or the compilation of B do the actual instantiation?
*
* see bugzilla 2500.
*/
&& !scx->module->selfImports()
#endif
)
{
//printf("\t1: adding to %s %s\n", scx->scopesym->kind(), scx->scopesym->toChars());
a = scx->scopesym->members;
}
else
{ Module *m = sc->module->importedFrom;
//printf("\t2: adding to module %s instead of module %s\n", m->toChars(), sc->module->toChars());
a = m->members;
if (m->semanticRun >= 3)
{
dosemantic3 = 1;
}
}
for (int i = 0; 1; i++)
{
if (i == a->dim)
{
target_symbol_list = a;
target_symbol_list_idx = i;
a->push(this);
break;
}
if (this == (*a)[i]) // if already in Array
break;
}
}
#endif
// Copy the syntax trees from the TemplateDeclaration
members = Dsymbol::arraySyntaxCopy(tempdecl->members);
// Create our own scope for the template parameters
Scope *scope = tempdecl->scope;
if (!tempdecl->semanticRun)
{
error("template instantiation %s forward references template declaration %s\n", toChars(), tempdecl->toChars());
return;
}
#if LOG
printf("\tcreate scope for template parameters '%s'\n", toChars());
#endif
argsym = new ScopeDsymbol();
argsym->parent = scope->parent;
scope = scope->push(argsym);
// scope->stc = 0;
// Declare each template parameter as an alias for the argument type
Scope *paramscope = scope->push();
paramscope->stc = 0;
declareParameters(paramscope);
paramscope->pop();
// Add members of template instance to template instance symbol table
// parent = scope->scopesym;
symtab = new DsymbolTable();
int memnum = 0;
for (size_t i = 0; i < members->dim; i++)
{
Dsymbol *s = (*members)[i];
#if LOG
printf("\t[%d] adding member '%s' %p kind %s to '%s', memnum = %d\n", i, s->toChars(), s, s->kind(), this->toChars(), memnum);
#endif
memnum |= s->addMember(scope, this, memnum);
}
#if LOG
printf("adding members done\n");
#endif
/* See if there is only one member of template instance, and that
* member has the same name as the template instance.
* If so, this template instance becomes an alias for that member.
*/
//printf("members->dim = %d\n", members->dim);
if (members->dim)
{
Dsymbol *s;
if (Dsymbol::oneMembers(members, &s, tempdecl->ident) && s)
{
//printf("s->kind = '%s'\n", s->kind());
//s->print();
//printf("'%s', '%s'\n", s->ident->toChars(), tempdecl->ident->toChars());
//printf("setting aliasdecl\n");
aliasdecl = new AliasDeclaration(loc, s->ident, s);
#if IN_LLVM
// LDC propagate internal information
if (tempdecl->llvmInternal) {
s->llvmInternal = tempdecl->llvmInternal;
if (FuncDeclaration* fd = s->isFuncDeclaration()) {
fd->intrinsicName = tempdecl->intrinsicName;
}
}
#endif
}
}
/* If function template declaration
*/
if (fargs && aliasdecl)
{
FuncDeclaration *fd = aliasdecl->toAlias()->isFuncDeclaration();
if (fd)
{
/* Transmit fargs to type so that TypeFunction::semantic() can
* resolve any "auto ref" storage classes.
*/
TypeFunction *tf = (TypeFunction *)fd->type;
if (tf && tf->ty == Tfunction)
tf->fargs = fargs;
}
}
// Do semantic() analysis on template instance members
#if LOG
printf("\tdo semantic() on template instance members '%s'\n", toChars());
#endif
Scope *sc2;
sc2 = scope->push(this);
//printf("isnested = %d, sc->parent = %s\n", isnested, sc->parent->toChars());
sc2->parent = /*isnested ? sc->parent :*/ this;
sc2->tinst = this;
tryExpandMembers(sc2);
semanticRun = PASSsemanticdone;
/* If any of the instantiation members didn't get semantic() run
* on them due to forward references, we cannot run semantic2()
* or semantic3() yet.
*/
for (size_t i = 0; i < Module::deferred.dim; i++)
{ Dsymbol *sd = Module::deferred[i];
if (sd->parent == this)
{
//printf("deferred %s %s\n", sd->parent->toChars(), sd->toChars());
AggregateDeclaration *ad = sd->isAggregateDeclaration();
if (ad)
ad->deferred = this;
goto Laftersemantic;
}
}
/* ConditionalDeclaration may introduce eponymous declaration,
* so we should find it once again after semantic.
*/
if (members->dim)
{
Dsymbol *s;
if (Dsymbol::oneMembers(members, &s, tempdecl->ident) && s)
{
if (!aliasdecl || aliasdecl->toAlias() != s)
{
//printf("s->kind = '%s'\n", s->kind());
//s->print();
//printf("'%s', '%s'\n", s->ident->toChars(), tempdecl->ident->toChars());
//printf("setting aliasdecl 2\n");
aliasdecl = new AliasDeclaration(loc, s->ident, s);
}
}
else if (aliasdecl)
aliasdecl = NULL;
}
/* The problem is when to parse the initializer for a variable.
* Perhaps VarDeclaration::semantic() should do it like it does
* for initializers inside a function.
*/
// if (sc->parent->isFuncDeclaration())
/* BUG 782: this has problems if the classes this depends on
* are forward referenced. Find a way to defer semantic()
* on this template.
*/
semantic2(sc2);
if (sc->func || dosemantic3)
{
trySemantic3(sc2);
}
Laftersemantic:
sc2->pop();
scope->pop();
// Give additional context info if error occurred during instantiation
if (global.errors != errorsave)
{
error(loc, "error instantiating");
if (tinst)
{ tinst->printInstantiationTrace();
}
errors = 1;
if (global.gag)
{
// Errors are gagged, so remove the template instance from the
// instance/symbol lists we added it to and reset our state to
// finish clean and so we can try to instantiate it again later
// (see bugzilla 4302 and 6602).
tempdecl->instances.remove(tempdecl_instance_idx);
if (target_symbol_list)
{
// Because we added 'this' in the last position above, we
// should be able to remove it without messing other indices up.
assert((*target_symbol_list)[target_symbol_list_idx] == this);
target_symbol_list->remove(target_symbol_list_idx);
}
semanticRun = PASSinit;
inst = NULL;
}
}
#if LOG
printf("-TemplateInstance::semantic('%s', this=%p)\n", toChars(), this);
#endif
}
void TemplateInstance::semanticTiargs(Scope *sc)
{
//printf("+TemplateInstance::semanticTiargs() %s\n", toChars());
if (semantictiargsdone)
return;
semantictiargsdone = 1;
semanticTiargs(loc, sc, tiargs, 0);
}
/**********************************
* Input:
* flags 1: replace const variables with their initializers
*/
void TemplateInstance::semanticTiargs(Loc loc, Scope *sc, Objects *tiargs, int flags)
{
// Run semantic on each argument, place results in tiargs[]
//printf("+TemplateInstance::semanticTiargs()\n");
if (!tiargs)
return;
for (size_t j = 0; j < tiargs->dim; j++)
{
Object *o = (*tiargs)[j];
Type *ta = isType(o);
Expression *ea = isExpression(o);
Dsymbol *sa = isDsymbol(o);
//printf("1: (*tiargs)[%d] = %p, %p, %p, ea=%p, ta=%p\n", j, o, isDsymbol(o), isTuple(o), ea, ta);
if (ta)
{
//printf("type %s\n", ta->toChars());
// It might really be an Expression or an Alias
ta->resolve(loc, sc, &ea, &ta, &sa);
if (ea)
{
ea = ea->semantic(sc);
/* This test is to skip substituting a const var with
* its initializer. The problem is the initializer won't
* match with an 'alias' parameter. Instead, do the
* const substitution in TemplateValueParameter::matchArg().
*/
if (flags & 1) // only used by __traits, must not interpret the args
ea = ea->optimize(WANTvalue);
else if (ea->op != TOKvar)
ea = ea->ctfeInterpret();
(*tiargs)[j] = ea;
}
else if (sa)
{
Ldsym:
(*tiargs)[j] = sa;
TupleDeclaration *d = sa->toAlias()->isTupleDeclaration();
if (d)
{
size_t dim = d->objects->dim;
tiargs->remove(j);
tiargs->insert(j, d->objects);
j--;
}
}
else if (ta)
{
Ltype:
if (ta->ty == Ttuple)
{ // Expand tuple
TypeTuple *tt = (TypeTuple *)ta;
size_t dim = tt->arguments->dim;
tiargs->remove(j);
if (dim)
{ tiargs->reserve(dim);
for (size_t i = 0; i < dim; i++)
{ Parameter *arg = (*tt->arguments)[i];
tiargs->insert(j + i, arg->type);
}
}
j--;
}
else
(*tiargs)[j] = ta;
}
else
{
assert(global.errors);
(*tiargs)[j] = Type::terror;
}
}
else if (ea)
{
if (!ea)
{ assert(global.errors);
ea = new ErrorExp();
}
assert(ea);
ea = ea->semantic(sc);
if (flags & 1) // only used by __traits, must not interpret the args
ea = ea->optimize(WANTvalue);
else if (ea->op != TOKvar && ea->op != TOKtuple &&
ea->op != TOKimport && ea->op != TOKtype &&
ea->op != TOKfunction && ea->op != TOKerror &&
ea->op != TOKthis && ea->op != TOKsuper)
ea = ea->ctfeInterpret();
(*tiargs)[j] = ea;
if (ea->op == TOKtype)
{ ta = ea->type;
goto Ltype;
}
if (ea->op == TOKimport)
{ sa = ((ScopeExp *)ea)->sds;
goto Ldsym;
}
if (ea->op == TOKfunction)
{ FuncExp *fe = (FuncExp *)ea;
/* A function literal, that is passed to template and
* already semanticed as function pointer, never requires
* outer frame. So convert it to global function is valid.
*/
if (fe->fd->tok == TOKreserved && fe->type->ty == Tpointer)
{ // change to non-nested
fe->fd->tok = TOKfunction;
fe->fd->vthis = NULL;
}
}
if (ea->op == TOKtuple)
{ // Expand tuple
TupleExp *te = (TupleExp *)ea;
size_t dim = te->exps->dim;
tiargs->remove(j);
if (dim)
{ tiargs->reserve(dim);
for (size_t i = 0; i < dim; i++)
tiargs->insert(j + i, (*te->exps)[i]);
}
j--;
}
}
else if (sa)
{
TemplateDeclaration *td = sa->isTemplateDeclaration();
if (td && !td->semanticRun && td->literal)
td->semantic(sc);
}
else
{
assert(0);
}
//printf("1: (*tiargs)[%d] = %p\n", j, (*tiargs)[j]);
}
#if 0
printf("-TemplateInstance::semanticTiargs()\n");
for (size_t j = 0; j < tiargs->dim; j++)
{
Object *o = (*tiargs)[j];
Type *ta = isType(o);
Expression *ea = isExpression(o);
Dsymbol *sa = isDsymbol(o);
Tuple *va = isTuple(o);
printf("\ttiargs[%d] = ta %p, ea %p, sa %p, va %p\n", j, ta, ea, sa, va);
}
#endif
}
/**********************************************
* Find template declaration corresponding to template instance.
*/
TemplateDeclaration *TemplateInstance::findTemplateDeclaration(Scope *sc)
{
//printf("TemplateInstance::findTemplateDeclaration() %s\n", toChars());
if (!tempdecl)
{
/* Given:
* foo!( ... )
* figure out which TemplateDeclaration foo refers to.
*/
Dsymbol *s;
Dsymbol *scopesym;
Identifier *id;
id = name;
s = sc->search(loc, id, &scopesym);
if (!s)
{
s = sc->search_correct(id);
if (s)
error("template '%s' is not defined, did you mean %s?", id->toChars(), s->toChars());
else
error("template '%s' is not defined", id->toChars());
return NULL;
}
/* If an OverloadSet, look for a unique member that is a template declaration
*/
OverloadSet *os = s->isOverloadSet();
if (os)
{ s = NULL;
for (size_t i = 0; i < os->a.dim; i++)
{ Dsymbol *s2 = os->a[i];
if (s2->isTemplateDeclaration())
{
if (s)
error("ambiguous template declaration %s and %s", s->toPrettyChars(), s2->toPrettyChars());
s = s2;
}
}
if (!s)
{ error("template '%s' is not defined", id->toChars());
return NULL;
}
}
#if LOG
printf("It's an instance of '%s' kind '%s'\n", s->toChars(), s->kind());
if (s->parent)
printf("s->parent = '%s'\n", s->parent->toChars());
#endif
withsym = scopesym->isWithScopeSymbol();
/* We might have found an alias within a template when
* we really want the template.
*/
TemplateInstance *ti;
if (s->parent &&
(ti = s->parent->isTemplateInstance()) != NULL)
{
if (ti->tempdecl && ti->tempdecl->ident == id)
{
/* This is so that one can refer to the enclosing
* template, even if it has the same name as a member
* of the template, if it has a !(arguments)
*/
tempdecl = ti->tempdecl;
if (tempdecl->overroot) // if not start of overloaded list of TemplateDeclaration's
tempdecl = tempdecl->overroot; // then get the start
s = tempdecl;
}
}
s = s->toAlias();
/* It should be a TemplateDeclaration, not some other symbol
*/
tempdecl = s->isTemplateDeclaration();
if (!tempdecl)
{
if (!s->parent && global.errors)
return NULL;
if (!s->parent && s->getType())
{ Dsymbol *s2 = s->getType()->toDsymbol(sc);
if (!s2)
{
error("%s is not a template declaration, it is a %s", id->toChars(), s->kind());
return NULL;
}
s = s2;
}
#ifdef DEBUG
//if (!s->parent) printf("s = %s %s\n", s->kind(), s->toChars());
#endif
//assert(s->parent);
TemplateInstance *ti = s->parent ? s->parent->isTemplateInstance() : NULL;
if (ti &&
(ti->name == id ||
ti->toAlias()->ident == id)
&&
ti->tempdecl)
{
/* This is so that one can refer to the enclosing
* template, even if it has the same name as a member
* of the template, if it has a !(arguments)
*/
tempdecl = ti->tempdecl;
if (tempdecl->overroot) // if not start of overloaded list of TemplateDeclaration's
tempdecl = tempdecl->overroot; // then get the start
}
else
{
error("%s is not a template declaration, it is a %s", id->toChars(), s->kind());
return NULL;
}
}
}
else
assert(tempdecl->isTemplateDeclaration());
return tempdecl;
}
TemplateDeclaration *TemplateInstance::findBestMatch(Scope *sc, Expressions *fargs)
{
/* Since there can be multiple TemplateDeclaration's with the same
* name, look for the best match.
*/
TemplateDeclaration *td_ambig = NULL;
TemplateDeclaration *td_best = NULL;
MATCH m_best = MATCHnomatch;
Objects dedtypes;
#if LOG
printf("TemplateInstance::findBestMatch()\n");
#endif
// First look for forward references
for (TemplateDeclaration *td = tempdecl; td; td = td->overnext)
{
if (!td->semanticRun)
{
if (td->scope)
{ // Try to fix forward reference
td->semantic(td->scope);
}
if (!td->semanticRun)
{
error("%s forward references template declaration %s\n", toChars(), td->toChars());
return NULL;
}
}
}
for (TemplateDeclaration *td = tempdecl; td; td = td->overnext)
{
MATCH m;
//if (tiargs->dim) printf("2: tiargs->dim = %d, data[0] = %p\n", tiargs->dim, (*tiargs)[0]);
// If more arguments than parameters,
// then this is no match.
if (td->parameters->dim < tiargs->dim)
{
if (!td->isVariadic())
continue;
}
dedtypes.setDim(td->parameters->dim);
dedtypes.zero();
assert(td->semanticRun);
m = td->matchWithInstance(this, &dedtypes, fargs, 0);
//printf("matchWithInstance = %d\n", m);
if (!m) // no match at all
continue;
if (m < m_best)
goto Ltd_best;
if (m > m_best)
goto Ltd;
{
// Disambiguate by picking the most specialized TemplateDeclaration
MATCH c1 = td->leastAsSpecialized(td_best, fargs);
MATCH c2 = td_best->leastAsSpecialized(td, fargs);
//printf("c1 = %d, c2 = %d\n", c1, c2);
if (c1 > c2)
goto Ltd;
else if (c1 < c2)
goto Ltd_best;
else
goto Lambig;
}
Lambig: // td_best and td are ambiguous
td_ambig = td;
continue;
Ltd_best: // td_best is the best match so far
td_ambig = NULL;
continue;
Ltd: // td is the new best match
td_ambig = NULL;
td_best = td;
m_best = m;
tdtypes.setDim(dedtypes.dim);
memcpy(tdtypes.tdata(), dedtypes.tdata(), tdtypes.dim * sizeof(void *));
continue;
}
if (!td_best)
{
if (tempdecl && !tempdecl->overnext)
// Only one template, so we can give better error message
error("%s does not match template declaration %s", toChars(), tempdecl->toChars());
else
::error(loc, "%s %s.%s does not match any template declaration",
tempdecl->kind(), tempdecl->parent->toPrettyChars(), tempdecl->ident->toChars());
return NULL;
}
if (td_ambig)
{
::error(loc, "%s %s.%s matches more than one template declaration, %s(%d):%s and %s(%d):%s",
td_best->kind(), td_best->parent->toPrettyChars(), td_best->ident->toChars(),
td_best->loc.filename, td_best->loc.linnum, td_best->toChars(),
td_ambig->loc.filename, td_ambig->loc.linnum, td_ambig->toChars());
}
/* The best match is td_best
*/
tempdecl = td_best;
#if 0
/* Cast any value arguments to be same type as value parameter
*/
for (size_t i = 0; i < tiargs->dim; i++)
{ Object *o = (*tiargs)[i];
Expression *ea = isExpression(o); // value argument
TemplateParameter *tp = (*tempdecl->parameters)[i];
assert(tp);
TemplateValueParameter *tvp = tp->isTemplateValueParameter();
if (tvp)
{
assert(ea);
ea = ea->castTo(tvp->valType);
ea = ea->ctfeInterpret();
(*tiargs)[i] = (Object *)ea;
}
}
#endif
#if LOG
printf("\tIt's a match with template declaration '%s'\n", tempdecl->toChars());
#endif
return tempdecl;
}
/*****************************************
* Determines if a TemplateInstance will need a nested
* generation of the TemplateDeclaration.
*/
int TemplateInstance::hasNestedArgs(Objects *args)
{ int nested = 0;
//printf("TemplateInstance::hasNestedArgs('%s')\n", tempdecl->ident->toChars());
/* A nested instance happens when an argument references a local
* symbol that is on the stack.
*/
for (size_t i = 0; i < args->dim; i++)
{ Object *o = (*args)[i];
Expression *ea = isExpression(o);
Dsymbol *sa = isDsymbol(o);
Tuple *va = isTuple(o);
if (ea)
{
if (ea->op == TOKvar)
{
sa = ((VarExp *)ea)->var;
goto Lsa;
}
if (ea->op == TOKthis)
{
sa = ((ThisExp *)ea)->var;
goto Lsa;
}
if (ea->op == TOKfunction)
{
if (((FuncExp *)ea)->td)
sa = ((FuncExp *)ea)->td;
else
sa = ((FuncExp *)ea)->fd;
goto Lsa;
}
}
else if (sa)
{
Lsa:
TemplateDeclaration *td = sa->isTemplateDeclaration();
Declaration *d = sa->isDeclaration();
if ((td && td->literal) ||
(d && !d->isDataseg() &&
#if DMDV2
!(d->storage_class & STCmanifest) &&
#endif
(!d->isFuncDeclaration() || d->isFuncDeclaration()->isNested()) &&
!isTemplateMixin()
))
{
// if module level template
if (tempdecl->toParent()->isModule())
{ Dsymbol *dparent = sa->toParent();
if (!isnested)
isnested = dparent;
else if (isnested != dparent)
{
/* Select the more deeply nested of the two.
* Error if one is not nested inside the other.
*/
for (Dsymbol *p = isnested; p; p = p->parent)
{
if (p == dparent)
goto L1; // isnested is most nested
}
for (Dsymbol *p = dparent; p; p = p->parent)
{
if (p == isnested)
{ isnested = dparent;
goto L1; // dparent is most nested
}
}
error("%s is nested in both %s and %s",
toChars(), isnested->toChars(), dparent->toChars());
}
L1:
//printf("\tnested inside %s\n", isnested->toChars());
nested |= 1;
}
else
error("cannot use local '%s' as parameter to non-global template %s", sa->toChars(), tempdecl->toChars());
}
}
else if (va)
{
nested |= hasNestedArgs(&va->objects);
}
}
return nested;
}
/****************************************
* This instance needs an identifier for name mangling purposes.
* Create one by taking the template declaration name and adding
* the type signature for it.
*/
Identifier *TemplateInstance::genIdent(Objects *args)
{ OutBuffer buf;
//printf("TemplateInstance::genIdent('%s')\n", tempdecl->ident->toChars());
char *id = tempdecl->ident->toChars();
buf.printf("__T%llu%s", (ulonglong)strlen(id), id);
for (size_t i = 0; i < args->dim; i++)
{ Object *o = (*args)[i];
Type *ta = isType(o);
Expression *ea = isExpression(o);
Dsymbol *sa = isDsymbol(o);
Tuple *va = isTuple(o);
//printf("\to [%d] %p ta %p ea %p sa %p va %p\n", i, o, ta, ea, sa, va);
if (ta)
{
buf.writeByte('T');
if (ta->deco)
buf.writestring(ta->deco);
else
{
#ifdef DEBUG
if (!global.errors)
printf("ta = %d, %s\n", ta->ty, ta->toChars());
#endif
assert(global.errors);
}
}
else if (ea)
{
// Don't interpret it yet, it might actually be an alias
ea = ea->optimize(WANTvalue);
if (ea->op == TOKvar)
{
sa = ((VarExp *)ea)->var;
ea = NULL;
goto Lsa;
}
if (ea->op == TOKthis)
{
sa = ((ThisExp *)ea)->var;
ea = NULL;
goto Lsa;
}
if (ea->op == TOKfunction)
{
if (((FuncExp *)ea)->td)
sa = ((FuncExp *)ea)->td;
else
sa = ((FuncExp *)ea)->fd;
ea = NULL;
goto Lsa;
}
buf.writeByte('V');
if (ea->op == TOKtuple)
{ ea->error("tuple is not a valid template value argument");
continue;
}
// Now that we know it is not an alias, we MUST obtain a value
unsigned olderr = global.errors;
ea = ea->ctfeInterpret();
if (ea->op == TOKerror || olderr != global.errors)
continue;
#if 1
/* Use deco that matches what it would be for a function parameter
*/
buf.writestring(ea->type->deco);
#else
// Use type of parameter, not type of argument
TemplateParameter *tp = (*tempdecl->parameters)[i];
assert(tp);
TemplateValueParameter *tvp = tp->isTemplateValueParameter();
assert(tvp);
buf.writestring(tvp->valType->deco);
#endif
ea->toMangleBuffer(&buf);
}
else if (sa)
{
Lsa:
buf.writeByte('S');
Declaration *d = sa->isDeclaration();
if (d && (!d->type || !d->type->deco))
{ error("forward reference of %s", d->toChars());
continue;
}
#if 0
VarDeclaration *v = sa->isVarDeclaration();
if (v && v->storage_class & STCmanifest)
{ ExpInitializer *ei = v->init->isExpInitializer();
if (ei)
{
ea = ei->exp;
goto Lea;
}
}
#endif
const char *p = sa->mangle();
/* Bugzilla 3043: if the first character of p is a digit this
* causes ambiguity issues because the digits of the two numbers are adjacent.
* Current demanglers resolve this by trying various places to separate the
* numbers until one gets a successful demangle.
* Unfortunately, fixing this ambiguity will break existing binary
* compatibility and the demanglers, so we'll leave it as is.
*/
buf.printf("%llu%s", (ulonglong)strlen(p), p);
}
else if (va)
{
assert(i + 1 == args->dim); // must be last one
args = &va->objects;
i = -1;
}
else
assert(0);
}
buf.writeByte('Z');
id = buf.toChars();
//buf.data = NULL; // we can free the string after call to idPool()
//printf("\tgenIdent = %s\n", id);
return Lexer::idPool(id);
}
/****************************************************
* Declare parameters of template instance, initialize them with the
* template instance arguments.
*/
void TemplateInstance::declareParameters(Scope *sc)
{
//printf("TemplateInstance::declareParameters()\n");
for (size_t i = 0; i < tdtypes.dim; i++)
{
TemplateParameter *tp = (*tempdecl->parameters)[i];
//Object *o = (*tiargs)[i];
Object *o = tdtypes[i]; // initializer for tp
//printf("\ttdtypes[%d] = %p\n", i, o);
tempdecl->declareParameter(sc, tp, o);
#if IN_LLVM
if (Dsymbol *sa = isDsymbol(o))
if (FuncLiteralDeclaration *fld = sa->isFuncLiteralDeclaration())
fld->owningTemplate = this;
#endif
}
}
/*****************************************************
* Determine if template instance is really a template function,
* and that template function needs to infer types from the function
* arguments.
*/
int TemplateInstance::needsTypeInference(Scope *sc)
{
//printf("TemplateInstance::needsTypeInference() %s\n", toChars());
if (!tempdecl)
tempdecl = findTemplateDeclaration(sc);
int multipleMatches = FALSE;
for (TemplateDeclaration *td = tempdecl; td; td = td->overnext)
{
/* If any of the overloaded template declarations need inference,
* then return TRUE
*/
FuncDeclaration *fd;
if (!td->onemember ||
(fd = td->onemember->toAlias()->isFuncDeclaration()) == NULL ||
fd->type->ty != Tfunction)
{
/* Not a template function, therefore type inference is not possible.
*/
//printf("false\n");
return FALSE;
}
for (size_t i = 0; i < td->parameters->dim; i++)
if ((*td->parameters)[i]->isTemplateThisParameter())
return TRUE;
/* Determine if the instance arguments, tiargs, are all that is necessary
* to instantiate the template.
*/
//printf("tp = %p, td->parameters->dim = %d, tiargs->dim = %d\n", tp, td->parameters->dim, tiargs->dim);
TypeFunction *fdtype = (TypeFunction *)fd->type;
if (Parameter::dim(fdtype->parameters))
{
TemplateParameter *tp = td->isVariadic();
if (tp && td->parameters->dim > 1)
return TRUE;
if (tiargs->dim < td->parameters->dim)
{ // Can remain tiargs be filled by default arguments?
for (size_t i = tiargs->dim; i < td->parameters->dim; i++)
{ tp = (*td->parameters)[i];
if (TemplateTypeParameter *ttp = tp->isTemplateTypeParameter())
{ if (!ttp->defaultType)
return TRUE;
}
else if (TemplateAliasParameter *tap = tp->isTemplateAliasParameter())
{ if (!tap->defaultAlias)
return TRUE;
}
else if (TemplateValueParameter *tvp = tp->isTemplateValueParameter())
{ if (!tvp->defaultValue)
return TRUE;
}
}
}
}
/* If there is more than one function template which matches, we may
* need type inference (see Bugzilla 4430)
*/
if (td != tempdecl)
multipleMatches = TRUE;
}
//printf("false\n");
return multipleMatches;
}
void TemplateInstance::semantic2(Scope *sc)
{ int i;
if (semanticRun >= PASSsemantic2)
return;
semanticRun = PASSsemantic2;
#if LOG
printf("+TemplateInstance::semantic2('%s')\n", toChars());
#endif
if (!errors && members)
{
sc = tempdecl->scope;
assert(sc);
sc = sc->push(argsym);
sc = sc->push(this);
sc->tinst = this;
for (i = 0; i < members->dim; i++)
{
Dsymbol *s = (*members)[i];
#if LOG
printf("\tmember '%s', kind = '%s'\n", s->toChars(), s->kind());
#endif
s->semantic2(sc);
}
sc = sc->pop();
sc->pop();
}
#if LOG
printf("-TemplateInstance::semantic2('%s')\n", toChars());
#endif
}
void TemplateInstance::semantic3(Scope *sc)
{
#if LOG
printf("TemplateInstance::semantic3('%s'), semanticRun = %d\n", toChars(), semanticRun);
#endif
//if (toChars()[0] == 'D') *(char*)0=0;
if (semanticRun >= PASSsemantic3)
return;
semanticRun = PASSsemantic3;
if (!errors && members)
{
sc = tempdecl->scope;
sc = sc->push(argsym);
sc = sc->push(this);
sc->tinst = this;
if (ignore)
sc->ignoreTemplates++;
int oldgag = global.gag;
int olderrors = global.errors;
/* If this is a speculative instantiation, gag errors.
* Future optimisation: If the results are actually needed, errors
* would already be gagged, so we don't really need to run semantic
* on the members.
*/
if (speculative && !oldgag)
olderrors = global.startGagging();
for (size_t i = 0; i < members->dim; i++)
{
Dsymbol *s = (*members)[i];
s->semantic3(sc);
if (speculative && global.errors != olderrors)
break;
}
if (speculative && !oldgag)
{ // If errors occurred, this instantiation failed
errors += global.errors - olderrors;
global.endGagging(olderrors);
}
sc = sc->pop();
sc->pop();
}
}
#if IN_DMD
/**************************************
* Given an error instantiating the TemplateInstance,
* give the nested TemplateInstance instantiations that got
* us here. Those are a list threaded into the nested scopes.
*/
void TemplateInstance::printInstantiationTrace()
{
if (global.gag)
return;
const unsigned max_shown = 6;
const char format[] = "instantiated from here: %s";
// determine instantiation depth and number of recursive instantiations
int n_instantiations = 1;
int n_totalrecursions = 0;
for (TemplateInstance *cur = this; cur; cur = cur->tinst)
{
++n_instantiations;
// If two instantiations use the same declaration, they are recursive.
// (this works even if they are instantiated from different places in the
// same template).
// In principle, we could also check for multiple-template recursion, but it's
// probably not worthwhile.
if (cur->tinst && cur->tempdecl && cur->tinst->tempdecl
&& cur->tempdecl->loc.equals(cur->tinst->tempdecl->loc))
++n_totalrecursions;
}
// show full trace only if it's short or verbose is on
if (n_instantiations <= max_shown || global.params.verbose)
{
for (TemplateInstance *cur = this; cur; cur = cur->tinst)
{
errorSupplemental(cur->loc, format, cur->toChars());
}
}
else if (n_instantiations - n_totalrecursions <= max_shown)
{
// By collapsing recursive instantiations into a single line,
// we can stay under the limit.
int recursionDepth=0;
for (TemplateInstance *cur = this; cur; cur = cur->tinst)
{
if (cur->tinst && cur->tempdecl && cur->tinst->tempdecl
&& cur->tempdecl->loc.equals(cur->tinst->tempdecl->loc))
{
++recursionDepth;
}
else
{
if (recursionDepth)
errorSupplemental(cur->loc, "%d recursive instantiations from here: %s", recursionDepth+2, cur->toChars());
else
errorSupplemental(cur->loc, format, cur->toChars());
recursionDepth = 0;
}
}
}
else
{
// Even after collapsing the recursions, the depth is too deep.
// Just display the first few and last few instantiations.
unsigned i = 0;
for (TemplateInstance *cur = this; cur; cur = cur->tinst)
{
if (i == max_shown / 2)
errorSupplemental(cur->loc, "... (%d instantiations, -v to show) ...", n_instantiations - max_shown);
if (i < max_shown / 2 ||
i >= n_instantiations - max_shown + max_shown / 2)
errorSupplemental(cur->loc, format, cur->toChars());
++i;
}
}
}
void TemplateInstance::toObjFile(int multiobj)
{
#if LOG
printf("TemplateInstance::toObjFile('%s', this = %p)\n", toChars(), this);
#endif
if (!errors && members)
{
if (multiobj)
// Append to list of object files to be written later
obj_append(this);
else
{
for (size_t i = 0; i < members->dim; i++)
{
Dsymbol *s = (*members)[i];
s->toObjFile(multiobj);
}
}
}
}
#endif
void TemplateInstance::inlineScan()
{
#if LOG
printf("TemplateInstance::inlineScan('%s')\n", toChars());
#endif
if (!errors && members)
{
for (size_t i = 0; i < members->dim; i++)
{
Dsymbol *s = (*members)[i];
s->inlineScan();
}
}
}
void TemplateInstance::toCBuffer(OutBuffer *buf, HdrGenState *hgs)
{
int i;
Identifier *id = name;
buf->writestring(id->toChars());
buf->writestring("!(");
if (nest)
buf->writestring("...");
else
{
nest++;
Objects *args = tiargs;
for (i = 0; i < args->dim; i++)
{
if (i)
buf->writeByte(',');
Object *oarg = (*args)[i];
ObjectToCBuffer(buf, hgs, oarg);
}
nest--;
}
buf->writeByte(')');
}
Dsymbol *TemplateInstance::toAlias()
{
#if LOG
printf("TemplateInstance::toAlias()\n");
#endif
if (!inst)
{
// Maybe we can resolve it
if (scope)
{
/* Anything that affects scope->offset must be
* done in lexical order. Fwd ref error if it is affected, otherwise allow.
*/
unsigned offset = scope->offset;
Scope *sc = scope;
semantic(scope);
// if (offset != sc->offset)
// inst = NULL; // trigger fwd ref error
}
if (!inst)
{ error("cannot resolve forward reference");
errors = 1;
return this;
}
}
if (inst != this)
return inst->toAlias();
if (aliasdecl)
{
return aliasdecl->toAlias();
}
return inst;
}
AliasDeclaration *TemplateInstance::isAliasDeclaration()
{
return aliasdecl;
}
const char *TemplateInstance::kind()
{
return "template instance";
}
int TemplateInstance::oneMember(Dsymbol **ps, Identifier *ident)
{
*ps = NULL;
return TRUE;
}
char *TemplateInstance::toChars()
{
OutBuffer buf;
HdrGenState hgs;
char *s;
toCBuffer(&buf, &hgs);
s = buf.toChars();
buf.data = NULL;
return s;
}
#if IN_LLVM
void TemplateInstance::printInstantiationTrace()
{
if(global.gag)
return;
const int max_shown = 6;
// determine instantiation depth
int n_instantiations = 1;
TemplateInstance* cur = this;
while(cur = cur->tinst)
++n_instantiations;
// show full trace only if it's short or verbose is on
if(n_instantiations <= max_shown || global.params.verbose)
{
cur = this;
while(cur)
{
fprintf(stdmsg," instantiatied in %s: %s\n", cur->loc.toChars(), cur->toChars());
cur = cur->tinst;
}
}
else
{
cur = this;
size_t i = 0;
for(; i < max_shown/2; ++i, cur = cur->tinst)
fprintf(stdmsg," instantiatied in %s: %s\n", cur->loc.toChars(), cur->toChars());
fprintf(stdmsg," ... (%d instantiations, -v to show) ...\n", n_instantiations - max_shown);
for(; i < n_instantiations - max_shown + max_shown/2; ++i, cur = cur->tinst)
{}
for(; i < n_instantiations; ++i, cur = cur->tinst)
fprintf(stdmsg," instantiatied in %s: %s\n", cur->loc.toChars(), cur->toChars());
}
}
#endif
/* ======================== TemplateMixin ================================ */
TemplateMixin::TemplateMixin(Loc loc, Identifier *ident, Type *tqual,
Identifiers *idents, Objects *tiargs)
: TemplateInstance(loc, (*idents)[idents->dim - 1])
{
//printf("TemplateMixin(ident = '%s')\n", ident ? ident->toChars() : "");
this->ident = ident;
this->tqual = tqual;
this->idents = idents;
this->tiargs = tiargs ? tiargs : new Objects();
}
Dsymbol *TemplateMixin::syntaxCopy(Dsymbol *s)
{ TemplateMixin *tm;
Identifiers *ids = new Identifiers();
ids->setDim(idents->dim);
for (size_t i = 0; i < idents->dim; i++)
{ // Matches TypeQualified::syntaxCopyHelper()
Identifier *id = (*idents)[i];
if (id->dyncast() == DYNCAST_DSYMBOL)
{
TemplateInstance *ti = (TemplateInstance *)id;
ti = (TemplateInstance *)ti->syntaxCopy(NULL);
id = (Identifier *)ti;
}
(*ids)[i] = id;
}
tm = new TemplateMixin(loc, ident,
(Type *)(tqual ? tqual->syntaxCopy() : NULL),
ids, tiargs);
TemplateInstance::syntaxCopy(tm);
return tm;
}
void TemplateMixin::semantic(Scope *sc)
{
#if LOG
printf("+TemplateMixin::semantic('%s', this=%p)\n", toChars(), this);
fflush(stdout);
#endif
if (semanticRun)
{
// This for when a class/struct contains mixin members, and
// is done over because of forward references
if (parent && toParent()->isAggregateDeclaration())
semanticRun = PASSsemantic; // do over
else
{
#if LOG
printf("\tsemantic done\n");
#endif
return;
}
}
if (!semanticRun)
semanticRun = PASSsemantic;
#if LOG
printf("\tdo semantic\n");
#endif
#if !IN_LLVM && !IN_GCC
// dont know what this is
util_progress();
#endif
Scope *scx = NULL;
if (scope)
{ sc = scope;
scx = scope; // save so we don't make redundant copies
scope = NULL;
}
// Follow qualifications to find the TemplateDeclaration
if (!tempdecl)
{ Dsymbol *s;
size_t i;
Identifier *id;
if (tqual)
{ s = tqual->toDsymbol(sc);
i = 0;
}
else
{
i = 1;
id = (*idents)[0];
switch (id->dyncast())
{
case DYNCAST_IDENTIFIER:
s = sc->search(loc, id, NULL);
break;
case DYNCAST_DSYMBOL:
{
TemplateInstance *ti = (TemplateInstance *)id;
ti->semantic(sc);
s = ti;
break;
}
default:
assert(0);
}
}
for (; i < idents->dim; i++)
{
if (!s)
break;
id = (*idents)[i];
s = s->searchX(loc, sc, id);
}
if (!s)
{
error("is not defined");
inst = this;
return;
}
tempdecl = s->toAlias()->isTemplateDeclaration();
if (!tempdecl)
{
error("%s isn't a template", s->toChars());
inst = this;
return;
}
}
// Look for forward reference
assert(tempdecl);
for (TemplateDeclaration *td = tempdecl; td; td = td->overnext)
{
if (!td->semanticRun)
{
/* Cannot handle forward references if mixin is a struct member,
* because addField must happen during struct's semantic, not
* during the mixin semantic.
* runDeferred will re-run mixin's semantic outside of the struct's
* semantic.
*/
semanticRun = PASSinit;
AggregateDeclaration *ad = toParent()->isAggregateDeclaration();
if (ad)
ad->sizeok = SIZEOKfwd;
else
{
// Forward reference
//printf("forward reference - deferring\n");
scope = scx ? scx : new Scope(*sc);
scope->setNoFree();
scope->module->addDeferredSemantic(this);
}
return;
}
}
// Run semantic on each argument, place results in tiargs[]
semanticTiargs(sc);
if (errors || arrayObjectIsError(tiargs))
return;
tempdecl = findBestMatch(sc, NULL);
if (!tempdecl)
{ inst = this;
return; // error recovery
}
if (!ident)
ident = genIdent(tiargs);
inst = this;
parent = sc->parent;
/* Detect recursive mixin instantiations.
*/
for (Dsymbol *s = parent; s; s = s->parent)
{
//printf("\ts = '%s'\n", s->toChars());
TemplateMixin *tm = s->isTemplateMixin();
if (!tm || tempdecl != tm->tempdecl)
continue;
/* Different argument list lengths happen with variadic args
*/
if (tiargs->dim != tm->tiargs->dim)
continue;
for (size_t i = 0; i < tiargs->dim; i++)
{ Object *o = (*tiargs)[i];
Type *ta = isType(o);
Expression *ea = isExpression(o);
Dsymbol *sa = isDsymbol(o);
Object *tmo = (*tm->tiargs)[i];
if (ta)
{
Type *tmta = isType(tmo);
if (!tmta)
goto Lcontinue;
if (!ta->equals(tmta))
goto Lcontinue;
}
else if (ea)
{ Expression *tme = isExpression(tmo);
if (!tme || !ea->equals(tme))
goto Lcontinue;
}
else if (sa)
{
Dsymbol *tmsa = isDsymbol(tmo);
if (sa != tmsa)
goto Lcontinue;
}
else
assert(0);
}
error("recursive mixin instantiation");
return;
Lcontinue:
continue;
}
// Copy the syntax trees from the TemplateDeclaration
members = Dsymbol::arraySyntaxCopy(tempdecl->members);
if (!members)
return;
symtab = new DsymbolTable();
for (Scope *sce = sc; 1; sce = sce->enclosing)
{
ScopeDsymbol *sds = (ScopeDsymbol *)sce->scopesym;
if (sds)
{
sds->importScope(this, PROTpublic);
break;
}
}
#if LOG
printf("\tcreate scope for template parameters '%s'\n", toChars());
#endif
Scope *scy = sc;
scy = sc->push(this);
scy->parent = this;
argsym = new ScopeDsymbol();
argsym->parent = scy->parent;
Scope *argscope = scy->push(argsym);
unsigned errorsave = global.errors;
// Declare each template parameter as an alias for the argument type
declareParameters(argscope);
// Add members to enclosing scope, as well as this scope
for (size_t i = 0; i < members->dim; i++)
{ Dsymbol *s = (*members)[i];
s->addMember(argscope, this, i);
//sc->insert(s);
//printf("sc->parent = %p, sc->scopesym = %p\n", sc->parent, sc->scopesym);
//printf("s->parent = %s\n", s->parent->toChars());
}
// Do semantic() analysis on template instance members
#if LOG
printf("\tdo semantic() on template instance members '%s'\n", toChars());
#endif
Scope *sc2;
sc2 = argscope->push(this);
sc2->offset = sc->offset;
static int nest;
//printf("%d\n", nest);
if (++nest > 500)
{
global.gag = 0; // ensure error message gets printed
error("recursive expansion");
fatal();
}
for (size_t i = 0; i < members->dim; i++)
{
Dsymbol *s = (*members)[i];
s->semantic(sc2);
}
nest--;
sc->offset = sc2->offset;
/* The problem is when to parse the initializer for a variable.
* Perhaps VarDeclaration::semantic() should do it like it does
* for initializers inside a function.
*/
// if (sc->parent->isFuncDeclaration())
semantic2(sc2);
if (sc->func)
{
semantic3(sc2);
}
// Give additional context info if error occurred during instantiation
if (global.errors != errorsave)
{
error("error instantiating");
}
sc2->pop();
argscope->pop();
// if (!isAnonymous())
{
scy->pop();
}
#if LOG
printf("-TemplateMixin::semantic('%s', this=%p)\n", toChars(), this);
#endif
}
void TemplateMixin::semantic2(Scope *sc)
{
if (semanticRun >= PASSsemantic2)
return;
semanticRun = PASSsemantic2;
#if LOG
printf("+TemplateMixin::semantic2('%s')\n", toChars());
#endif
if (members)
{
assert(sc);
sc = sc->push(argsym);
sc = sc->push(this);
for (size_t i = 0; i < members->dim; i++)
{
Dsymbol *s = (*members)[i];
#if LOG
printf("\tmember '%s', kind = '%s'\n", s->toChars(), s->kind());
#endif
s->semantic2(sc);
}
sc = sc->pop();
sc->pop();
}
#if LOG
printf("-TemplateMixin::semantic2('%s')\n", toChars());
#endif
}
void TemplateMixin::semantic3(Scope *sc)
{
if (semanticRun >= PASSsemantic3)
return;
semanticRun = PASSsemantic3;
#if LOG
printf("TemplateMixin::semantic3('%s')\n", toChars());
#endif
if (members)
{
sc = sc->push(argsym);
sc = sc->push(this);
for (size_t i = 0; i < members->dim; i++)
{
Dsymbol *s = (*members)[i];
s->semantic3(sc);
}
sc = sc->pop();
sc->pop();
}
}
void TemplateMixin::inlineScan()
{
TemplateInstance::inlineScan();
}
const char *TemplateMixin::kind()
{
return "mixin";
}
int TemplateMixin::oneMember(Dsymbol **ps, Identifier *ident)
{
return Dsymbol::oneMember(ps, ident);
}
int TemplateMixin::apply(Dsymbol_apply_ft_t fp, void *param)
{
if (members)
{
for (size_t i = 0; i < members->dim; i++)
{ Dsymbol *s = (*members)[i];
if (s)
{
if (s->apply(fp, param))
return 1;
}
}
}
return 0;
}
int TemplateMixin::hasPointers()
{
//printf("TemplateMixin::hasPointers() %s\n", toChars());
if (members)
for (size_t i = 0; i < members->dim; i++)
{
Dsymbol *s = (*members)[i];
//printf(" s = %s %s\n", s->kind(), s->toChars());
if (s->hasPointers())
{
return 1;
}
}
return 0;
}
void TemplateMixin::setFieldOffset(AggregateDeclaration *ad, unsigned *poffset, bool isunion)
{
//printf("TemplateMixin::setFieldOffset() %s\n", toChars());
if (scope) // if fwd reference
semantic(NULL); // try to resolve it
if (members)
{
for (size_t i = 0; i < members->dim; i++)
{ Dsymbol *s = (*members)[i];
//printf("\t%s\n", s->toChars());
s->setFieldOffset(ad, poffset, isunion);
}
}
}
char *TemplateMixin::toChars()
{
OutBuffer buf;
HdrGenState hgs;
char *s;
TemplateInstance::toCBuffer(&buf, &hgs);
s = buf.toChars();
buf.data = NULL;
return s;
}
void TemplateMixin::toCBuffer(OutBuffer *buf, HdrGenState *hgs)
{
buf->writestring("mixin ");
for (size_t i = 0; i < idents->dim; i++)
{ Identifier *id = (*idents)[i];
if (i)
buf->writeByte('.');
buf->writestring(id->toChars());
}
buf->writestring("!(");
if (tiargs)
{
for (size_t i = 0; i < tiargs->dim; i++)
{ if (i)
buf->writebyte(',');
Object *oarg = (*tiargs)[i];
Type *t = isType(oarg);
Expression *e = isExpression(oarg);
Dsymbol *s = isDsymbol(oarg);
if (t)
t->toCBuffer(buf, NULL, hgs);
else if (e)
e->toCBuffer(buf, hgs);
else if (s)
{
char *p = s->ident ? s->ident->toChars() : s->toChars();
buf->writestring(p);
}
else if (!oarg)
{
buf->writestring("NULL");
}
else
{
assert(0);
}
}
}
buf->writebyte(')');
if (ident)
{
buf->writebyte(' ');
buf->writestring(ident->toChars());
}
buf->writebyte(';');
buf->writenl();
}
#if IN_DMD
void TemplateMixin::toObjFile(int multiobj)
{
//printf("TemplateMixin::toObjFile('%s')\n", toChars());
TemplateInstance::toObjFile(multiobj);
}
#endif