Files
ldc/gen/abi.cpp
Frits van Bommel 27d3ab4546 Some calling convention work for x86-64:
- Implement x86-64 extern(C), hopefully correctly.
 - Tried to be a bit smarter about extern(D) while I was there.

Interestingly, this code seems to be generating more efficient code than
gcc and llvm-gcc in some edge cases, like returning a `{ [7 x i8] }` loaded from
a stack slot from an extern(C) function. (gcc generates 7 1-byte loads, while
this code generates a 4-byte, a 2-byte and a 1-byte load)

I also added some changes to make sure structs being returned from functions or
passed in as parameters are stored in memory where the rest of the backend seems
to expect them to be. These should be removed when support for first-class
aggregates improves.
2009-03-06 16:00:47 +01:00

310 lines
9.6 KiB
C++

#include "gen/llvm.h"
#include <algorithm>
#include "mars.h"
#include "gen/irstate.h"
#include "gen/llvmhelpers.h"
#include "gen/tollvm.h"
#include "gen/abi.h"
#include "gen/logger.h"
#include "gen/dvalue.h"
#include "ir/irfunction.h"
//////////////////////////////////////////////////////////////////////////////
void ABIRewrite::getL(Type* dty, DValue* v, llvm::Value* lval)
{
LLValue* rval = get(dty, v);
assert(rval->getType() == lval->getType()->getContainedType(0));
DtoStore(rval, lval);
}
//////////////////////////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////////////////////////
///////////////////// X86 ////////////////////////////
//////////////////////////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////////////////////////
// simply swap of real/imag parts for proper x87 complex abi
struct X87_complex_swap : ABIRewrite
{
LLValue* get(Type*, DValue* v)
{
return DtoAggrPairSwap(v->getRVal());
}
LLValue* put(Type*, DValue* v)
{
return DtoAggrPairSwap(v->getRVal());
}
const LLType* type(Type*, const LLType* t)
{
return t;
}
};
//////////////////////////////////////////////////////////////////////////////
struct X86_cfloat_rewrite : ABIRewrite
{
// i64 -> {float,float}
LLValue* get(Type*, DValue* dv)
{
LLValue* in = dv->getRVal();
// extract real part
LLValue* rpart = gIR->ir->CreateTrunc(in, LLType::Int32Ty);
rpart = gIR->ir->CreateBitCast(rpart, LLType::FloatTy, ".re");
// extract imag part
LLValue* ipart = gIR->ir->CreateLShr(in, LLConstantInt::get(LLType::Int64Ty, 32, false));
ipart = gIR->ir->CreateTrunc(ipart, LLType::Int32Ty);
ipart = gIR->ir->CreateBitCast(ipart, LLType::FloatTy, ".im");
// return {float,float} aggr pair with same bits
return DtoAggrPair(rpart, ipart, ".final_cfloat");
}
// {float,float} -> i64
LLValue* put(Type*, DValue* dv)
{
LLValue* v = dv->getRVal();
// extract real
LLValue* r = gIR->ir->CreateExtractValue(v, 0);
// cast to i32
r = gIR->ir->CreateBitCast(r, LLType::Int32Ty);
// zext to i64
r = gIR->ir->CreateZExt(r, LLType::Int64Ty);
// extract imag
LLValue* i = gIR->ir->CreateExtractValue(v, 1);
// cast to i32
i = gIR->ir->CreateBitCast(i, LLType::Int32Ty);
// zext to i64
i = gIR->ir->CreateZExt(i, LLType::Int64Ty);
// shift up
i = gIR->ir->CreateShl(i, LLConstantInt::get(LLType::Int64Ty, 32, false));
// combine and return
return v = gIR->ir->CreateOr(r, i);
}
// {float,float} -> i64
const LLType* type(Type*, const LLType* t)
{
return LLType::Int64Ty;
}
};
//////////////////////////////////////////////////////////////////////////////
// FIXME: try into eliminating the alloca or if at least check
// if it gets optimized away
// convert byval struct
// when
struct X86_struct_to_register : ABIRewrite
{
// int -> struct
LLValue* get(Type* dty, DValue* dv)
{
Logger::println("rewriting int -> struct");
LLValue* mem = DtoAlloca(DtoType(dty), ".int_to_struct");
LLValue* v = dv->getRVal();
DtoStore(v, DtoBitCast(mem, getPtrToType(v->getType())));
return DtoLoad(mem);
}
// int -> struct (with dst lvalue given)
void getL(Type* dty, DValue* dv, llvm::Value* lval)
{
Logger::println("rewriting int -> struct");
LLValue* v = dv->getRVal();
DtoStore(v, DtoBitCast(lval, getPtrToType(v->getType())));
}
// struct -> int
LLValue* put(Type* dty, DValue* dv)
{
Logger::println("rewriting struct -> int");
assert(dv->isLVal());
LLValue* mem = dv->getLVal();
const LLType* t = LLIntegerType::get(dty->size()*8);
DtoLoad(DtoBitCast(mem, getPtrToType(t)));
}
const LLType* type(Type*, const LLType* t)
{
size_t sz = getTypePaddedSize(t)*8;
return LLIntegerType::get(sz);
}
};
//////////////////////////////////////////////////////////////////////////////
struct X86TargetABI : TargetABI
{
X87_complex_swap swapComplex;
X86_cfloat_rewrite cfloatToInt;
X86_struct_to_register structToReg;
bool returnInArg(TypeFunction* tf)
{
Type* rt = tf->next->toBasetype();
// D only returns structs on the stack
if (tf->linkage == LINKd)
return (rt->ty == Tstruct);
// other ABI's follow C, which is cdouble and creal returned on the stack
// as well as structs
else
return (rt->ty == Tstruct || rt->ty == Tcomplex64 || rt->ty == Tcomplex80);
}
bool passByVal(Type* t)
{
return t->toBasetype()->ty == Tstruct;
}
void rewriteFunctionType(TypeFunction* tf)
{
IrFuncTy* fty = tf->fty;
Type* rt = fty->ret->type->toBasetype();
// extern(D)
if (tf->linkage == LINKd)
{
// RETURN VALUE
// complex {re,im} -> {im,re}
if (rt->iscomplex())
{
fty->ret->rewrite = &swapComplex;
}
// IMPLICIT PARAMETERS
// mark this/nested params inreg
if (fty->arg_this)
{
fty->arg_this->attrs = llvm::Attribute::InReg;
}
else if (fty->arg_nest)
{
fty->arg_nest->attrs = llvm::Attribute::InReg;
}
// otherwise try to mark the last param inreg
else if (!fty->arg_sret && !fty->args.empty())
{
// The last parameter is passed in EAX rather than being pushed on the stack if the following conditions are met:
// * It fits in EAX.
// * It is not a 3 byte struct.
// * It is not a floating point type.
IrFuncTyArg* last = fty->args.back();
Type* lastTy = last->type->toBasetype();
unsigned sz = lastTy->size();
if (last->byref && !last->isByVal())
{
last->attrs |= llvm::Attribute::InReg;
}
else if (!lastTy->isfloating() && (sz == 1 || sz == 2 || sz == 4)) // right?
{
// rewrite the struct into an integer to make inreg work
if (lastTy->ty == Tstruct)
{
last->rewrite = &structToReg;
last->ltype = structToReg.type(last->type, last->ltype);
last->byref = false;
// erase previous attributes
last->attrs = 0;
}
last->attrs |= llvm::Attribute::InReg;
}
}
// FIXME: tf->varargs == 1 need to use C calling convention and vararg mechanism to live up to the spec:
// "The caller is expected to clean the stack. _argptr is not passed, it is computed by the callee."
// EXPLICIT PARAMETERS
// reverse parameter order
// for non variadics
if (!fty->args.empty() && tf->varargs != 1)
{
fty->reverseParams = true;
}
}
// extern(C) and all others
else
{
// RETURN VALUE
// cfloat -> i64
if (tf->next->toBasetype() == Type::tcomplex32)
{
fty->ret->rewrite = &cfloatToInt;
fty->ret->ltype = LLType::Int64Ty;
}
// IMPLICIT PARAMETERS
// EXPLICIT PARAMETERS
}
}
};
//////////////////////////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////////////////////////
/////////////////// X86-64 //////////////////////////
//////////////////////////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////////////////////////
#include "gen/abi-x86-64.h"
//////////////////////////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////////////////////////
/////////////////// Unknown targets //////////////////////////
//////////////////////////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////////////////////////
// Some reasonable defaults for when we don't know what ABI to use.
struct UnknownTargetABI : TargetABI
{
bool returnInArg(TypeFunction* tf)
{
return (tf->next->toBasetype()->ty == Tstruct);
}
bool passByVal(Type* t)
{
return t->toBasetype()->ty == Tstruct;
}
void rewriteFunctionType(TypeFunction* t)
{
// why?
}
};
//////////////////////////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////////////////////////
TargetABI * TargetABI::getTarget()
{
switch(global.params.cpu)
{
case ARCHx86:
return new X86TargetABI;
case ARCHx86_64:
return getX86_64TargetABI();
default:
Logger::cout() << "WARNING: Unknown ABI, guessing...\n";
return new UnknownTargetABI;
}
}