Files
ldc/dmd/inline.c
2012-11-24 21:10:13 +01:00

1826 lines
45 KiB
C

// Copyright (c) 1999-2012 by Digital Mars
// All Rights Reserved
// written by Walter Bright
// http://www.digitalmars.com
// License for redistribution is by either the Artistic License
// in artistic.txt, or the GNU General Public License in gnu.txt.
// See the included readme.txt for details.
// Routines to perform function inlining
#define LOG 0
#include <stdio.h>
#include <stdlib.h>
#include <assert.h>
#include <string.h> // memset()
#include "id.h"
#include "init.h"
#include "declaration.h"
#include "aggregate.h"
#include "expression.h"
#include "statement.h"
#include "mtype.h"
#include "scope.h"
/* ========== Compute cost of inlining =============== */
/* Walk trees to determine if inlining can be done, and if so,
* if it is too complex to be worth inlining or not.
*/
struct InlineCostState
{
int nested;
int hasthis;
int hdrscan; // !=0 if inline scan for 'header' content
FuncDeclaration *fd;
};
const int COST_MAX = 250;
const int STATEMENT_COST = 0x1000;
const int STATEMENT_COST_MAX = 250 * 0x1000;
// STATEMENT_COST be power of 2 and greater than COST_MAX
//static assert((STATEMENT_COST & (STATEMENT_COST - 1)) == 0);
//static assert(STATEMENT_COST > COST_MAX);
bool tooCostly(int cost) { return ((cost & (STATEMENT_COST - 1)) >= COST_MAX); }
int expressionInlineCost(Expression *e, InlineCostState *ics);
int Statement::inlineCost(InlineCostState *ics)
{
//printf("Statement::inlineCost = %d\n", COST_MAX);
//printf("%p\n", isScopeStatement());
//printf("%s\n", toChars());
return COST_MAX; // default is we can't inline it
}
int ExpStatement::inlineCost(InlineCostState *ics)
{
return expressionInlineCost(exp, ics);
//return exp ? exp->inlineCost(ics) : 0;
}
int CompoundStatement::inlineCost(InlineCostState *ics)
{ int cost = 0;
for (size_t i = 0; i < statements->dim; i++)
{ Statement *s = (*statements)[i];
if (s)
{
cost += s->inlineCost(ics);
if (tooCostly(cost))
break;
}
}
//printf("CompoundStatement::inlineCost = %d\n", cost);
return cost;
}
int UnrolledLoopStatement::inlineCost(InlineCostState *ics)
{ int cost = 0;
for (size_t i = 0; i < statements->dim; i++)
{ Statement *s = (*statements)[i];
if (s)
{
cost += s->inlineCost(ics);
if (tooCostly(cost))
break;
}
}
return cost;
}
int ScopeStatement::inlineCost(InlineCostState *ics)
{
return statement ? 1 + statement->inlineCost(ics) : 1;
}
int IfStatement::inlineCost(InlineCostState *ics)
{
int cost;
#if !IN_LLVM
/* Can't declare variables inside ?: expressions, so
* we cannot inline if a variable is declared.
*/
if (arg)
return COST_MAX;
#endif
cost = expressionInlineCost(condition, ics);
#if !IN_LLVM
/* Specifically allow:
* if (condition)
* return exp1;
* else
* return exp2;
* Otherwise, we can't handle return statements nested in if's.
*/
if (elsebody && ifbody &&
ifbody->isReturnStatement() &&
elsebody->isReturnStatement())
{
cost += ifbody->inlineCost(ics);
cost += elsebody->inlineCost(ics);
//printf("cost = %d\n", cost);
}
else
#endif
{
ics->nested += 1;
if (ifbody)
cost += ifbody->inlineCost(ics);
if (elsebody)
cost += elsebody->inlineCost(ics);
ics->nested -= 1;
}
//printf("IfStatement::inlineCost = %d\n", cost);
return cost;
}
int ReturnStatement::inlineCost(InlineCostState *ics)
{
#if !IN_LLVM
// Can't handle return statements nested in if's
if (ics->nested)
return COST_MAX;
#endif
return expressionInlineCost(exp, ics);
}
#if DMDV2
int ImportStatement::inlineCost(InlineCostState *ics)
{
return 0;
}
#endif
int ForStatement::inlineCost(InlineCostState *ics)
{
//return COST_MAX;
int cost = STATEMENT_COST;
if (init)
cost += init->inlineCost(ics);
if (condition)
cost += expressionInlineCost(condition, ics);
if (increment)
cost += expressionInlineCost(increment, ics);
if (body)
cost += body->inlineCost(ics);
//printf("ForStatement: inlineCost = %d\n", cost);
return cost;
}
/* -------------------------- */
struct ICS2
{
int cost;
InlineCostState *ics;
};
int lambdaInlineCost(Expression *e, void *param)
{
ICS2 *ics2 = (ICS2 *)param;
ics2->cost += e->inlineCost3(ics2->ics);
return (ics2->cost >= COST_MAX);
}
int expressionInlineCost(Expression *e, InlineCostState *ics)
{
//printf("expressionInlineCost()\n");
//e->dump(0);
ICS2 ics2;
ics2.cost = 0;
ics2.ics = ics;
if (e)
e->apply(&lambdaInlineCost, &ics2);
return ics2.cost;
}
int Expression::inlineCost3(InlineCostState *ics)
{
return 1;
}
int ThisExp::inlineCost3(InlineCostState *ics)
{
#if !IN_LLVM
//printf("ThisExp::inlineCost3() %s\n", toChars());
FuncDeclaration *fd = ics->fd;
if (!fd)
return COST_MAX;
if (!ics->hdrscan)
if (fd->isNested() || !ics->hasthis)
return COST_MAX;
#endif
return 1;
}
int StructLiteralExp::inlineCost3(InlineCostState *ics)
{
//printf("StructLiteralExp::inlineCost3() %s\n", toChars());
#if DMDV2
if (sd->isnested)
return COST_MAX;
#endif
return 1;
}
int FuncExp::inlineCost3(InlineCostState *ics)
{
//printf("FuncExp::inlineCost3()\n");
// This breaks on LDC too, since nested functions have internal linkage
// and thus can't be referenced from other objects.
// Right now, this makes the function be output to the .obj file twice.
return COST_MAX;
}
int DelegateExp::inlineCost3(InlineCostState *ics)
{
//printf("DelegateExp::inlineCost3()\n");
// This breaks on LDC too, since nested functions have internal linkage
// and thus can't be referenced from other objects.
return COST_MAX;
}
int DeclarationExp::inlineCost3(InlineCostState *ics)
{ int cost = 0;
VarDeclaration *vd;
//printf("DeclarationExp::inlineCost3()\n");
vd = declaration->isVarDeclaration();
if (vd)
{
TupleDeclaration *td = vd->toAlias()->isTupleDeclaration();
if (td)
{
#if 1
return COST_MAX; // finish DeclarationExp::doInline
#else
for (size_t i = 0; i < td->objects->dim; i++)
{ Object *o = (*td->objects)[i];
if (o->dyncast() != DYNCAST_EXPRESSION)
return COST_MAX;
Expression *eo = (Expression *)o;
if (eo->op != TOKdsymbol)
return COST_MAX;
}
return td->objects->dim;
#endif
}
// This breaks on LDC too, since nested static variables have internal
// linkage and thus can't be referenced from other objects.
if (!ics->hdrscan && vd->isDataseg())
return COST_MAX;
cost += 1;
#if DMDV2
if (vd->edtor) // if destructor required
return COST_MAX; // needs work to make this work
#endif
// Scan initializer (vd->init)
if (vd->init)
{
ExpInitializer *ie = vd->init->isExpInitializer();
if (ie)
{
cost += expressionInlineCost(ie->exp, ics);
}
}
}
// These can contain functions, which when copied, get output twice.
// These break on LDC too, since nested static variables and functions have
// internal linkage and thus can't be referenced from other objects.
if (declaration->isStructDeclaration() ||
declaration->isClassDeclaration() ||
declaration->isFuncDeclaration() ||
declaration->isTypedefDeclaration() ||
#if DMDV2
declaration->isAttribDeclaration() ||
#endif
declaration->isTemplateMixin())
return COST_MAX;
//printf("DeclarationExp::inlineCost3('%s')\n", toChars());
return cost;
}
int CallExp::inlineCost3(InlineCostState *ics)
{
//printf("CallExp::inlineCost3() %s\n", toChars());
// Bugzilla 3500: super.func() calls must be devirtualized, and the inliner
// can't handle that at present.
if (e1->op == TOKdotvar && ((DotVarExp *)e1)->e1->op == TOKsuper)
return COST_MAX;
return 1;
}
/* ======================== Perform the inlining ============================== */
/* Inlining is done by:
* o Converting to an Expression
* o Copying the trees of the function to be inlined
* o Renaming the variables
*/
struct InlineDoState
{
VarDeclaration *vthis;
Dsymbols from; // old Dsymbols
Dsymbols to; // parallel array of new Dsymbols
Dsymbol *parent; // new parent
FuncDeclaration *fd; // function being inlined (old parent)
};
/* -------------------------------------------------------------------- */
Statement *Statement::doInlineStatement(InlineDoState *ids)
{
assert(0);
return NULL; // default is we can't inline it
}
Statement *ExpStatement::doInlineStatement(InlineDoState *ids)
{
#if LOG
if (exp) printf("ExpStatement::doInlineStatement() '%s'\n", exp->toChars());
#endif
return new ExpStatement(loc, exp ? exp->doInline(ids) : NULL);
}
Statement *CompoundStatement::doInlineStatement(InlineDoState *ids)
{
//printf("CompoundStatement::doInlineStatement() %d\n", statements->dim);
Statements *as = new Statements();
as->reserve(statements->dim);
for (size_t i = 0; i < statements->dim; i++)
{ Statement *s = (*statements)[i];
if (s)
{
as->push(s->doInlineStatement(ids));
if (s->isReturnStatement())
break;
/* Check for:
* if (condition)
* return exp1;
* else
* return exp2;
*/
IfStatement *ifs = s->isIfStatement();
if (ifs && ifs->elsebody && ifs->ifbody &&
ifs->ifbody->isReturnStatement() &&
ifs->elsebody->isReturnStatement()
)
break;
}
else
as->push(NULL);
}
return new CompoundStatement(loc, as);
}
Statement *UnrolledLoopStatement::doInlineStatement(InlineDoState *ids)
{
//printf("UnrolledLoopStatement::doInlineStatement() %d\n", statements->dim);
Statements *as = new Statements();
as->reserve(statements->dim);
for (size_t i = 0; i < statements->dim; i++)
{ Statement *s = (*statements)[i];
if (s)
{
as->push(s->doInlineStatement(ids));
if (s->isReturnStatement())
break;
}
else
as->push(NULL);
}
return new UnrolledLoopStatement(loc, as);
}
Statement *ScopeStatement::doInlineStatement(InlineDoState *ids)
{
//printf("ScopeStatement::doInlineStatement() %d\n", statements->dim);
return statement ? new ScopeStatement(loc, statement->doInlineStatement(ids)) : this;
}
Statement *IfStatement::doInlineStatement(InlineDoState *ids)
{
assert(!arg);
Expression *condition = this->condition ? this->condition->doInline(ids) : NULL;
Statement *ifbody = this->ifbody ? this->ifbody->doInlineStatement(ids) : NULL;
Statement *elsebody = this->elsebody ? this->elsebody->doInlineStatement(ids) : NULL;
return new IfStatement(loc, arg, condition, ifbody, elsebody);
}
Statement *ReturnStatement::doInlineStatement(InlineDoState *ids)
{
//printf("ReturnStatement::doInlineStatement() '%s'\n", exp ? exp->toChars() : "");
return new ReturnStatement(loc, exp ? exp->doInline(ids) : NULL);
}
#if DMDV2
Statement *ImportStatement::doInlineStatement(InlineDoState *ids)
{
return NULL;
}
#endif
Statement *ForStatement::doInlineStatement(InlineDoState *ids)
{
//printf("ForStatement::doInlineStatement()\n");
Statement *init = this->init ? this->init->doInlineStatement(ids) : NULL;
Expression *condition = this->condition ? this->condition->doInline(ids) : NULL;
Expression *increment = this->increment ? this->increment->doInline(ids) : NULL;
Statement *body = this->body ? this->body->doInlineStatement(ids) : NULL;
return new ForStatement(loc, init, condition, increment, body);
}
/* -------------------------------------------------------------------- */
Expression *Statement::doInline(InlineDoState *ids)
{
printf("Statement::doInline()\n%s\n", toChars());
fflush(stdout);
assert(0);
return NULL; // default is we can't inline it
}
Expression *ExpStatement::doInline(InlineDoState *ids)
{
#if LOG
if (exp) printf("ExpStatement::doInline() '%s'\n", exp->toChars());
#endif
return exp ? exp->doInline(ids) : NULL;
}
Expression *CompoundStatement::doInline(InlineDoState *ids)
{
Expression *e = NULL;
//printf("CompoundStatement::doInline() %d\n", statements->dim);
for (size_t i = 0; i < statements->dim; i++)
{ Statement *s = (*statements)[i];
if (s)
{
Expression *e2 = s->doInline(ids);
e = Expression::combine(e, e2);
if (s->isReturnStatement())
break;
/* Check for:
* if (condition)
* return exp1;
* else
* return exp2;
*/
IfStatement *ifs = s->isIfStatement();
if (ifs && ifs->elsebody && ifs->ifbody &&
ifs->ifbody->isReturnStatement() &&
ifs->elsebody->isReturnStatement()
)
break;
}
}
return e;
}
Expression *UnrolledLoopStatement::doInline(InlineDoState *ids)
{
Expression *e = NULL;
//printf("UnrolledLoopStatement::doInline() %d\n", statements->dim);
for (size_t i = 0; i < statements->dim; i++)
{ Statement *s = (*statements)[i];
if (s)
{
Expression *e2 = s->doInline(ids);
e = Expression::combine(e, e2);
if (s->isReturnStatement())
break;
}
}
return e;
}
Expression *ScopeStatement::doInline(InlineDoState *ids)
{
return statement ? statement->doInline(ids) : NULL;
}
Expression *IfStatement::doInline(InlineDoState *ids)
{
Expression *econd;
Expression *e1;
Expression *e2;
Expression *e;
assert(!arg);
econd = condition->doInline(ids);
assert(econd);
if (ifbody)
e1 = ifbody->doInline(ids);
else
e1 = NULL;
if (elsebody)
e2 = elsebody->doInline(ids);
else
e2 = NULL;
if (e1 && e2)
{
e = new CondExp(econd->loc, econd, e1, e2);
e->type = e1->type;
}
else if (e1)
{
e = new AndAndExp(econd->loc, econd, e1);
e->type = Type::tvoid;
}
else if (e2)
{
e = new OrOrExp(econd->loc, econd, e2);
e->type = Type::tvoid;
}
else
{
e = econd;
}
return e;
}
Expression *ReturnStatement::doInline(InlineDoState *ids)
{
//printf("ReturnStatement::doInline() '%s'\n", exp ? exp->toChars() : "");
return exp ? exp->doInline(ids) : 0;
}
#if DMDV2
Expression *ImportStatement::doInline(InlineDoState *ids)
{
return NULL;
}
#endif
/* --------------------------------------------------------------- */
/******************************
* Perform doInline() on an array of Expressions.
*/
Expressions *arrayExpressiondoInline(Expressions *a, InlineDoState *ids)
{ Expressions *newa = NULL;
if (a)
{
newa = new Expressions();
newa->setDim(a->dim);
for (size_t i = 0; i < a->dim; i++)
{ Expression *e = a->tdata()[i];
if (e)
e = e->doInline(ids);
newa->tdata()[i] = e;
}
}
return newa;
}
Expression *Expression::doInline(InlineDoState *ids)
{
//printf("Expression::doInline(%s): %s\n", Token::toChars(op), toChars());
return copy();
}
Expression *SymOffExp::doInline(InlineDoState *ids)
{
//printf("SymOffExp::doInline(%s)\n", toChars());
for (size_t i = 0; i < ids->from.dim; i++)
{
if (var == ids->from.tdata()[i])
{
SymOffExp *se = (SymOffExp *)copy();
se->var = (Declaration *)ids->to.tdata()[i];
return se;
}
}
return this;
}
Expression *VarExp::doInline(InlineDoState *ids)
{
//printf("VarExp::doInline(%s)\n", toChars());
for (size_t i = 0; i < ids->from.dim; i++)
{
if (var == ids->from.tdata()[i])
{
VarExp *ve = (VarExp *)copy();
ve->var = (Declaration *)ids->to.tdata()[i];
return ve;
}
}
return this;
}
Expression *ThisExp::doInline(InlineDoState *ids)
{
//if (!ids->vthis)
//error("no 'this' when inlining %s", ids->parent->toChars());
if (!ids->vthis)
{
return this;
}
VarExp *ve = new VarExp(loc, ids->vthis);
ve->type = type;
return ve;
}
Expression *SuperExp::doInline(InlineDoState *ids)
{
assert(ids->vthis);
VarExp *ve = new VarExp(loc, ids->vthis);
ve->type = type;
return ve;
}
Expression *DeclarationExp::doInline(InlineDoState *ids)
{ DeclarationExp *de = (DeclarationExp *)copy();
VarDeclaration *vd;
//printf("DeclarationExp::doInline(%s)\n", toChars());
vd = declaration->isVarDeclaration();
if (vd)
{
#if 0
// Need to figure this out before inlining can work for tuples
TupleDeclaration *td = vd->toAlias()->isTupleDeclaration();
if (td)
{
for (size_t i = 0; i < td->objects->dim; i++)
{ DsymbolExp *se = td->objects->tdata()[i];
assert(se->op == TOKdsymbol);
se->s;
}
return st->objects->dim;
}
#endif
if (vd->isStatic() || vd->isConst())
;
else
{
VarDeclaration *vto;
vto = new VarDeclaration(vd->loc, vd->type, vd->ident, vd->init);
*vto = *vd;
vto->parent = ids->parent;
#if IN_DMD
vto->csym = NULL;
vto->isym = NULL;
#endif
ids->from.push(vd);
ids->to.push(vto);
if (vd->init)
{
if (vd->init->isVoidInitializer())
{
vto->init = new VoidInitializer(vd->init->loc);
}
else
{
ExpInitializer *ie = vd->init->isExpInitializer();
assert(ie);
vto->init = new ExpInitializer(ie->loc, ie->exp->doInline(ids));
}
}
de->declaration = (Dsymbol *) (void *)vto;
}
}
/* This needs work, like DeclarationExp::toElem(), if we are
* to handle TemplateMixin's. For now, we just don't inline them.
*/
return de;
}
Expression *NewExp::doInline(InlineDoState *ids)
{
//printf("NewExp::doInline(): %s\n", toChars());
NewExp *ne = (NewExp *)copy();
if (thisexp)
ne->thisexp = thisexp->doInline(ids);
ne->newargs = arrayExpressiondoInline(ne->newargs, ids);
ne->arguments = arrayExpressiondoInline(ne->arguments, ids);
return ne;
}
Expression *UnaExp::doInline(InlineDoState *ids)
{
UnaExp *ue = (UnaExp *)copy();
ue->e1 = e1->doInline(ids);
return ue;
}
Expression *AssertExp::doInline(InlineDoState *ids)
{
AssertExp *ae = (AssertExp *)copy();
ae->e1 = e1->doInline(ids);
if (msg)
ae->msg = msg->doInline(ids);
return ae;
}
Expression *BinExp::doInline(InlineDoState *ids)
{
BinExp *be = (BinExp *)copy();
be->e1 = e1->doInline(ids);
be->e2 = e2->doInline(ids);
return be;
}
Expression *CallExp::doInline(InlineDoState *ids)
{
CallExp *ce;
ce = (CallExp *)copy();
ce->e1 = e1->doInline(ids);
ce->arguments = arrayExpressiondoInline(arguments, ids);
return ce;
}
Expression *IndexExp::doInline(InlineDoState *ids)
{
IndexExp *are = (IndexExp *)copy();
are->e1 = e1->doInline(ids);
if (lengthVar)
{ //printf("lengthVar\n");
VarDeclaration *vd = lengthVar;
ExpInitializer *ie;
ExpInitializer *ieto;
VarDeclaration *vto;
vto = new VarDeclaration(vd->loc, vd->type, vd->ident, vd->init);
*vto = *vd;
vto->parent = ids->parent;
#if IN_DMD
vto->csym = NULL;
vto->isym = NULL;
#endif
ids->from.push(vd);
ids->to.push(vto);
if (vd->init && !vd->init->isVoidInitializer())
{
ie = vd->init->isExpInitializer();
assert(ie);
ieto = new ExpInitializer(ie->loc, ie->exp->doInline(ids));
vto->init = ieto;
}
are->lengthVar = (VarDeclaration *) (void *)vto;
}
are->e2 = e2->doInline(ids);
return are;
}
Expression *SliceExp::doInline(InlineDoState *ids)
{
SliceExp *are = (SliceExp *)copy();
are->e1 = e1->doInline(ids);
if (lengthVar)
{ //printf("lengthVar\n");
VarDeclaration *vd = lengthVar;
ExpInitializer *ie;
ExpInitializer *ieto;
VarDeclaration *vto;
vto = new VarDeclaration(vd->loc, vd->type, vd->ident, vd->init);
*vto = *vd;
vto->parent = ids->parent;
#if IN_DMD
vto->csym = NULL;
vto->isym = NULL;
#endif
ids->from.push(vd);
ids->to.push(vto);
if (vd->init && !vd->init->isVoidInitializer())
{
ie = vd->init->isExpInitializer();
assert(ie);
ieto = new ExpInitializer(ie->loc, ie->exp->doInline(ids));
vto->init = ieto;
}
are->lengthVar = (VarDeclaration *) (void *)vto;
}
if (lwr)
are->lwr = lwr->doInline(ids);
if (upr)
are->upr = upr->doInline(ids);
return are;
}
Expression *TupleExp::doInline(InlineDoState *ids)
{
TupleExp *ce;
ce = (TupleExp *)copy();
ce->exps = arrayExpressiondoInline(exps, ids);
return ce;
}
Expression *ArrayLiteralExp::doInline(InlineDoState *ids)
{
ArrayLiteralExp *ce;
ce = (ArrayLiteralExp *)copy();
ce->elements = arrayExpressiondoInline(elements, ids);
return ce;
}
Expression *AssocArrayLiteralExp::doInline(InlineDoState *ids)
{
AssocArrayLiteralExp *ce;
ce = (AssocArrayLiteralExp *)copy();
ce->keys = arrayExpressiondoInline(keys, ids);
ce->values = arrayExpressiondoInline(values, ids);
return ce;
}
Expression *StructLiteralExp::doInline(InlineDoState *ids)
{
StructLiteralExp *ce;
ce = (StructLiteralExp *)copy();
ce->elements = arrayExpressiondoInline(elements, ids);
return ce;
}
Expression *ArrayExp::doInline(InlineDoState *ids)
{
ArrayExp *ce;
ce = (ArrayExp *)copy();
ce->e1 = e1->doInline(ids);
ce->arguments = arrayExpressiondoInline(arguments, ids);
return ce;
}
Expression *CondExp::doInline(InlineDoState *ids)
{
CondExp *ce = (CondExp *)copy();
ce->econd = econd->doInline(ids);
ce->e1 = e1->doInline(ids);
ce->e2 = e2->doInline(ids);
return ce;
}
/* ========== Walk the parse trees, and inline expand functions ============= */
/* Walk the trees, looking for functions to inline.
* Inline any that can be.
*/
struct InlineScanState
{
FuncDeclaration *fd; // function being scanned
};
Statement *Statement::inlineScan(InlineScanState *iss)
{
return this;
}
Statement *ExpStatement::inlineScan(InlineScanState *iss)
{
#if LOG
printf("ExpStatement::inlineScan(%s)\n", toChars());
#endif
if (exp)
{
exp = exp->inlineScan(iss);
/* See if we can inline as a statement rather than as
* an Expression.
*/
if (exp && exp->op == TOKcall)
{
CallExp *ce = (CallExp *)exp;
if (ce->e1->op == TOKvar)
{
VarExp *ve = (VarExp *)ce->e1;
FuncDeclaration *fd = ve->var->isFuncDeclaration();
if (fd && fd != iss->fd && fd->canInline(0, 0, 1))
{
Statement *s;
fd->expandInline(iss, NULL, ce->arguments, &s);
return s;
}
}
}
}
return this;
}
Statement *CompoundStatement::inlineScan(InlineScanState *iss)
{
for (size_t i = 0; i < statements->dim; i++)
{ Statement *s = (*statements)[i];
if (s)
(*statements)[i] = s->inlineScan(iss);
}
return this;
}
Statement *UnrolledLoopStatement::inlineScan(InlineScanState *iss)
{
for (size_t i = 0; i < statements->dim; i++)
{ Statement *s = (*statements)[i];
if (s)
(*statements)[i] = s->inlineScan(iss);
}
return this;
}
Statement *ScopeStatement::inlineScan(InlineScanState *iss)
{
if (statement)
statement = statement->inlineScan(iss);
return this;
}
Statement *WhileStatement::inlineScan(InlineScanState *iss)
{
condition = condition->inlineScan(iss);
body = body ? body->inlineScan(iss) : NULL;
return this;
}
Statement *DoStatement::inlineScan(InlineScanState *iss)
{
body = body ? body->inlineScan(iss) : NULL;
condition = condition->inlineScan(iss);
return this;
}
Statement *ForStatement::inlineScan(InlineScanState *iss)
{
if (init)
init = init->inlineScan(iss);
if (condition)
condition = condition->inlineScan(iss);
if (increment)
increment = increment->inlineScan(iss);
if (body)
body = body->inlineScan(iss);
return this;
}
Statement *ForeachStatement::inlineScan(InlineScanState *iss)
{
aggr = aggr->inlineScan(iss);
if (body)
body = body->inlineScan(iss);
return this;
}
#if DMDV2
Statement *ForeachRangeStatement::inlineScan(InlineScanState *iss)
{
lwr = lwr->inlineScan(iss);
upr = upr->inlineScan(iss);
if (body)
body = body->inlineScan(iss);
return this;
}
#endif
Statement *IfStatement::inlineScan(InlineScanState *iss)
{
condition = condition->inlineScan(iss);
if (ifbody)
ifbody = ifbody->inlineScan(iss);
if (elsebody)
elsebody = elsebody->inlineScan(iss);
return this;
}
Statement *SwitchStatement::inlineScan(InlineScanState *iss)
{
//printf("SwitchStatement::inlineScan()\n");
condition = condition->inlineScan(iss);
body = body ? body->inlineScan(iss) : NULL;
if (sdefault)
sdefault = (DefaultStatement *)sdefault->inlineScan(iss);
if (cases)
{
for (size_t i = 0; i < cases->dim; i++)
{ CaseStatement *s;
s = cases->tdata()[i];
cases->tdata()[i] = (CaseStatement *)s->inlineScan(iss);
}
}
return this;
}
Statement *CaseStatement::inlineScan(InlineScanState *iss)
{
//printf("CaseStatement::inlineScan()\n");
exp = exp->inlineScan(iss);
if (statement)
statement = statement->inlineScan(iss);
return this;
}
Statement *DefaultStatement::inlineScan(InlineScanState *iss)
{
if (statement)
statement = statement->inlineScan(iss);
return this;
}
Statement *ReturnStatement::inlineScan(InlineScanState *iss)
{
//printf("ReturnStatement::inlineScan()\n");
if (exp)
{
exp = exp->inlineScan(iss);
}
return this;
}
Statement *SynchronizedStatement::inlineScan(InlineScanState *iss)
{
if (exp)
exp = exp->inlineScan(iss);
if (body)
body = body->inlineScan(iss);
return this;
}
Statement *WithStatement::inlineScan(InlineScanState *iss)
{
if (exp)
exp = exp->inlineScan(iss);
if (body)
body = body->inlineScan(iss);
return this;
}
Statement *TryCatchStatement::inlineScan(InlineScanState *iss)
{
if (body)
body = body->inlineScan(iss);
if (catches)
{
for (size_t i = 0; i < catches->dim; i++)
{ Catch *c = catches->tdata()[i];
if (c->handler)
c->handler = c->handler->inlineScan(iss);
}
}
return this;
}
Statement *TryFinallyStatement::inlineScan(InlineScanState *iss)
{
if (body)
body = body->inlineScan(iss);
if (finalbody)
finalbody = finalbody->inlineScan(iss);
return this;
}
Statement *ThrowStatement::inlineScan(InlineScanState *iss)
{
if (exp)
exp = exp->inlineScan(iss);
return this;
}
Statement *VolatileStatement::inlineScan(InlineScanState *iss)
{
if (statement)
statement = statement->inlineScan(iss);
return this;
}
Statement *LabelStatement::inlineScan(InlineScanState *iss)
{
if (statement)
statement = statement->inlineScan(iss);
return this;
}
/* -------------------------- */
void arrayInlineScan(InlineScanState *iss, Expressions *arguments)
{
if (arguments)
{
for (size_t i = 0; i < arguments->dim; i++)
{ Expression *e = arguments->tdata()[i];
if (e)
{
e = e->inlineScan(iss);
arguments->tdata()[i] = e;
}
}
}
}
Expression *Expression::inlineScan(InlineScanState *iss)
{
return this;
}
void scanVar(Dsymbol *s, InlineScanState *iss)
{
VarDeclaration *vd = s->isVarDeclaration();
if (vd)
{
TupleDeclaration *td = vd->toAlias()->isTupleDeclaration();
if (td)
{
for (size_t i = 0; i < td->objects->dim; i++)
{ DsymbolExp *se = (DsymbolExp *)td->objects->tdata()[i];
assert(se->op == TOKdsymbol);
scanVar(se->s, iss);
}
}
else
{
// Scan initializer (vd->init)
if (vd->init)
{
ExpInitializer *ie = vd->init->isExpInitializer();
if (ie)
{
#if DMDV2
if (vd->type)
{ Type *tb = vd->type->toBasetype();
if (tb->ty == Tstruct)
{ StructDeclaration *sd = ((TypeStruct *)tb)->sym;
if (sd->cpctor)
{ /* The problem here is that if the initializer is a
* function call that returns a struct S with a cpctor:
* S s = foo();
* the postblit is done by the return statement in foo()
* in s2ir.c, the intermediate code generator.
* But, if foo() is inlined and now the code looks like:
* S s = x;
* the postblit is not there, because such assignments
* are rewritten as s.cpctor(&x) by the front end.
* So, the inlining won't get the postblit called.
* Work around by not inlining these cases.
* A proper fix would be to move all the postblit
* additions to the front end.
*/
return;
}
}
}
#endif
ie->exp = ie->exp->inlineScan(iss);
}
}
}
}
}
Expression *DeclarationExp::inlineScan(InlineScanState *iss)
{
//printf("DeclarationExp::inlineScan()\n");
scanVar(declaration, iss);
return this;
}
Expression *UnaExp::inlineScan(InlineScanState *iss)
{
e1 = e1->inlineScan(iss);
return this;
}
Expression *AssertExp::inlineScan(InlineScanState *iss)
{
e1 = e1->inlineScan(iss);
if (msg)
msg = msg->inlineScan(iss);
return this;
}
Expression *BinExp::inlineScan(InlineScanState *iss)
{
e1 = e1->inlineScan(iss);
e2 = e2->inlineScan(iss);
return this;
}
Expression *CallExp::inlineScan(InlineScanState *iss)
{ Expression *e = this;
//printf("CallExp::inlineScan()\n");
e1 = e1->inlineScan(iss);
arrayInlineScan(iss, arguments);
if (e1->op == TOKvar)
{
VarExp *ve = (VarExp *)e1;
FuncDeclaration *fd = ve->var->isFuncDeclaration();
if (fd && fd != iss->fd && fd->canInline(0, 0, 0))
{
e = fd->expandInline(iss, NULL, arguments, NULL);
}
}
else if (e1->op == TOKdotvar)
{
DotVarExp *dve = (DotVarExp *)e1;
FuncDeclaration *fd = dve->var->isFuncDeclaration();
if (fd && fd != iss->fd && fd->canInline(1, 0, 0))
{
if (dve->e1->op == TOKcall &&
dve->e1->type->toBasetype()->ty == Tstruct)
{
/* To create ethis, we'll need to take the address
* of dve->e1, but this won't work if dve->e1 is
* a function call.
*/
;
}
else
e = fd->expandInline(iss, dve->e1, arguments, NULL);
}
}
return e;
}
Expression *SliceExp::inlineScan(InlineScanState *iss)
{
e1 = e1->inlineScan(iss);
if (lwr)
lwr = lwr->inlineScan(iss);
if (upr)
upr = upr->inlineScan(iss);
return this;
}
Expression *TupleExp::inlineScan(InlineScanState *iss)
{ Expression *e = this;
//printf("TupleExp::inlineScan()\n");
arrayInlineScan(iss, exps);
return e;
}
Expression *ArrayLiteralExp::inlineScan(InlineScanState *iss)
{ Expression *e = this;
//printf("ArrayLiteralExp::inlineScan()\n");
arrayInlineScan(iss, elements);
return e;
}
Expression *AssocArrayLiteralExp::inlineScan(InlineScanState *iss)
{ Expression *e = this;
//printf("AssocArrayLiteralExp::inlineScan()\n");
arrayInlineScan(iss, keys);
arrayInlineScan(iss, values);
return e;
}
Expression *StructLiteralExp::inlineScan(InlineScanState *iss)
{ Expression *e = this;
//printf("StructLiteralExp::inlineScan()\n");
arrayInlineScan(iss, elements);
return e;
}
Expression *ArrayExp::inlineScan(InlineScanState *iss)
{ Expression *e = this;
//printf("ArrayExp::inlineScan()\n");
e1 = e1->inlineScan(iss);
arrayInlineScan(iss, arguments);
return e;
}
Expression *CondExp::inlineScan(InlineScanState *iss)
{
econd = econd->inlineScan(iss);
e1 = e1->inlineScan(iss);
e2 = e2->inlineScan(iss);
return this;
}
/* ========== =============== */
void FuncDeclaration::inlineScan()
{
InlineScanState iss;
#if LOG
printf("FuncDeclaration::inlineScan('%s')\n", toChars());
#endif
memset(&iss, 0, sizeof(iss));
iss.fd = this;
if (fbody && !naked)
{
inlineNest++;
fbody = fbody->inlineScan(&iss);
inlineNest--;
}
}
int FuncDeclaration::canInline(int hasthis, int hdrscan, int statementsToo)
{
InlineCostState ics;
int cost;
#define CANINLINE_LOG 0
#if CANINLINE_LOG
printf("FuncDeclaration::canInline(hasthis = %d, statementsToo = %d, '%s')\n", hasthis, statementsToo, toChars());
#endif
if (needThis() && !hasthis)
return 0;
if (inlineNest || (semanticRun < PASSsemantic3 && !hdrscan))
{
#if CANINLINE_LOG
printf("\t1: no, inlineNest = %d, semanticRun = %d\n", inlineNest, semanticRun);
#endif
return 0;
}
switch (statementsToo ? inlineStatusStmt : inlineStatusExp)
{
case ILSyes:
#if CANINLINE_LOG
printf("\t1: yes %s\n", toChars());
#endif
return 1;
case ILSno:
#if CANINLINE_LOG
printf("\t1: no %s\n", toChars());
#endif
return 0;
case ILSuninitialized:
break;
default:
assert(0);
}
if (type)
{ assert(type->ty == Tfunction);
TypeFunction *tf = (TypeFunction *)(type);
#if IN_LLVM
// LDC: Only extern(C) varargs count.
if (tf->linkage != LINKd)
#endif
if (tf->varargs == 1) // no variadic parameter lists
goto Lno;
/* Don't inline a function that returns non-void, but has
* no return expression.
* No statement inlining for non-voids.
*/
if (tf->next && tf->next->ty != Tvoid &&
(!(hasReturnExp & 1) || statementsToo) &&
!hdrscan)
goto Lno;
}
#if !IN_LLVM
// LDC: Only extern(C) varargs count, and ctors use extern(D).
else
{ CtorDeclaration *ctor = isCtorDeclaration();
if (ctor && ctor->varargs == 1)
goto Lno;
}
#endif
if (
!fbody ||
ident == Id::ensure || // ensure() has magic properties the inliner loses
(ident == Id::require && // require() has magic properties too
toParent()->isFuncDeclaration() && // see bug 7699
toParent()->isFuncDeclaration()->needThis()) ||
!hdrscan &&
(
#if 0
isCtorDeclaration() || // cannot because need to convert:
// return;
// to:
// return this;
#endif
isSynchronized() ||
isImportedSymbol() ||
#if !IN_LLVM
hasNestedFrameRefs() || // no nested references to this frame
#endif // !IN_LLVM
(isVirtual() && !isFinal())
))
{
goto Lno;
}
#if !IN_LLVM
#if !SARRAYVALUE
/* If any parameters are Tsarray's (which are passed by reference)
* or out parameters (also passed by reference), don't do inlining.
*/
if (parameters)
{
for (size_t i = 0; i < parameters->dim; i++)
{
VarDeclaration *v = parameters->tdata()[i];
if (v->type->toBasetype()->ty == Tsarray)
goto Lno;
}
}
#endif
#endif
memset(&ics, 0, sizeof(ics));
ics.hasthis = hasthis;
ics.fd = this;
ics.hdrscan = hdrscan;
cost = fbody->inlineCost(&ics);
#if CANINLINE_LOG
printf("cost = %d for %s\n", cost, toChars());
#endif
if (tooCostly(cost))
goto Lno;
if (!statementsToo && cost > COST_MAX)
goto Lno;
if (!hdrscan)
{
// Don't modify inlineStatus for header content scan
if (statementsToo)
inlineStatusStmt = ILSyes;
else
inlineStatusExp = ILSyes;
#if !IN_LLVM
inlineScan(); // Don't scan recursively for header content scan
#endif
if (inlineStatusExp == ILSuninitialized)
{
// Need to redo cost computation, as some statements or expressions have been inlined
memset(&ics, 0, sizeof(ics));
ics.hasthis = hasthis;
ics.fd = this;
ics.hdrscan = hdrscan;
cost = fbody->inlineCost(&ics);
#if CANINLINE_LOG
printf("recomputed cost = %d for %s\n", cost, toChars());
#endif
if (tooCostly(cost))
goto Lno;
if (!statementsToo && cost > COST_MAX)
goto Lno;
if (statementsToo)
inlineStatusStmt = ILSyes;
else
inlineStatusExp = ILSyes;
}
}
#if CANINLINE_LOG
printf("\t2: yes %s\n", toChars());
#endif
return 1;
Lno:
if (!hdrscan) // Don't modify inlineStatus for header content scan
{ if (statementsToo)
inlineStatusStmt = ILSno;
else
inlineStatusExp = ILSno;
}
#if CANINLINE_LOG
printf("\t2: no %s\n", toChars());
#endif
return 0;
}
Expression *FuncDeclaration::expandInline(InlineScanState *iss, Expression *ethis, Expressions *arguments, Statement **ps)
{
InlineDoState ids;
DeclarationExp *de;
Expression *e = NULL;
Statements *as = NULL;
#if LOG || CANINLINE_LOG
printf("FuncDeclaration::expandInline('%s')\n", toChars());
#endif
memset(&ids, 0, sizeof(ids));
ids.parent = iss->fd;
ids.fd = this;
if (ps)
as = new Statements();
// Set up vthis
if (ethis)
{
VarDeclaration *vthis;
ExpInitializer *ei;
VarExp *ve;
#if STRUCTTHISREF
if (ethis->type->ty == Tpointer)
{ Type *t = ethis->type->nextOf();
ethis = new PtrExp(ethis->loc, ethis);
ethis->type = t;
}
ei = new ExpInitializer(ethis->loc, ethis);
vthis = new VarDeclaration(ethis->loc, ethis->type, Id::This, ei);
if (ethis->type->ty != Tclass)
vthis->storage_class = STCref;
else
vthis->storage_class = STCin;
#else
if (ethis->type->ty != Tclass && ethis->type->ty != Tpointer)
{
ethis = ethis->addressOf(NULL);
}
ei = new ExpInitializer(ethis->loc, ethis);
vthis = new VarDeclaration(ethis->loc, ethis->type, Id::This, ei);
vthis->storage_class = STCin;
#endif
vthis->linkage = LINKd;
vthis->parent = iss->fd;
ve = new VarExp(vthis->loc, vthis);
ve->type = vthis->type;
ei->exp = new AssignExp(vthis->loc, ve, ethis);
ei->exp->type = ve->type;
#if STRUCTTHISREF
if (ethis->type->ty != Tclass)
{ /* This is a reference initialization, not a simple assignment.
*/
ei->exp->op = TOKconstruct;
}
#endif
ids.vthis = vthis;
}
// Set up parameters
if (ethis)
{
e = new DeclarationExp(0, ids.vthis);
e->type = Type::tvoid;
if (as)
as->push(new ExpStatement(e->loc, e));
}
if (arguments && arguments->dim)
{
assert(parameters->dim == arguments->dim);
for (size_t i = 0; i < arguments->dim; i++)
{
VarDeclaration *vfrom = parameters->tdata()[i];
VarDeclaration *vto;
Expression *arg = arguments->tdata()[i];
ExpInitializer *ei;
VarExp *ve;
ei = new ExpInitializer(arg->loc, arg);
vto = new VarDeclaration(vfrom->loc, vfrom->type, vfrom->ident, ei);
vto->storage_class |= vfrom->storage_class & (STCin | STCout | STClazy | STCref);
vto->linkage = vfrom->linkage;
vto->parent = iss->fd;
//printf("vto = '%s', vto->storage_class = x%x\n", vto->toChars(), vto->storage_class);
//printf("vto->parent = '%s'\n", iss->fd->toChars());
ve = new VarExp(vto->loc, vto);
//ve->type = vto->type;
ve->type = arg->type;
ei->exp = new AssignExp(vto->loc, ve, arg);
ei->exp->op = TOKconstruct;
ei->exp->type = ve->type;
//ve->type->print();
//arg->type->print();
//ei->exp->print();
ids.from.push(vfrom);
ids.to.push(vto);
de = new DeclarationExp(0, vto);
de->type = Type::tvoid;
if (as)
as->push(new ExpStatement(0, de));
else
e = Expression::combine(e, de);
}
}
if (ps)
{
inlineNest++;
Statement *s = fbody->doInlineStatement(&ids);
as->push(s);
*ps = new ScopeStatement(0, new CompoundStatement(0, as));
inlineNest--;
}
else
{
inlineNest++;
Expression *eb = fbody->doInline(&ids);
e = Expression::combine(e, eb);
inlineNest--;
//eb->type->print();
//eb->print();
//eb->dump(0);
}
/* There's a problem if what the function returns is used subsequently as an
* lvalue, as in a struct return that is then used as a 'this'.
* If we take the address of the return value, we will be taking the address
* of the original, not the copy. Fix this by assigning the return value to
* a temporary, then returning the temporary. If the temporary is used as an
* lvalue, it will work.
* This only happens with struct returns.
* See Bugzilla 2127 for an example.
*/
TypeFunction *tf = (TypeFunction*)type;
if (!ps && tf->next->ty == Tstruct)
{
/* Generate a new variable to hold the result and initialize it with the
* inlined body of the function:
* tret __inlineretval = e;
*/
ExpInitializer* ei = new ExpInitializer(loc, e);
Identifier* tmp = Identifier::generateId("__inlineretval");
VarDeclaration* vd = new VarDeclaration(loc, tf->next, tmp, ei);
vd->storage_class = 0;
vd->linkage = tf->linkage;
vd->parent = iss->fd;
VarExp *ve = new VarExp(loc, vd);
ve->type = tf->next;
ei->exp = new AssignExp(loc, ve, e);
ei->exp->op = TOKconstruct;
ei->exp->type = ve->type;
DeclarationExp* de = new DeclarationExp(0, vd);
de->type = Type::tvoid;
// Chain the two together:
// ( typeof(return) __inlineretval = ( inlined body )) , __inlineretval
e = Expression::combine(de, ve);
//fprintf(stderr, "CallExp::inlineScan: e = "); e->print();
}
// Need to reevaluate whether parent can now be inlined
// in expressions, as we might have inlined statements
iss->fd->inlineStatusExp = ILSuninitialized;
return e;
}
/****************************************************
* Perform the "inline copying" of a default argument for a function parameter.
*/
Expression *Expression::inlineCopy(Scope *sc)
{
#if 0
/* See Bugzilla 2935 for explanation of why just a copy() is broken
*/
return copy();
#else
if (op == TOKdelegate)
{ DelegateExp *de = (DelegateExp *)this;
if (de->func->isNested())
{ /* See Bugzilla 4820
* Defer checking until later if we actually need the 'this' pointer
*/
Expression *e = de->copy();
return e;
}
}
InlineCostState ics;
memset(&ics, 0, sizeof(ics));
ics.hdrscan = 1; // so DeclarationExp:: will work on 'statics' which are not
int cost = expressionInlineCost(this, &ics);
if (cost >= COST_MAX)
{ error("cannot inline default argument %s", toChars());
return new ErrorExp();
}
InlineDoState ids;
memset(&ids, 0, sizeof(ids));
ids.parent = sc->parent;
Expression *e = doInline(&ids);
return e;
#endif
}