Files
ldc/dmd2/interpret.c
kai 55560bf382 Make frontend endian-aware.
In many parts the DMD frontend assumes a little endian CPU. In some
parts there are checks for endianess but they are incomplete and the
used definition is wrong. (Test for endianess will be removed in dmd
2.062.)
In this commit I add the required #if's and also add a CMake test for
endianess because there is no single compiler definition to check for.
2013-01-21 08:41:21 +01:00

7182 lines
238 KiB
C

// Compiler implementation of the D programming language
// Copyright (c) 1999-2012 by Digital Mars
// All Rights Reserved
// written by Walter Bright
// http://www.digitalmars.com
// License for redistribution is by either the Artistic License
// in artistic.txt, or the GNU General Public License in gnu.txt.
// See the included readme.txt for details.
#include <stdio.h>
#include <stdlib.h>
#include <assert.h>
#include <string.h> // mem{cpy|set}()
#include "rmem.h"
#include "statement.h"
#include "expression.h"
#include "cond.h"
#include "init.h"
#include "staticassert.h"
#include "mtype.h"
#include "scope.h"
#include "declaration.h"
#include "aggregate.h"
#include "id.h"
#include "utf.h"
#include "attrib.h" // for AttribDeclaration
#include "template.h"
#include "port.h"
int RealEquals(real_t x1, real_t x2);
#define LOG 0
#define LOGASSIGN 0
#define SHOWPERFORMANCE 0
// Maximum allowable recursive function calls in CTFE
#define CTFE_RECURSION_LIMIT 1000
// The values of all CTFE variables.
struct CtfeStack
{
private:
/* The stack. Every declaration we encounter is pushed here,
together with the VarDeclaration, and the previous
stack address of that variable, so that we can restore it
when we leave the stack frame.
Note that when a function is forward referenced, the interpreter must
run semantic3, and that may start CTFE again with a NULL istate. Thus
the stack might not be empty when CTFE begins.
Ctfe Stack addresses are just 0-based integers, but we save
them as 'void *' because ArrayBase can only do pointers.
*/
Expressions values; // values on the stack
VarDeclarations vars; // corresponding variables
ArrayBase<void> savedId; // id of the previous state of that var
/* Global constants get saved here after evaluation, so we never
* have to redo them. This saves a lot of time and memory.
*/
Expressions globalValues; // values of global constants
size_t framepointer; // current frame pointer
size_t maxStackPointer; // most stack we've ever used
public:
CtfeStack() : framepointer(0), maxStackPointer(0)
{
}
size_t stackPointer()
{
return values.dim;
}
// Largest number of stack positions we've used
size_t maxStackUsage()
{
return maxStackPointer;
}
// return the previous frame
size_t startFrame()
{
size_t oldframe = framepointer;
framepointer = stackPointer();
return oldframe;
}
void endFrame(size_t oldframe)
{
popAll(framepointer);
framepointer = oldframe;
}
Expression *getValue(VarDeclaration *v)
{
if (v->isDataseg() && !v->isCTFE())
{
assert(v->ctfeAdrOnStack >= 0 &&
v->ctfeAdrOnStack < globalValues.dim);
return globalValues[v->ctfeAdrOnStack];
}
assert(v->ctfeAdrOnStack >= 0 && v->ctfeAdrOnStack < stackPointer());
return values[v->ctfeAdrOnStack];
}
void setValue(VarDeclaration *v, Expression *e)
{
assert(!v->isDataseg() || v->isCTFE());
assert(v->ctfeAdrOnStack >= 0 && v->ctfeAdrOnStack < stackPointer());
values[v->ctfeAdrOnStack] = e;
}
void push(VarDeclaration *v)
{
assert(!v->isDataseg() || v->isCTFE());
if (v->ctfeAdrOnStack!= (size_t)-1
&& v->ctfeAdrOnStack >= framepointer)
{ // Already exists in this frame, reuse it.
values[v->ctfeAdrOnStack] = NULL;
return;
}
savedId.push((void *)(v->ctfeAdrOnStack));
v->ctfeAdrOnStack = values.dim;
vars.push(v);
values.push(NULL);
}
void pop(VarDeclaration *v)
{
assert(!v->isDataseg() || v->isCTFE());
assert(!(v->storage_class & (STCref | STCout)));
int oldid = v->ctfeAdrOnStack;
v->ctfeAdrOnStack = (size_t)(savedId[oldid]);
if (v->ctfeAdrOnStack == values.dim - 1)
{
values.pop();
vars.pop();
savedId.pop();
}
}
void popAll(size_t stackpointer)
{
if (stackPointer() > maxStackPointer)
maxStackPointer = stackPointer();
assert(values.dim >= stackpointer && stackpointer >= 0);
for (size_t i = stackpointer; i < values.dim; ++i)
{
VarDeclaration *v = vars[i];
v->ctfeAdrOnStack = (size_t)(savedId[i]);
}
values.setDim(stackpointer);
vars.setDim(stackpointer);
savedId.setDim(stackpointer);
}
void saveGlobalConstant(VarDeclaration *v, Expression *e)
{
#if DMDV2
assert( v->init && (v->isConst() || v->isImmutable()) && !v->isCTFE());
#else
assert( v->init && v->isConst() && !v->isCTFE());
#endif
v->ctfeAdrOnStack = globalValues.dim;
globalValues.push(e);
}
};
CtfeStack ctfeStack;
struct InterState
{
InterState *caller; // calling function's InterState
FuncDeclaration *fd; // function being interpreted
size_t framepointer; // frame pointer of previous frame
Statement *start; // if !=NULL, start execution at this statement
Statement *gotoTarget; /* target of EXP_GOTO_INTERPRET result; also
* target of labelled EXP_BREAK_INTERPRET or
* EXP_CONTINUE_INTERPRET. (NULL if no label).
*/
Expression *localThis; // value of 'this', or NULL if none
bool awaitingLvalueReturn; // Support for ref return values:
// Any return to this function should return an lvalue.
InterState();
};
InterState::InterState()
{
memset(this, 0, sizeof(InterState));
}
// Global status of the CTFE engine
struct CtfeStatus
{
static int callDepth; // current number of recursive calls
static int stackTraceCallsToSuppress; /* When printing a stack trace,
* suppress this number of calls
*/
static int maxCallDepth; // highest number of recursive calls
static int numArrayAllocs; // Number of allocated arrays
static int numAssignments; // total number of assignments executed
};
int CtfeStatus::callDepth = 0;
int CtfeStatus::stackTraceCallsToSuppress = 0;
int CtfeStatus::maxCallDepth = 0;
int CtfeStatus::numArrayAllocs = 0;
int CtfeStatus::numAssignments = 0;
// CTFE diagnostic information
void printCtfePerformanceStats()
{
#if SHOWPERFORMANCE
printf(" ---- CTFE Performance ----\n");
printf("max call depth = %d\tmax stack = %d\n", CtfeStatus::maxCallDepth, ctfeStack.maxStackUsage());
printf("array allocs = %d\tassignments = %d\n\n", CtfeStatus::numArrayAllocs, CtfeStatus::numAssignments);
#endif
}
Expression * resolveReferences(Expression *e, Expression *thisval);
Expression *getVarExp(Loc loc, InterState *istate, Declaration *d, CtfeGoal goal);
VarDeclaration *findParentVar(Expression *e, Expression *thisval);
bool needToCopyLiteral(Expression *expr);
Expression *copyLiteral(Expression *e);
Expression *paintTypeOntoLiteral(Type *type, Expression *lit);
Expression *findKeyInAA(Loc loc, AssocArrayLiteralExp *ae, Expression *e2);
Expression *evaluateIfBuiltin(InterState *istate, Loc loc,
FuncDeclaration *fd, Expressions *arguments, Expression *pthis);
Expression *scrubReturnValue(Loc loc, Expression *e);
bool isAssocArray(Type *t);
bool isPointer(Type *t);
Expression *ctfeEqual(Loc loc, enum TOK op, Type *type, Expression *e1, Expression *e2);
// CTFE only expressions
#define TOKclassreference ((TOK)(TOKMAX+1))
#define TOKthrownexception ((TOK)(TOKMAX+2))
// Reference to a class, or an interface. We need this when we
// point to a base class (we must record what the type is).
struct ClassReferenceExp : Expression
{
StructLiteralExp *value;
ClassReferenceExp(Loc loc, StructLiteralExp *lit, Type *type) : Expression(loc, TOKclassreference, sizeof(ClassReferenceExp))
{
assert(lit && lit->sd && lit->sd->isClassDeclaration());
this->value = lit;
this->type = type;
}
Expression *interpret(InterState *istate, CtfeGoal goal = ctfeNeedRvalue)
{
//printf("ClassReferenceExp::interpret() %s\n", value->toChars());
return this;
}
char *toChars()
{
return value->toChars();
}
ClassDeclaration *originalClass()
{
return value->sd->isClassDeclaration();
}
VarDeclaration *getFieldAt(int index)
{
ClassDeclaration *cd = originalClass();
size_t fieldsSoFar = 0;
while (index - fieldsSoFar >= cd->fields.dim)
{ fieldsSoFar += cd->fields.dim;
cd = cd->baseClass;
}
return cd->fields[index - fieldsSoFar];
}
// Return index of the field, or -1 if not found
int getFieldIndex(Type *fieldtype, size_t fieldoffset)
{
ClassDeclaration *cd = originalClass();
size_t fieldsSoFar = 0;
for (size_t j = 0; j < value->elements->dim; j++)
{ while (j - fieldsSoFar >= cd->fields.dim)
{ fieldsSoFar += cd->fields.dim;
cd = cd->baseClass;
}
Dsymbol *s = cd->fields[j - fieldsSoFar];
VarDeclaration *v2 = s->isVarDeclaration();
if (fieldoffset == v2->offset &&
fieldtype->size() == v2->type->size())
{ return value->elements->dim - fieldsSoFar - cd->fields.dim + (j-fieldsSoFar);
}
}
return -1;
}
// Return index of the field, or -1 if not found
// Same as getFieldIndex, but checks for a direct match with the VarDeclaration
int findFieldIndexByName(VarDeclaration *v)
{
ClassDeclaration *cd = originalClass();
size_t fieldsSoFar = 0;
for (size_t j = 0; j < value->elements->dim; j++)
{ while (j - fieldsSoFar >= cd->fields.dim)
{ fieldsSoFar += cd->fields.dim;
cd = cd->baseClass;
}
Dsymbol *s = cd->fields[j - fieldsSoFar];
VarDeclaration *v2 = s->isVarDeclaration();
if (v == v2)
{ return value->elements->dim - fieldsSoFar - cd->fields.dim + (j-fieldsSoFar);
}
}
return -1;
}
};
struct VoidInitExp : Expression
{
VarDeclaration *var;
VoidInitExp(VarDeclaration *var, Type *type)
: Expression(var->loc, TOKvoid, sizeof(VoidInitExp))
{
this->var = var;
this->type = var->type;
}
char *toChars()
{
return (char *)"void";
}
Expression *interpret(InterState *istate, CtfeGoal goal = ctfeNeedRvalue)
{
error("CTFE internal error: trying to read uninitialized variable");
assert(0);
return EXP_CANT_INTERPRET;
}
};
// Return index of the field, or -1 if not found
// Same as getFieldIndex, but checks for a direct match with the VarDeclaration
int findFieldIndexByName(StructDeclaration *sd, VarDeclaration *v)
{
for (int i = 0; i < sd->fields.dim; ++i)
{
if (sd->fields[i] == v)
return i;
}
return -1;
}
// Fake class which holds the thrown exception. Used for implementing exception handling.
struct ThrownExceptionExp : Expression
{
ClassReferenceExp *thrown; // the thing being tossed
ThrownExceptionExp(Loc loc, ClassReferenceExp *victim) : Expression(loc, TOKthrownexception, sizeof(ThrownExceptionExp))
{
this->thrown = victim;
this->type = type;
}
Expression *interpret(InterState *istate, CtfeGoal goal = ctfeNeedRvalue)
{
assert(0); // This should never be interpreted
return this;
}
char *toChars()
{
return (char *)"CTFE ThrownException";
}
// Generate an error message when this exception is not caught
void generateUncaughtError()
{
thrown->error("Uncaught CTFE exception %s(%s)", thrown->type->toChars(),
thrown->value->elements->tdata()[0]->toChars());
/* Also give the line where the throw statement was. We won't have it
* in the case where the ThrowStatement is generated internally
* (eg, in ScopeStatement)
*/
if (loc.filename && !loc.equals(thrown->loc))
errorSupplemental(loc, "thrown from here");
}
};
// True if 'e' is EXP_CANT_INTERPRET, or an exception
bool exceptionOrCantInterpret(Expression *e)
{
if (e == EXP_CANT_INTERPRET) return true;
if (!e || e == EXP_GOTO_INTERPRET || e == EXP_VOID_INTERPRET
|| e == EXP_BREAK_INTERPRET || e == EXP_CONTINUE_INTERPRET)
return false;
return e->op == TOKthrownexception;
}
// Used for debugging only
void showCtfeExpr(Expression *e, int level = 0)
{
for (int i = level; i>0; --i) printf(" ");
Expressions *elements = NULL;
// We need the struct definition to detect block assignment
StructDeclaration *sd = NULL;
ClassDeclaration *cd = NULL;
if (e->op == TOKstructliteral)
{ elements = ((StructLiteralExp *)e)->elements;
sd = ((StructLiteralExp *)e)->sd;
printf("STRUCT type = %s %p:\n", e->type->toChars(),
e);
}
else if (e->op == TOKclassreference)
{ elements = ((ClassReferenceExp *)e)->value->elements;
cd = ((ClassReferenceExp *)e)->originalClass();
printf("CLASS type = %s %p:\n", e->type->toChars(),
((ClassReferenceExp *)e)->value);
}
else if (e->op == TOKarrayliteral)
{
elements = ((ArrayLiteralExp *)e)->elements;
printf("ARRAY LITERAL type=%s %p:\n", e->type->toChars(),
e);
}
else if (e->op == TOKassocarrayliteral)
{
printf("AA LITERAL type=%s %p:\n", e->type->toChars(),
e);
}
else if (e->op == TOKstring)
{
printf("STRING %s %p\n", e->toChars(),
((StringExp *)e)->string);
}
else if (e->op == TOKslice)
{
printf("SLICE %p: %s\n", e, e->toChars());
showCtfeExpr(((SliceExp *)e)->e1, level + 1);
}
else if (e->op == TOKvar)
{
printf("VAR %p %s\n", e, e->toChars());
VarDeclaration *v = ((VarExp *)e)->var->isVarDeclaration();
if (v && v->getValue())
showCtfeExpr(v->getValue(), level + 1);
}
else if (isPointer(e->type))
{
// This is potentially recursive. We mustn't try to print the thing we're pointing to.
if (e->op == TOKindex)
printf("POINTER %p into %p [%s]\n", e, ((IndexExp *)e)->e1, ((IndexExp *)e)->e2->toChars());
else if (e->op == TOKdotvar)
printf("POINTER %p to %p .%s\n", e, ((DotVarExp *)e)->e1, ((DotVarExp *)e)->var->toChars());
else
printf("POINTER %p: %s\n", e, e->toChars());
}
else
printf("VALUE %p: %s\n", e, e->toChars());
if (elements)
{
size_t fieldsSoFar = 0;
for (size_t i = 0; i < elements->dim; i++)
{ Expression *z = NULL;
Dsymbol *s = NULL;
if (i > 15) {
printf("...(total %d elements)\n", elements->dim);
return;
}
if (sd)
{ s = sd->fields[i];
z = (*elements)[i];
}
else if (cd)
{ while (i - fieldsSoFar >= cd->fields.dim)
{ fieldsSoFar += cd->fields.dim;
cd = cd->baseClass;
for (int j = level; j>0; --j) printf(" ");
printf(" BASE CLASS: %s\n", cd->toChars());
}
s = cd->fields[i - fieldsSoFar];
size_t indx = (elements->dim - fieldsSoFar)- cd->fields.dim + i;
assert(indx >= 0);
assert(indx < elements->dim);
z = (*elements)[indx];
}
if (!z) {
for (int j = level; j>0; --j) printf(" ");
printf(" void\n");
continue;
}
if (s)
{
VarDeclaration *v = s->isVarDeclaration();
assert(v);
// If it is a void assignment, use the default initializer
if ((v->type->ty != z->type->ty) && v->type->ty == Tsarray)
{
for (int j = level; --j;) printf(" ");
printf(" field: block initalized static array\n");
continue;
}
}
showCtfeExpr(z, level + 1);
}
}
}
/*************************************
*
* Entry point for CTFE.
* A compile-time result is required. Give an error if not possible
*/
Expression *Expression::ctfeInterpret()
{
return optimize(WANTvalue | WANTinterpret);
}
/*************************************
* Attempt to interpret a function given the arguments.
* Input:
* istate state for calling function (NULL if none)
* arguments function arguments
* thisarg 'this', if a needThis() function, NULL if not.
*
* Return result expression if successful, EXP_CANT_INTERPRET if not,
* or EXP_VOID_INTERPRET if function returned void.
*/
Expression *FuncDeclaration::interpret(InterState *istate, Expressions *arguments, Expression *thisarg)
{
#if LOG
printf("\n********\nFuncDeclaration::interpret(istate = %p) %s\n", istate, toChars());
#endif
if (semanticRun == PASSsemantic3)
return EXP_CANT_INTERPRET;
if (semanticRun < PASSsemantic3 && scope)
{
/* Forward reference - we need to run semantic3 on this function.
* If errors are gagged, and it's not part of a speculative
* template instance, we need to temporarily ungag errors.
*/
int olderrors = global.errors;
int oldgag = global.gag;
TemplateInstance *spec = isSpeculative();
if (global.gag && !spec)
global.gag = 0;
++scope->ignoreTemplates;
semantic3(scope);
--scope->ignoreTemplates;
global.gag = oldgag; // regag errors
// If it is a speculatively-instantiated template, and errors occur,
// we need to mark the template as having errors.
if (spec && global.errors != olderrors)
spec->errors = global.errors - olderrors;
if (olderrors != global.errors) // if errors compiling this function
return EXP_CANT_INTERPRET;
}
if (semanticRun < PASSsemantic3done)
return EXP_CANT_INTERPRET;
Type *tb = type->toBasetype();
assert(tb->ty == Tfunction);
TypeFunction *tf = (TypeFunction *)tb;
Type *tret = tf->next->toBasetype();
if (tf->varargs && arguments &&
((parameters && arguments->dim != parameters->dim) || (!parameters && arguments->dim)))
{
error("C-style variadic functions are not yet implemented in CTFE");
return EXP_CANT_INTERPRET;
}
// Nested functions always inherit the 'this' pointer from the parent,
// except for delegates. (Note that the 'this' pointer may be null).
// Func literals report isNested() even if they are in global scope,
// so we need to check that the parent is a function.
if (isNested() && toParent2()->isFuncDeclaration() && !thisarg && istate)
thisarg = istate->localThis;
InterState istatex;
istatex.caller = istate;
istatex.fd = this;
istatex.localThis = thisarg;
istatex.framepointer = ctfeStack.startFrame();
Expressions vsave; // place to save previous parameter values
size_t dim = 0;
if (needThis() && !thisarg)
{ // error, no this. Prevent segfault.
error("need 'this' to access member %s", toChars());
return EXP_CANT_INTERPRET;
}
if (thisarg && !istate)
{ // Check that 'this' aleady has a value
if (thisarg->interpret(istate) == EXP_CANT_INTERPRET)
return EXP_CANT_INTERPRET;
}
static int evaluatingArgs = 0;
if (arguments)
{
dim = arguments->dim;
assert(!dim || (parameters && (parameters->dim == dim)));
vsave.setDim(dim);
/* Evaluate all the arguments to the function,
* store the results in eargs[]
*/
Expressions eargs;
eargs.setDim(dim);
for (size_t i = 0; i < dim; i++)
{ Expression *earg = (*arguments)[i];
Parameter *arg = Parameter::getNth(tf->parameters, i);
if (arg->storageClass & (STCout | STCref))
{
if (!istate && (arg->storageClass & STCout))
{ // initializing an out parameter involves writing to it.
earg->error("global %s cannot be passed as an 'out' parameter at compile time", earg->toChars());
return EXP_CANT_INTERPRET;
}
// Convert all reference arguments into lvalue references
++evaluatingArgs;
earg = earg->interpret(istate, ctfeNeedLvalueRef);
--evaluatingArgs;
if (earg == EXP_CANT_INTERPRET)
return earg;
}
else if (arg->storageClass & STClazy)
{
}
else
{ /* Value parameters
*/
Type *ta = arg->type->toBasetype();
if (ta->ty == Tsarray && earg->op == TOKaddress)
{
/* Static arrays are passed by a simple pointer.
* Skip past this to get at the actual arg.
*/
earg = ((AddrExp *)earg)->e1;
}
++evaluatingArgs;
earg = earg->interpret(istate);
--evaluatingArgs;
if (earg == EXP_CANT_INTERPRET)
return earg;
/* Struct literals are passed by value, but we don't need to
* copy them if they are passed as const
*/
if (earg->op == TOKstructliteral
#if DMDV2
&& !(arg->storageClass & (STCconst | STCimmutable))
#endif
)
earg = copyLiteral(earg);
}
if (earg->op == TOKthrownexception)
{
if (istate)
return earg;
((ThrownExceptionExp *)earg)->generateUncaughtError();
return EXP_CANT_INTERPRET;
}
eargs[i] = earg;
}
for (size_t i = 0; i < dim; i++)
{ Expression *earg = eargs[i];
Parameter *arg = Parameter::getNth(tf->parameters, i);
VarDeclaration *v = (*parameters)[i];
#if LOG
printf("arg[%d] = %s\n", i, earg->toChars());
#endif
if (arg->storageClass & (STCout | STCref) && earg->op == TOKvar)
{
VarExp *ve = (VarExp *)earg;
VarDeclaration *v2 = ve->var->isVarDeclaration();
if (!v2)
{
error("cannot interpret %s as a ref parameter", ve->toChars());
return EXP_CANT_INTERPRET;
}
/* The push() isn't a variable we'll use, it's just a place
* to save the old value of v.
* Note that v might be v2! So we need to save v2's index
* before pushing.
*/
size_t oldadr = v2->ctfeAdrOnStack;
ctfeStack.push(v);
v->ctfeAdrOnStack = oldadr;
assert(v2->hasValue());
}
else
{ // Value parameters and non-trivial references
ctfeStack.push(v);
v->setValueWithoutChecking(earg);
}
#if LOG || LOGASSIGN
printf("interpreted arg[%d] = %s\n", i, earg->toChars());
showCtfeExpr(earg);
#endif
}
}
if (vresult)
ctfeStack.push(vresult);
// Enter the function
++CtfeStatus::callDepth;
if (CtfeStatus::callDepth > CtfeStatus::maxCallDepth)
CtfeStatus::maxCallDepth = CtfeStatus::callDepth;
Expression *e = NULL;
while (1)
{
if (CtfeStatus::callDepth > CTFE_RECURSION_LIMIT)
{ // This is a compiler error. It must not be suppressed.
global.gag = 0;
error("CTFE recursion limit exceeded");
e = EXP_CANT_INTERPRET;
break;
}
e = fbody->interpret(&istatex);
if (e == EXP_CANT_INTERPRET)
{
#if LOG
printf("function body failed to interpret\n");
#endif
}
/* This is how we deal with a recursive statement AST
* that has arbitrary goto statements in it.
* Bubble up a 'result' which is the target of the goto
* statement, then go recursively down the AST looking
* for that statement, then execute starting there.
*/
if (e == EXP_GOTO_INTERPRET)
{
istatex.start = istatex.gotoTarget; // set starting statement
istatex.gotoTarget = NULL;
}
else
break;
}
assert(e != EXP_CONTINUE_INTERPRET && e != EXP_BREAK_INTERPRET);
// Leave the function
--CtfeStatus::callDepth;
ctfeStack.endFrame(istatex.framepointer);
// If fell off the end of a void function, return void
if (!e && type->toBasetype()->nextOf()->ty == Tvoid)
return EXP_VOID_INTERPRET;
// If result is void, return void
if (e == EXP_VOID_INTERPRET)
return e;
// If it generated an exception, return it
if (exceptionOrCantInterpret(e))
{
if (istate || e == EXP_CANT_INTERPRET)
return e;
((ThrownExceptionExp *)e)->generateUncaughtError();
return EXP_CANT_INTERPRET;
}
// If we're about to leave CTFE, make sure we don't crash the
// compiler by returning a CTFE-internal expression.
if (!istate && !evaluatingArgs)
{
e = scrubReturnValue(loc, e);
}
return e;
}
/******************************** Statement ***************************/
#define START() \
if (istate->start) \
{ if (istate->start != this) \
return NULL; \
istate->start = NULL; \
}
/***********************************
* Interpret the statement.
* Returns:
* NULL continue to next statement
* EXP_CANT_INTERPRET cannot interpret statement at compile time
* !NULL expression from return statement, or thrown exception
*/
Expression *Statement::interpret(InterState *istate)
{
#if LOG
printf("Statement::interpret()\n");
#endif
START()
error("Statement %s cannot be interpreted at compile time", this->toChars());
return EXP_CANT_INTERPRET;
}
Expression *ExpStatement::interpret(InterState *istate)
{
#if LOG
printf("ExpStatement::interpret(%s)\n", exp ? exp->toChars() : "");
#endif
START()
if (exp)
{
Expression *e = exp->interpret(istate, ctfeNeedNothing);
if (e == EXP_CANT_INTERPRET)
{
//printf("-ExpStatement::interpret(): %p\n", e);
return EXP_CANT_INTERPRET;
}
if (e && e!= EXP_VOID_INTERPRET && e->op == TOKthrownexception)
return e;
}
return NULL;
}
Expression *CompoundStatement::interpret(InterState *istate)
{ Expression *e = NULL;
#if LOG
printf("CompoundStatement::interpret()\n");
#endif
if (istate->start == this)
istate->start = NULL;
if (statements)
{
for (size_t i = 0; i < statements->dim; i++)
{ Statement *s = (*statements)[i];
if (s)
{
e = s->interpret(istate);
if (e)
break;
}
}
}
#if LOG
printf("-CompoundStatement::interpret() %p\n", e);
#endif
return e;
}
Expression *UnrolledLoopStatement::interpret(InterState *istate)
{ Expression *e = NULL;
#if LOG
printf("UnrolledLoopStatement::interpret()\n");
#endif
if (istate->start == this)
istate->start = NULL;
if (statements)
{
for (size_t i = 0; i < statements->dim; i++)
{ Statement *s = (*statements)[i];
e = s->interpret(istate);
if (e == EXP_CANT_INTERPRET)
break;
if (e == EXP_CONTINUE_INTERPRET)
{
if (istate->gotoTarget && istate->gotoTarget != this)
break; // continue at higher level
istate->gotoTarget = NULL;
e = NULL;
continue;
}
if (e == EXP_BREAK_INTERPRET)
{
if (!istate->gotoTarget || istate->gotoTarget == this)
{
istate->gotoTarget = NULL;
e = NULL;
} // else break at a higher level
break;
}
if (e)
break;
}
}
return e;
}
// For CTFE only. Returns true if 'e' is TRUE or a non-null pointer.
int isTrueBool(Expression *e)
{
return e->isBool(TRUE) || ((e->type->ty == Tpointer || e->type->ty == Tclass)
&& e->op != TOKnull);
}
Expression *IfStatement::interpret(InterState *istate)
{
#if LOG
printf("IfStatement::interpret(%s)\n", condition->toChars());
#endif
if (istate->start == this)
istate->start = NULL;
if (istate->start)
{
Expression *e = NULL;
if (ifbody)
e = ifbody->interpret(istate);
if (exceptionOrCantInterpret(e))
return e;
if (istate->start && elsebody)
e = elsebody->interpret(istate);
return e;
}
Expression *e = condition->interpret(istate);
assert(e);
//if (e == EXP_CANT_INTERPRET) printf("cannot interpret\n");
if (e != EXP_CANT_INTERPRET && (e && e->op != TOKthrownexception))
{
if (isTrueBool(e))
e = ifbody ? ifbody->interpret(istate) : NULL;
else if (e->isBool(FALSE))
e = elsebody ? elsebody->interpret(istate) : NULL;
else
{
e = EXP_CANT_INTERPRET;
}
}
return e;
}
Expression *ScopeStatement::interpret(InterState *istate)
{
#if LOG
printf("ScopeStatement::interpret()\n");
#endif
if (istate->start == this)
istate->start = NULL;
return statement ? statement->interpret(istate) : NULL;
}
Expression *resolveSlice(Expression *e)
{
if ( ((SliceExp *)e)->e1->op == TOKnull)
return ((SliceExp *)e)->e1;
return Slice(e->type, ((SliceExp *)e)->e1,
((SliceExp *)e)->lwr, ((SliceExp *)e)->upr);
}
/* Determine the array length, without interpreting it.
* e must be an array literal, or a slice
* It's very wasteful to resolve the slice when we only
* need the length.
*/
uinteger_t resolveArrayLength(Expression *e)
{
if (e->op == TOKnull)
return 0;
if (e->op == TOKslice)
{ uinteger_t ilo = ((SliceExp *)e)->lwr->toInteger();
uinteger_t iup = ((SliceExp *)e)->upr->toInteger();
return iup - ilo;
}
if (e->op == TOKstring)
{ return ((StringExp *)e)->len;
}
if (e->op == TOKarrayliteral)
{ ArrayLiteralExp *ale = (ArrayLiteralExp *)e;
return ale->elements ? ale->elements->dim : 0;
}
if (e->op == TOKassocarrayliteral)
{ AssocArrayLiteralExp *ale = (AssocArrayLiteralExp *)e;
return ale->keys->dim;
}
assert(0);
return 0;
}
Expression *ctfeCat(Type *type, Expression *e1, Expression *e2)
{
Loc loc = e1->loc;
Type *t1 = e1->type->toBasetype();
Type *t2 = e2->type->toBasetype();
Expression *e;
if (e2->op == TOKstring && e1->op == TOKarrayliteral &&
t1->nextOf()->isintegral())
{
// [chars] ~ string => string (only valid for CTFE)
StringExp *es1 = (StringExp *)e2;
ArrayLiteralExp *es2 = (ArrayLiteralExp *)e1;
size_t len = es1->len + es2->elements->dim;
int sz = es1->sz;
void *s = mem.malloc((len + 1) * sz);
memcpy((char *)s + sz * es2->elements->dim, es1->string, es1->len * sz);
for (size_t i = 0; i < es2->elements->dim; i++)
{ Expression *es2e = es2->elements->tdata()[i];
if (es2e->op != TOKint64)
return EXP_CANT_INTERPRET;
dinteger_t v = es2e->toInteger();
#if IN_LLVM
#if __LITTLE_ENDIAN__
memcpy((unsigned char *)s + i * sz, &v, sz);
#else
memcpy((unsigned char *)s + i * sz,
(unsigned char *)&v + (sizeof(dinteger_t) - sz), sz);
#endif
#else
memcpy((unsigned char *)s + i * sz, &v, sz);
#endif
}
// Add terminating 0
memset((unsigned char *)s + len * sz, 0, sz);
StringExp *es = new StringExp(loc, s, len);
es->sz = sz;
es->committed = 0;
es->type = type;
e = es;
return e;
}
else if (e1->op == TOKstring && e2->op == TOKarrayliteral &&
t2->nextOf()->isintegral())
{
// string ~ [chars] => string (only valid for CTFE)
// Concatenate the strings
StringExp *es1 = (StringExp *)e1;
ArrayLiteralExp *es2 = (ArrayLiteralExp *)e2;
size_t len = es1->len + es2->elements->dim;
int sz = es1->sz;
void *s = mem.malloc((len + 1) * sz);
memcpy(s, es1->string, es1->len * sz);
for (size_t i = 0; i < es2->elements->dim; i++)
{ Expression *es2e = es2->elements->tdata()[i];
if (es2e->op != TOKint64)
return EXP_CANT_INTERPRET;
dinteger_t v = es2e->toInteger();
#if IN_LLVM
#if __LITTLE_ENDIAN__
memcpy((unsigned char *)s + (es1->len + i) * sz, &v, sz);
#else
memcpy((unsigned char *)s + (es1->len + i) * sz,
(unsigned char *) &v + (sizeof(dinteger_t) - sz), sz);
#endif
#else
memcpy((unsigned char *)s + (es1->len + i) * sz, &v, sz);
#endif
}
// Add terminating 0
memset((unsigned char *)s + len * sz, 0, sz);
StringExp *es = new StringExp(loc, s, len);
es->sz = sz;
es->committed = 0; //es1->committed;
es->type = type;
e = es;
return e;
}
return Cat(type, e1, e2);
}
bool scrubArray(Loc loc, Expressions *elems, bool structlit = false);
/* All results destined for use outside of CTFE need to have their CTFE-specific
* features removed.
* In particular, all slices must be resolved.
*/
Expression *scrubReturnValue(Loc loc, Expression *e)
{
if (e->op == TOKclassreference)
{
error(loc, "%s class literals cannot be returned from CTFE", ((ClassReferenceExp*)e)->originalClass()->toChars());
return EXP_CANT_INTERPRET;
}
if (e->op == TOKvoid)
{
error(loc, "uninitialized variable '%s' cannot be returned from CTFE", ((VoidInitExp *)e)->var->toChars());
e = new ErrorExp();
}
if (e->op == TOKslice)
{
e = resolveSlice(e);
}
if (e->op == TOKstructliteral)
{
StructLiteralExp *se = (StructLiteralExp *)e;
se->ownedByCtfe = false;
if (!scrubArray(loc, se->elements, true))
return EXP_CANT_INTERPRET;
}
if (e->op == TOKstring)
{
((StringExp *)e)->ownedByCtfe = false;
}
if (e->op == TOKarrayliteral)
{
((ArrayLiteralExp *)e)->ownedByCtfe = false;
if (!scrubArray(loc, ((ArrayLiteralExp *)e)->elements))
return EXP_CANT_INTERPRET;
}
if (e->op == TOKassocarrayliteral)
{
AssocArrayLiteralExp *aae = (AssocArrayLiteralExp *)e;
aae->ownedByCtfe = false;
if (!scrubArray(loc, aae->keys))
return EXP_CANT_INTERPRET;
if (!scrubArray(loc, aae->values))
return EXP_CANT_INTERPRET;
}
return e;
}
// Scrub all members of an array. Return false if error
bool scrubArray(Loc loc, Expressions *elems, bool structlit)
{
for (size_t i = 0; i < elems->dim; i++)
{
Expression *m = elems->tdata()[i];
if (!m)
continue;
if (m && m->op == TOKvoid && structlit)
m = NULL;
if (m)
m = scrubReturnValue(loc, m);
if (m == EXP_CANT_INTERPRET)
return false;
elems->tdata()[i] = m;
}
return true;
}
Expression *ReturnStatement::interpret(InterState *istate)
{
#if LOG
printf("ReturnStatement::interpret(%s)\n", exp ? exp->toChars() : "");
#endif
START()
if (!exp)
return EXP_VOID_INTERPRET;
assert(istate && istate->fd && istate->fd->type);
#if DMDV2
/* If the function returns a ref AND it's been called from an assignment,
* we need to return an lvalue. Otherwise, just do an (rvalue) interpret.
*/
if (istate->fd->type && istate->fd->type->ty==Tfunction)
{
TypeFunction *tf = (TypeFunction *)istate->fd->type;
if (tf->isref && istate->caller && istate->caller->awaitingLvalueReturn)
{ // We need to return an lvalue
Expression *e = exp->interpret(istate, ctfeNeedLvalue);
if (e == EXP_CANT_INTERPRET)
error("ref return %s is not yet supported in CTFE", exp->toChars());
return e;
}
if (tf->next && (tf->next->ty == Tdelegate) && istate->fd->closureVars.dim > 0)
{
// To support this, we need to copy all the closure vars
// into the delegate literal.
error("closures are not yet supported in CTFE");
return EXP_CANT_INTERPRET;
}
}
#endif
// We need to treat pointers specially, because TOKsymoff can be used to
// return a value OR a pointer
Expression *e;
if ( isPointer(exp->type) )
e = exp->interpret(istate, ctfeNeedLvalue);
else
e = exp->interpret(istate);
if (exceptionOrCantInterpret(e))
return e;
if (needToCopyLiteral(e))
e = copyLiteral(e);
#if LOGASSIGN
printf("RETURN %s\n", loc.toChars());
showCtfeExpr(e);
#endif
return e;
}
Expression *BreakStatement::interpret(InterState *istate)
{
#if LOG
printf("BreakStatement::interpret()\n");
#endif
START()
if (ident)
{ LabelDsymbol *label = istate->fd->searchLabel(ident);
assert(label && label->statement);
Statement *s = label->statement;
if (s->isLabelStatement())
s = s->isLabelStatement()->statement;
if (s->isScopeStatement())
s = s->isScopeStatement()->statement;
istate->gotoTarget = s;
return EXP_BREAK_INTERPRET;
}
else
{
istate->gotoTarget = NULL;
return EXP_BREAK_INTERPRET;
}
}
Expression *ContinueStatement::interpret(InterState *istate)
{
#if LOG
printf("ContinueStatement::interpret()\n");
#endif
START()
if (ident)
{ LabelDsymbol *label = istate->fd->searchLabel(ident);
assert(label && label->statement);
Statement *s = label->statement;
if (s->isLabelStatement())
s = s->isLabelStatement()->statement;
if (s->isScopeStatement())
s = s->isScopeStatement()->statement;
istate->gotoTarget = s;
return EXP_CONTINUE_INTERPRET;
}
else
return EXP_CONTINUE_INTERPRET;
}
Expression *WhileStatement::interpret(InterState *istate)
{
#if LOG
printf("WhileStatement::interpret()\n");
#endif
assert(0); // rewritten to ForStatement
return NULL;
}
Expression *DoStatement::interpret(InterState *istate)
{
#if LOG
printf("DoStatement::interpret()\n");
#endif
if (istate->start == this)
istate->start = NULL;
Expression *e;
while (1)
{
bool wasGoto = !!istate->start;
e = body ? body->interpret(istate) : NULL;
if (e == EXP_CANT_INTERPRET)
break;
if (wasGoto && istate->start)
return NULL;
if (e == EXP_BREAK_INTERPRET)
{
if (!istate->gotoTarget || istate->gotoTarget == this)
{
istate->gotoTarget = NULL;
e = NULL;
} // else break at a higher level
break;
}
if (e && e != EXP_CONTINUE_INTERPRET)
break;
if (istate->gotoTarget && istate->gotoTarget != this)
break; // continue at a higher level
Lcontinue:
istate->gotoTarget = NULL;
e = condition->interpret(istate);
if (exceptionOrCantInterpret(e))
break;
if (!e->isConst())
{ e = EXP_CANT_INTERPRET;
break;
}
if (isTrueBool(e))
{
}
else if (e->isBool(FALSE))
{ e = NULL;
break;
}
else
assert(0);
}
return e;
}
Expression *ForStatement::interpret(InterState *istate)
{
#if LOG
printf("ForStatement::interpret()\n");
#endif
if (istate->start == this)
istate->start = NULL;
Expression *e;
if (init)
{
e = init->interpret(istate);
if (exceptionOrCantInterpret(e))
return e;
assert(!e);
}
while (1)
{
if (condition && !istate->start)
{
e = condition->interpret(istate);
if (exceptionOrCantInterpret(e))
break;
if (!e->isConst())
{ e = EXP_CANT_INTERPRET;
break;
}
if (e->isBool(FALSE))
{ e = NULL;
break;
}
assert( isTrueBool(e) );
}
bool wasGoto = !!istate->start;
e = body ? body->interpret(istate) : NULL;
if (e == EXP_CANT_INTERPRET)
break;
if (wasGoto && istate->start)
return NULL;
if (e == EXP_BREAK_INTERPRET)
{
if (!istate->gotoTarget || istate->gotoTarget == this)
{
istate->gotoTarget = NULL;
e = NULL;
} // else break at a higher level
break;
}
if (e && e != EXP_CONTINUE_INTERPRET)
break;
if (istate->gotoTarget && istate->gotoTarget != this)
break; // continue at a higher level
istate->gotoTarget = NULL;
if (increment)
{
e = increment->interpret(istate);
if (e == EXP_CANT_INTERPRET)
break;
}
}
return e;
}
Expression *ForeachStatement::interpret(InterState *istate)
{
assert(0); // rewritten to ForStatement
return NULL;
}
#if DMDV2
Expression *ForeachRangeStatement::interpret(InterState *istate)
{
assert(0); // rewritten to ForStatement
return NULL;
}
#endif
Expression *SwitchStatement::interpret(InterState *istate)
{
#if LOG
printf("SwitchStatement::interpret()\n");
#endif
if (istate->start == this)
istate->start = NULL;
Expression *e = NULL;
if (istate->start)
{
e = body ? body->interpret(istate) : NULL;
if (istate->start)
return NULL;
if (e == EXP_CANT_INTERPRET)
return e;
if (e == EXP_BREAK_INTERPRET)
{
if (!istate->gotoTarget || istate->gotoTarget == this)
{
istate->gotoTarget = NULL;
return NULL;
} // else break at a higher level
}
return e;
}
Expression *econdition = condition->interpret(istate);
if (exceptionOrCantInterpret(econdition))
return econdition;
if (econdition->op == TOKslice)
econdition = resolveSlice(econdition);
Statement *s = NULL;
if (cases)
{
for (size_t i = 0; i < cases->dim; i++)
{
CaseStatement *cs = (*cases)[i];
Expression * caseExp = cs->exp->interpret(istate);
if (exceptionOrCantInterpret(caseExp))
return caseExp;
e = ctfeEqual(caseExp->loc, TOKequal, Type::tint32, econdition, caseExp);
if (exceptionOrCantInterpret(e))
return e;
if (e->isBool(TRUE))
{ s = cs;
break;
}
}
}
if (!s)
{ if (hasNoDefault)
error("no default or case for %s in switch statement", econdition->toChars());
s = sdefault;
}
#if IN_LLVM
if (!s)
return EXP_CANT_INTERPRET;
#endif
assert(s);
istate->start = s;
e = body ? body->interpret(istate) : NULL;
assert(!istate->start);
if (e == EXP_BREAK_INTERPRET)
{
if (!istate->gotoTarget || istate->gotoTarget == this)
{
istate->gotoTarget = NULL;
e = NULL;
} // else break at a higher level
}
return e;
}
Expression *CaseStatement::interpret(InterState *istate)
{
#if LOG
printf("CaseStatement::interpret(%s) this = %p\n", exp->toChars(), this);
#endif
if (istate->start == this)
istate->start = NULL;
if (statement)
return statement->interpret(istate);
else
return NULL;
}
Expression *DefaultStatement::interpret(InterState *istate)
{
#if LOG
printf("DefaultStatement::interpret()\n");
#endif
if (istate->start == this)
istate->start = NULL;
if (statement)
return statement->interpret(istate);
else
return NULL;
}
Expression *GotoStatement::interpret(InterState *istate)
{
#if LOG
printf("GotoStatement::interpret()\n");
#endif
START()
assert(label && label->statement);
istate->gotoTarget = label->statement;
return EXP_GOTO_INTERPRET;
}
Expression *GotoCaseStatement::interpret(InterState *istate)
{
#if LOG
printf("GotoCaseStatement::interpret()\n");
#endif
START()
assert(cs);
istate->gotoTarget = cs;
return EXP_GOTO_INTERPRET;
}
Expression *GotoDefaultStatement::interpret(InterState *istate)
{
#if LOG
printf("GotoDefaultStatement::interpret()\n");
#endif
START()
assert(sw && sw->sdefault);
istate->gotoTarget = sw->sdefault;
return EXP_GOTO_INTERPRET;
}
Expression *LabelStatement::interpret(InterState *istate)
{
#if LOG
printf("LabelStatement::interpret()\n");
#endif
if (istate->start == this)
istate->start = NULL;
return statement ? statement->interpret(istate) : NULL;
}
Expression *TryCatchStatement::interpret(InterState *istate)
{
#if LOG
printf("TryCatchStatement::interpret()\n");
#endif
START()
Expression *e = body ? body->interpret(istate) : NULL;
if (e == EXP_CANT_INTERPRET)
return e;
if (!exceptionOrCantInterpret(e))
return e;
// An exception was thrown
ThrownExceptionExp *ex = (ThrownExceptionExp *)e;
Type *extype = ex->thrown->originalClass()->type;
// Search for an appropriate catch clause.
for (size_t i = 0; i < catches->dim; i++)
{
#if DMDV1
Catch *ca = (Catch *)catches->data[i];
#else
Catch *ca = catches->tdata()[i];
#endif
Type *catype = ca->type;
if (catype->equals(extype) || catype->isBaseOf(extype, NULL))
{ // Execute the handler
if (ca->var)
{
ctfeStack.push(ca->var);
ca->var->setValue(ex->thrown);
}
return ca->handler ? ca->handler->interpret(istate) : NULL;
}
}
return e;
}
bool isAnErrorException(ClassDeclaration *cd)
{
return cd == ClassDeclaration::errorException || ClassDeclaration::errorException->isBaseOf(cd, NULL);
}
ThrownExceptionExp *chainExceptions(ThrownExceptionExp *oldest, ThrownExceptionExp *newest)
{
#if LOG
printf("Collided exceptions %s %s\n", oldest->thrown->toChars(), newest->thrown->toChars());
#endif
#if DMDV2
// Little sanity check to make sure it's really a Throwable
ClassReferenceExp *boss = oldest->thrown;
assert(boss->value->elements->tdata()[4]->type->ty == Tclass);
ClassReferenceExp *collateral = newest->thrown;
if (isAnErrorException(collateral->originalClass())
&& !isAnErrorException(boss->originalClass()))
{ // The new exception bypass the existing chain
assert(collateral->value->elements->tdata()[5]->type->ty == Tclass);
collateral->value->elements->tdata()[5] = boss;
return newest;
}
while (boss->value->elements->tdata()[4]->op == TOKclassreference)
{
boss = (ClassReferenceExp *)(boss->value->elements->tdata()[4]);
}
boss->value->elements->tdata()[4] = collateral;
return oldest;
#else
// for D1, the newest exception just clobbers the older one
return newest;
#endif
}
Expression *TryFinallyStatement::interpret(InterState *istate)
{
#if LOG
printf("TryFinallyStatement::interpret()\n");
#endif
START()
Expression *e = body ? body->interpret(istate) : NULL;
if (e == EXP_CANT_INTERPRET)
return e;
Expression *second = finalbody ? finalbody->interpret(istate) : NULL;
if (second == EXP_CANT_INTERPRET)
return second;
if (exceptionOrCantInterpret(second))
{ // Check for collided exceptions
if (exceptionOrCantInterpret(e))
e = chainExceptions((ThrownExceptionExp *)e, (ThrownExceptionExp *)second);
else
e = second;
}
return e;
}
Expression *ThrowStatement::interpret(InterState *istate)
{
#if LOG
printf("ThrowStatement::interpret()\n");
#endif
START()
Expression *e = exp->interpret(istate);
if (exceptionOrCantInterpret(e))
return e;
assert(e->op == TOKclassreference);
return new ThrownExceptionExp(loc, (ClassReferenceExp *)e);
}
Expression *OnScopeStatement::interpret(InterState *istate)
{
assert(0);
return EXP_CANT_INTERPRET;
}
Expression *WithStatement::interpret(InterState *istate)
{
#if LOG
printf("WithStatement::interpret()\n");
#endif
START()
Expression *e = exp->interpret(istate);
if (exceptionOrCantInterpret(e))
return e;
if (wthis->type->ty == Tpointer && exp->type->ty != Tpointer)
{
e = new AddrExp(loc, e);
e->type = wthis->type;
}
ctfeStack.push(wthis);
wthis->setValue(e);
e = body ? body->interpret(istate) : EXP_VOID_INTERPRET;
ctfeStack.pop(wthis);
return e;
}
Expression *AsmStatement::interpret(InterState *istate)
{
#if LOG
printf("AsmStatement::interpret()\n");
#endif
START()
error("asm statements cannot be interpreted at compile time");
return EXP_CANT_INTERPRET;
}
#if DMDV2
Expression *ImportStatement::interpret(InterState *istate)
{
#if LOG
printf("ImportStatement::interpret()\n");
#endif
START();
return NULL;
}
#endif
/******************************** Expression ***************************/
Expression *Expression::interpret(InterState *istate, CtfeGoal goal)
{
#if LOG
printf("Expression::interpret() %s\n", toChars());
printf("type = %s\n", type->toChars());
dump(0);
#endif
error("Cannot interpret %s at compile time", toChars());
return EXP_CANT_INTERPRET;
}
Expression *ThisExp::interpret(InterState *istate, CtfeGoal goal)
{
while (istate && !istate->localThis)
istate = istate->caller;
if (istate && istate->localThis && istate->localThis->op == TOKstructliteral)
return istate->localThis;
if (istate && istate->localThis)
return istate->localThis->interpret(istate, goal);
error("value of 'this' is not known at compile time");
return EXP_CANT_INTERPRET;
}
Expression *NullExp::interpret(InterState *istate, CtfeGoal goal)
{
return this;
}
Expression *IntegerExp::interpret(InterState *istate, CtfeGoal goal)
{
#if LOG
printf("IntegerExp::interpret() %s\n", toChars());
#endif
return this;
}
Expression *RealExp::interpret(InterState *istate, CtfeGoal goal)
{
#if LOG
printf("RealExp::interpret() %s\n", toChars());
#endif
return this;
}
Expression *ComplexExp::interpret(InterState *istate, CtfeGoal goal)
{
return this;
}
Expression *StringExp::interpret(InterState *istate, CtfeGoal goal)
{
#if LOG
printf("StringExp::interpret() %s\n", toChars());
#endif
/* In both D1 and D2, attempts to modify string literals are prevented
* in BinExp::interpretAssignCommon.
* In D2, we also disallow casts of read-only literals to mutable,
* though it isn't strictly necessary.
*/
#if DMDV2
// Fixed-length char arrays always get duped later anyway.
if (type->ty == Tsarray)
return this;
if (!(((TypeNext *)type)->next->mod & (MODconst | MODimmutable)))
{ // It seems this happens only when there has been an explicit cast
error("cannot cast a read-only string literal to mutable in CTFE");
return EXP_CANT_INTERPRET;
}
#endif
return this;
}
Expression *FuncExp::interpret(InterState *istate, CtfeGoal goal)
{
#if LOG
printf("FuncExp::interpret() %s\n", toChars());
#endif
return this;
}
/* Is it safe to convert from srcPointee* to destPointee* ?
* srcPointee is the genuine type (never void).
* destPointee may be void.
*/
bool isSafePointerCast(Type *srcPointee, Type *destPointee)
{ // It's OK if both are the same (modulo const)
#if DMDV2
if (srcPointee->castMod(0) == destPointee->castMod(0))
return true;
#else
if (srcPointee == destPointee)
return true;
#endif
// it's OK to cast to void*
if (destPointee->ty == Tvoid)
return true;
// It's OK if they are the same size integers, eg int* and uint*
return srcPointee->isintegral() && destPointee->isintegral()
&& srcPointee->size() == destPointee->size();
}
Expression *SymOffExp::interpret(InterState *istate, CtfeGoal goal)
{
#if LOG
printf("SymOffExp::interpret() %s\n", toChars());
#endif
if (var->isFuncDeclaration() && offset == 0)
{
return this;
}
if (type->ty != Tpointer)
{ // Probably impossible
error("Cannot interpret %s at compile time", toChars());
return EXP_CANT_INTERPRET;
}
Type *pointee = ((TypePointer *)type)->next;
Expression *val = getVarExp(loc, istate, var, goal);
if (val == EXP_CANT_INTERPRET)
return val;
if (val->type->ty == Tarray || val->type->ty == Tsarray)
{
// Check for unsupported type painting operations
Type *elemtype = ((TypeArray *)(val->type))->next;
// It's OK to cast from fixed length to dynamic array, eg &int[3] to int[]*
if (val->type->ty == Tsarray && pointee->ty == Tarray
&& elemtype->size() == pointee->nextOf()->size())
{
Expression *e = new AddrExp(loc, val);
e->type = type;
return e;
}
if ( !isSafePointerCast(elemtype, pointee) )
{ // It's also OK to cast from &string to string*.
if ( offset == 0 && isSafePointerCast(var->type, pointee) )
{
VarExp *ve = new VarExp(loc, var);
ve->type = type;
return ve;
}
error("reinterpreting cast from %s to %s is not supported in CTFE",
val->type->toChars(), type->toChars());
return EXP_CANT_INTERPRET;
}
TypeArray *tar = (TypeArray *)val->type;
dinteger_t sz = pointee->size();
dinteger_t indx = offset/sz;
assert(sz * indx == offset);
Expression *aggregate = NULL;
if (val->op == TOKarrayliteral || val->op == TOKstring)
aggregate = val;
else if (val->op == TOKslice)
{
aggregate = ((SliceExp *)val)->e1;
Expression *lwr = ((SliceExp *)val)->lwr->interpret(istate);
indx += lwr->toInteger();
}
if (aggregate)
{
IntegerExp *ofs = new IntegerExp(loc, indx, Type::tsize_t);
IndexExp *ie = new IndexExp(loc, aggregate, ofs);
ie->type = type;
return ie;
}
}
else if ( offset == 0 && isSafePointerCast(var->type, pointee) )
{
VarExp *ve = new VarExp(loc, var);
ve->type = type;
return ve;
}
error("Cannot convert &%s to %s at compile time", var->type->toChars(), type->toChars());
return EXP_CANT_INTERPRET;
}
Expression *AddrExp::interpret(InterState *istate, CtfeGoal goal)
{
#if LOG
printf("AddrExp::interpret() %s\n", toChars());
#endif
#if IN_LLVM
if (e1->op == TOKvar)
{ VarExp *ve = (VarExp *)e1;
if (ve->var->isFuncDeclaration())
return this;
if (!ve->var->isOut() && !ve->var->isRef() &&
!ve->var->isImportedSymbol())
{
if (type->ty != Tpointer)
{ // Probably impossible
error("Cannot interpret %s at compile time", toChars());
return EXP_CANT_INTERPRET;
}
Type *pointee = ((TypePointer *)type)->next;
if (isSafePointerCast(ve->var->type, pointee))
{
ve = new VarExp(loc, ve->var);
ve->type = type;
return ve;
}
}
}
else if (e1->op == TOKindex)
{
IndexExp *ae = (IndexExp *)e1;
if (ae->e2->op == TOKint64 && ae->e1->op == TOKvar) {
dinteger_t indx = ae->e2->toInteger();
VarExp *ve = (VarExp *)ae->e1;
if (/*ve->type->ty == Tarray || */ve->type->ty == Tsarray)
{
Expression *val = getVarExp(loc, istate, ve->var, goal);
Expression *aggregate = NULL;
if (val->op == TOKarrayliteral || val->op == TOKstring)
aggregate = val;
else if (val->op == TOKslice)
{
aggregate = ((SliceExp *)val)->e1;
Expression *lwr = ((SliceExp *)val)->lwr->interpret(istate);
indx += lwr->toInteger();
}
if (aggregate)
{
IntegerExp *ofs = new IntegerExp(loc, indx, Type::tsize_t);
IndexExp *ie = new IndexExp(loc, aggregate, ofs);
ie->type = type;
return ie;
}
}
}
}
#endif
// For reference types, we need to return an lvalue ref.
TY tb = e1->type->toBasetype()->ty;
bool needRef = (tb == Tarray || tb == Taarray || tb == Tclass);
Expression *e = e1->interpret(istate, needRef ? ctfeNeedLvalueRef : ctfeNeedLvalue);
if (exceptionOrCantInterpret(e))
return e;
// Return a simplified address expression
e = new AddrExp(loc, e);
e->type = type;
return e;
}
Expression *DelegateExp::interpret(InterState *istate, CtfeGoal goal)
{
#if LOG
printf("DelegateExp::interpret() %s\n", toChars());
#endif
return this;
}
// -------------------------------------------------------------
// Remove out, ref, and this
// -------------------------------------------------------------
// The variable used in a dotvar, index, or slice expression,
// after 'out', 'ref', and 'this' have been removed.
Expression * resolveReferences(Expression *e, Expression *thisval)
{
for(;;)
{
if (e->op == TOKthis)
{
assert(thisval);
assert(e != thisval);
e = thisval;
continue;
}
if (e->op == TOKvar)
{
VarExp *ve = (VarExp *)e;
VarDeclaration *v = ve->var->isVarDeclaration();
assert(v);
if (v->type->ty == Tpointer)
break;
if (v->ctfeAdrOnStack == (size_t)-1) // If not on the stack, can't possibly be a ref.
break;
if (v->getValue() && (v->getValue()->op == TOKslice))
{
SliceExp *se = (SliceExp *)v->getValue();
if (se->e1->op == TOKarrayliteral || se->e1->op == TOKassocarrayliteral || se->e1->op == TOKstring)
break;
e = v->getValue();
continue;
}
else if (v->getValue() && (v->getValue()->op==TOKindex || v->getValue()->op == TOKdotvar
|| v->getValue()->op == TOKthis ))
{
e = v->getValue();
continue;
}
}
break;
}
return e;
}
Expression *getVarExp(Loc loc, InterState *istate, Declaration *d, CtfeGoal goal)
{
Expression *e = EXP_CANT_INTERPRET;
VarDeclaration *v = d->isVarDeclaration();
#if IN_LLVM
StaticStructInitDeclaration *s = d->isStaticStructInitDeclaration();
#else
SymbolDeclaration *s = d->isSymbolDeclaration();
#endif
if (v)
{
#if DMDV2
/* Magic variable __ctfe always returns true when interpreting
*/
if (v->ident == Id::ctfe)
return new IntegerExp(loc, 1, Type::tbool);
if ((v->isConst() || v->isImmutable() || v->storage_class & STCmanifest) && v->init && !v->hasValue())
#else
if (v->isConst() && v->init)
#endif
{ e = v->init->toExpression();
if (e && (e->op == TOKconstruct || e->op == TOKblit))
{ AssignExp *ae = (AssignExp *)e;
e = ae->e2;
v->inuse++;
e = e->interpret(istate, ctfeNeedAnyValue);
v->inuse--;
if (e == EXP_CANT_INTERPRET && !global.gag && !CtfeStatus::stackTraceCallsToSuppress)
errorSupplemental(loc, "while evaluating %s.init", v->toChars());
if (exceptionOrCantInterpret(e))
return e;
e->type = v->type;
}
else
{
if (e && !e->type)
e->type = v->type;
if (e)
e = e->interpret(istate, ctfeNeedAnyValue);
if (e == EXP_CANT_INTERPRET && !global.gag && !CtfeStatus::stackTraceCallsToSuppress)
errorSupplemental(loc, "while evaluating %s.init", v->toChars());
}
if (e && e != EXP_CANT_INTERPRET && e->op != TOKthrownexception)
{
e = copyLiteral(e);
ctfeStack.saveGlobalConstant(v, e);
}
}
else if (v->isCTFE() && !v->hasValue())
{
if (v->init && v->type->size() != 0)
{
if (v->init->isVoidInitializer())
{
// var should have been initialized when it was created
error(loc, "CTFE internal error - trying to access uninitialized var");
assert(0);
e = EXP_CANT_INTERPRET;
}
else
{
e = v->init->toExpression();
e = e->interpret(istate);
}
}
else
e = v->type->defaultInitLiteral(loc);
}
else if (!v->isDataseg() && !v->isCTFE() && !istate)
{ error(loc, "variable %s cannot be read at compile time", v->toChars());
return EXP_CANT_INTERPRET;
}
else
{ e = v->hasValue() ? v->getValue() : NULL;
if (!e && !v->isCTFE() && v->isDataseg())
{ error(loc, "static variable %s cannot be read at compile time", v->toChars());
e = EXP_CANT_INTERPRET;
}
else if (!e)
{ assert(!(v->init && v->init->isVoidInitializer()));
// CTFE initiated from inside a function
error(loc, "variable %s cannot be read at compile time", v->toChars());
return EXP_CANT_INTERPRET;
}
else if (exceptionOrCantInterpret(e))
return e;
else if (goal == ctfeNeedLvalue && v->isRef() && e->op == TOKindex)
{ // If it is a foreach ref, resolve the index into a constant
IndexExp *ie = (IndexExp *)e;
Expression *w = ie->e2->interpret(istate);
if (w != ie->e2)
{
e = new IndexExp(ie->loc, ie->e1, w);
e->type = ie->type;
}
return e;
}
else if ((goal == ctfeNeedLvalue)
|| e->op == TOKstring || e->op == TOKstructliteral || e->op == TOKarrayliteral
|| e->op == TOKassocarrayliteral || e->op == TOKslice
|| e->type->toBasetype()->ty == Tpointer)
return e; // it's already an Lvalue
else if (e->op == TOKvoid)
{
VoidInitExp *ve = (VoidInitExp *)e;
error(loc, "cannot read uninitialized variable %s in ctfe", v->toPrettyChars());
errorSupplemental(ve->var->loc, "%s was uninitialized and used before set", ve->var->toChars());
e = EXP_CANT_INTERPRET;
}
else
e = e->interpret(istate, goal);
}
if (!e)
e = EXP_CANT_INTERPRET;
}
else if (s)
{ // Struct static initializers, for example
#if !IN_LLVM
if (s->dsym->toInitializer() == s->sym)
#endif
{ e = s->dsym->type->defaultInitLiteral(loc);
e = e->semantic(NULL);
if (e->op == TOKerror)
e = EXP_CANT_INTERPRET;
else // Convert NULL to VoidExp
e = e->interpret(istate, goal);
}
#if !IN_LLVM
else
error(loc, "cannot interpret symbol %s at compile time", v->toChars());
#endif
}
else
error(loc, "cannot interpret declaration %s at compile time", d->toChars());
return e;
}
Expression *VarExp::interpret(InterState *istate, CtfeGoal goal)
{
#if LOG
printf("VarExp::interpret() %s\n", toChars());
#endif
if (goal == ctfeNeedLvalueRef)
{
VarDeclaration *v = var->isVarDeclaration();
if (v && !v->isDataseg() && !v->isCTFE() && !istate)
{ error("variable %s cannot be referenced at compile time", v->toChars());
return EXP_CANT_INTERPRET;
}
else if (v && !v->hasValue() && !v->isCTFE() && v->isDataseg())
{ error("static variable %s cannot be referenced at compile time", v->toChars());
return EXP_CANT_INTERPRET;
}
return this;
}
Expression *e = getVarExp(loc, istate, var, goal);
// A VarExp may include an implicit cast. It must be done explicitly.
if (e != EXP_CANT_INTERPRET && e->op != TOKthrownexception)
e = paintTypeOntoLiteral(type, e);
return e;
}
Expression *DeclarationExp::interpret(InterState *istate, CtfeGoal goal)
{
#if LOG
printf("DeclarationExp::interpret() %s\n", toChars());
#endif
Expression *e;
VarDeclaration *v = declaration->isVarDeclaration();
if (v)
{
if (v->toAlias()->isTupleDeclaration())
{ // Reserve stack space for all tuple members
TupleDeclaration *td =v->toAlias()->isTupleDeclaration();
if (!td->objects)
return NULL;
for(int i= 0; i < td->objects->dim; ++i)
{
Object * o = td->objects->tdata()[i];
Expression *ex = isExpression(o);
DsymbolExp *s = (ex && ex->op == TOKdsymbol) ? (DsymbolExp *)ex : NULL;
VarDeclaration *v2 = s ? s->s->isVarDeclaration() : NULL;
assert(v2);
if (!v2->isDataseg() || v2->isCTFE())
ctfeStack.push(v2);
}
}
if (!v->isDataseg() || v->isCTFE())
ctfeStack.push(v);
Dsymbol *s = v->toAlias();
if (s == v && !v->isStatic() && v->init)
{
ExpInitializer *ie = v->init->isExpInitializer();
if (ie)
e = ie->exp->interpret(istate);
else if (v->init->isVoidInitializer())
{
e = v->type->voidInitLiteral(v);
// There is no AssignExp for void initializers,
// so set it here.
v->setValue(e);
}
else
{
error("Declaration %s is not yet implemented in CTFE", toChars());
e = EXP_CANT_INTERPRET;
}
}
else if (s == v && !v->init && v->type->size()==0)
{ // Zero-length arrays don't need an initializer
e = v->type->defaultInitLiteral(loc);
}
#if DMDV2
else if (s == v && (v->isConst() || v->isImmutable()) && v->init)
#else
else if (s == v && v->isConst() && v->init)
#endif
{ e = v->init->toExpression();
if (!e)
e = EXP_CANT_INTERPRET;
else if (!e->type)
e->type = v->type;
}
else if (s->isTupleDeclaration() && !v->init)
e = NULL;
else if (v->isStatic() && !v->init)
e = NULL; // Just ignore static variables which aren't read or written yet
else
{
error("Static variable %s cannot be modified at compile time", v->toChars());
e = EXP_CANT_INTERPRET;
}
}
else if (declaration->isAttribDeclaration() ||
declaration->isTemplateMixin() ||
declaration->isTupleDeclaration())
{ // Check for static struct declarations, which aren't executable
AttribDeclaration *ad = declaration->isAttribDeclaration();
if (ad && ad->decl && ad->decl->dim == 1
&& ad->decl->tdata()[0]->isAggregateDeclaration())
return NULL; // static struct declaration. Nothing to do.
// These can be made to work, too lazy now
error("Declaration %s is not yet implemented in CTFE", toChars());
e = EXP_CANT_INTERPRET;
}
else
{ // Others should not contain executable code, so are trivial to evaluate
e = NULL;
}
#if LOG
printf("-DeclarationExp::interpret(%s): %p\n", toChars(), e);
#endif
return e;
}
Expression *TupleExp::interpret(InterState *istate, CtfeGoal goal)
{
#if LOG
printf("TupleExp::interpret() %s\n", toChars());
#endif
Expressions *expsx = NULL;
for (size_t i = 0; i < exps->dim; i++)
{ Expression *e = (*exps)[i];
Expression *ex;
ex = e->interpret(istate);
if (exceptionOrCantInterpret(ex))
{ delete expsx;
return ex;
}
// A tuple of assignments can contain void (Bug 5676).
if (goal == ctfeNeedNothing)
continue;
if (ex == EXP_VOID_INTERPRET)
{
error("ICE: void element %s in tuple", e->toChars());
assert(0);
}
/* If any changes, do Copy On Write
*/
if (ex != e)
{
if (!expsx)
{ expsx = new Expressions();
++CtfeStatus::numArrayAllocs;
expsx->setDim(exps->dim);
for (size_t j = 0; j < i; j++)
{
(*expsx)[j] = (*exps)[j];
}
}
(*expsx)[i] = ex;
}
}
if (expsx)
{ TupleExp *te = new TupleExp(loc, expsx);
expandTuples(te->exps);
te->type = new TypeTuple(te->exps);
return te;
}
return this;
}
Expression *ArrayLiteralExp::interpret(InterState *istate, CtfeGoal goal)
{ Expressions *expsx = NULL;
#if LOG
printf("ArrayLiteralExp::interpret() %s\n", toChars());
#endif
if (ownedByCtfe) // We've already interpreted all the elements
return copyLiteral(this);
if (elements)
{
for (size_t i = 0; i < elements->dim; i++)
{ Expression *e = (*elements)[i];
Expression *ex;
if (e->op == TOKindex) // segfault bug 6250
assert( ((IndexExp*)e)->e1 != this);
ex = e->interpret(istate);
if (ex == EXP_CANT_INTERPRET)
goto Lerror;
if (ex->op == TOKthrownexception)
return ex;
/* If any changes, do Copy On Write
*/
if (ex != e)
{
if (!expsx)
{ expsx = new Expressions();
++CtfeStatus::numArrayAllocs;
expsx->setDim(elements->dim);
for (size_t j = 0; j < elements->dim; j++)
{
(*expsx)[j] = (*elements)[j];
}
}
(*expsx)[i] = ex;
}
}
}
if (elements && expsx)
{
expandTuples(expsx);
if (expsx->dim != elements->dim)
goto Lerror;
ArrayLiteralExp *ae = new ArrayLiteralExp(loc, expsx);
ae->type = type;
return copyLiteral(ae);
}
#if DMDV2
if (((TypeNext *)type)->next->mod & (MODconst | MODimmutable))
{ // If it's immutable, we don't need to dup it
return this;
}
#endif
return copyLiteral(this);
Lerror:
if (expsx)
delete expsx;
error("cannot interpret array literal");
return EXP_CANT_INTERPRET;
}
Expression *AssocArrayLiteralExp::interpret(InterState *istate, CtfeGoal goal)
{ Expressions *keysx = keys;
Expressions *valuesx = values;
#if LOG
printf("AssocArrayLiteralExp::interpret() %s\n", toChars());
#endif
if (ownedByCtfe) // We've already interpreted all the elements
return copyLiteral(this);
for (size_t i = 0; i < keys->dim; i++)
{ Expression *ekey = keys->tdata()[i];
Expression *evalue = values->tdata()[i];
Expression *ex;
ex = ekey->interpret(istate);
if (ex == EXP_CANT_INTERPRET)
goto Lerr;
if (ex->op == TOKthrownexception)
return ex;
/* If any changes, do Copy On Write
*/
if (ex != ekey)
{
if (keysx == keys)
keysx = (Expressions *)keys->copy();
keysx->tdata()[i] = ex;
}
ex = evalue->interpret(istate);
if (ex == EXP_CANT_INTERPRET)
goto Lerr;
if (ex->op == TOKthrownexception)
return ex;
/* If any changes, do Copy On Write
*/
if (ex != evalue)
{
if (valuesx == values)
valuesx = (Expressions *)values->copy();
valuesx->tdata()[i] = ex;
}
}
if (keysx != keys)
expandTuples(keysx);
if (valuesx != values)
expandTuples(valuesx);
if (keysx->dim != valuesx->dim)
goto Lerr;
/* Remove duplicate keys
*/
for (size_t i = 1; i < keysx->dim; i++)
{ Expression *ekey = keysx->tdata()[i - 1];
if (ekey->op == TOKslice)
ekey = resolveSlice(ekey);
for (size_t j = i; j < keysx->dim; j++)
{ Expression *ekey2 = keysx->tdata()[j];
Expression *ex = ctfeEqual(loc, TOKequal, Type::tbool, ekey, ekey2);
if (ex == EXP_CANT_INTERPRET)
goto Lerr;
if (ex->isBool(TRUE)) // if a match
{
// Remove ekey
if (keysx == keys)
keysx = (Expressions *)keys->copy();
if (valuesx == values)
valuesx = (Expressions *)values->copy();
keysx->remove(i - 1);
valuesx->remove(i - 1);
i -= 1; // redo the i'th iteration
break;
}
}
}
if (keysx != keys || valuesx != values)
{
AssocArrayLiteralExp *ae;
ae = new AssocArrayLiteralExp(loc, keysx, valuesx);
ae->type = type;
ae->ownedByCtfe = true;
return ae;
}
return this;
Lerr:
if (keysx != keys)
delete keysx;
if (valuesx != values)
delete values;
return EXP_CANT_INTERPRET;
}
Expression *StructLiteralExp::interpret(InterState *istate, CtfeGoal goal)
{ Expressions *expsx = NULL;
#if LOG
printf("StructLiteralExp::interpret() %s\n", toChars());
#endif
/* We don't know how to deal with overlapping fields
*/
if (sd->hasUnions)
{ error("Unions with overlapping fields are not yet supported in CTFE");
return EXP_CANT_INTERPRET;
}
if (ownedByCtfe)
return copyLiteral(this);
if (elements)
{
for (size_t i = 0; i < elements->dim; i++)
{ Expression *e = (*elements)[i];
if (!e)
continue;
Expression *ex = e->interpret(istate);
if (exceptionOrCantInterpret(ex))
{ delete expsx;
return ex;
}
/* If any changes, do Copy On Write
*/
if (ex != e)
{
if (!expsx)
{ expsx = new Expressions();
++CtfeStatus::numArrayAllocs;
expsx->setDim(elements->dim);
for (size_t j = 0; j < elements->dim; j++)
{
(*expsx)[j] = (*elements)[j];
}
}
(*expsx)[i] = ex;
}
}
}
if (elements && expsx)
{
expandTuples(expsx);
if (expsx->dim != elements->dim)
{ delete expsx;
return EXP_CANT_INTERPRET;
}
StructLiteralExp *se = new StructLiteralExp(loc, sd, expsx);
se->type = type;
se->ownedByCtfe = true;
return se;
}
return copyLiteral(this);
}
/******************************
* Helper for NewExp
* Create an array literal consisting of 'elem' duplicated 'dim' times.
*/
ArrayLiteralExp *createBlockDuplicatedArrayLiteral(Loc loc, Type *type,
Expression *elem, size_t dim)
{
Expressions *elements = new Expressions();
elements->setDim(dim);
bool mustCopy = needToCopyLiteral(elem);
for (size_t i = 0; i < dim; i++)
{ if (mustCopy)
elem = copyLiteral(elem);
(*elements)[i] = elem;
}
ArrayLiteralExp *ae = new ArrayLiteralExp(loc, elements);
ae->type = type;
ae->ownedByCtfe = true;
return ae;
}
/******************************
* Helper for NewExp
* Create a string literal consisting of 'value' duplicated 'dim' times.
*/
StringExp *createBlockDuplicatedStringLiteral(Loc loc, Type *type,
unsigned value, size_t dim, int sz)
{
unsigned char *s;
s = (unsigned char *)mem.calloc(dim + 1, sz);
for (size_t elemi=0; elemi<dim; ++elemi)
{
switch (sz)
{
case 1: s[elemi] = value; break;
case 2: ((unsigned short *)s)[elemi] = value; break;
case 4: ((unsigned *)s)[elemi] = value; break;
default: assert(0);
}
}
StringExp *se = new StringExp(loc, s, dim);
se->type = type;
se->sz = sz;
se->committed = true;
se->ownedByCtfe = true;
return se;
}
// Create an array literal of type 'newtype' with dimensions given by
// 'arguments'[argnum..$]
Expression *recursivelyCreateArrayLiteral(Loc loc, Type *newtype, InterState *istate,
Expressions *arguments, int argnum)
{
Expression *lenExpr = (((*arguments)[argnum]))->interpret(istate);
if (exceptionOrCantInterpret(lenExpr))
return lenExpr;
size_t len = (size_t)(lenExpr->toInteger());
Type *elemType = ((TypeArray *)newtype)->next;
if (elemType->ty == Tarray && argnum < arguments->dim - 1)
{
Expression *elem = recursivelyCreateArrayLiteral(loc, elemType, istate,
arguments, argnum + 1);
if (exceptionOrCantInterpret(elem))
return elem;
Expressions *elements = new Expressions();
elements->setDim(len);
for (size_t i = 0; i < len; i++)
(*elements)[i] = copyLiteral(elem);
ArrayLiteralExp *ae = new ArrayLiteralExp(loc, elements);
ae->type = newtype;
ae->ownedByCtfe = true;
return ae;
}
assert(argnum == arguments->dim - 1);
if (elemType->ty == Tchar || elemType->ty == Twchar
|| elemType->ty == Tdchar)
return createBlockDuplicatedStringLiteral(loc, newtype,
(unsigned)(elemType->defaultInitLiteral(loc)->toInteger()),
len, elemType->size());
return createBlockDuplicatedArrayLiteral(loc, newtype,
elemType->defaultInitLiteral(loc),
len);
}
Expression *NewExp::interpret(InterState *istate, CtfeGoal goal)
{
#if LOG
printf("NewExp::interpret() %s\n", toChars());
#endif
if (newtype->ty == Tarray && arguments)
return recursivelyCreateArrayLiteral(loc, newtype, istate, arguments, 0);
if (newtype->toBasetype()->ty == Tstruct)
{
Expression *se = newtype->defaultInitLiteral(loc);
#if DMDV2
if (member)
{
int olderrors = global.errors;
member->interpret(istate, arguments, se);
if (olderrors != global.errors)
{
error("cannot evaluate %s at compile time", toChars());
return EXP_CANT_INTERPRET;
}
}
#else // The above code would fail on D1 because it doesn't use STRUCTTHISREF,
// but that's OK because D1 doesn't have struct constructors anyway.
assert(!member);
#endif
Expression *e = new AddrExp(loc, copyLiteral(se));
e->type = type;
return e;
}
if (newtype->toBasetype()->ty == Tclass)
{
ClassDeclaration *cd = ((TypeClass *)newtype->toBasetype())->sym;
size_t totalFieldCount = 0;
for (ClassDeclaration *c = cd; c; c = c->baseClass)
totalFieldCount += c->fields.dim;
Expressions *elems = new Expressions;
elems->setDim(totalFieldCount);
size_t fieldsSoFar = totalFieldCount;
for (ClassDeclaration *c = cd; c; c = c->baseClass)
{
fieldsSoFar -= c->fields.dim;
for (size_t i = 0; i < c->fields.dim; i++)
{
Dsymbol *s = c->fields[i];
VarDeclaration *v = s->isVarDeclaration();
assert(v);
Expression *m = v->init ? v->init->toExpression() : v->type->defaultInitLiteral(loc);
if (exceptionOrCantInterpret(m))
return m;
elems->tdata()[fieldsSoFar+i] = copyLiteral(m);
}
}
// Hack: we store a ClassDeclaration instead of a StructDeclaration.
// We probably won't get away with this.
StructLiteralExp *se = new StructLiteralExp(loc, (StructDeclaration *)cd, elems, newtype);
se->ownedByCtfe = true;
Expression *e = new ClassReferenceExp(loc, se, type);
if (member)
{ // Call constructor
if (!member->fbody)
{
Expression *ctorfail = evaluateIfBuiltin(istate, loc, member, arguments, e);
if (ctorfail && exceptionOrCantInterpret(ctorfail))
return ctorfail;
if (ctorfail)
return e;
member->error("%s cannot be constructed at compile time, because the constructor has no available source code", newtype->toChars());
return EXP_CANT_INTERPRET;
}
Expression * ctorfail = member->interpret(istate, arguments, e);
if (exceptionOrCantInterpret(ctorfail))
return ctorfail;
}
return e;
}
error("Cannot interpret %s at compile time", toChars());
return EXP_CANT_INTERPRET;
}
Expression *UnaExp::interpretCommon(InterState *istate, CtfeGoal goal, Expression *(*fp)(Type *, Expression *))
{ Expression *e;
Expression *e1;
#if LOG
printf("UnaExp::interpretCommon() %s\n", toChars());
#endif
e1 = this->e1->interpret(istate);
if (exceptionOrCantInterpret(e1))
return e1;
e = (*fp)(type, e1);
return e;
}
#define UNA_INTERPRET(op) \
Expression *op##Exp::interpret(InterState *istate, CtfeGoal goal) \
{ \
return interpretCommon(istate, goal, &op); \
}
UNA_INTERPRET(Neg)
UNA_INTERPRET(Com)
UNA_INTERPRET(Not)
UNA_INTERPRET(Bool)
Expression *getAggregateFromPointer(Expression *e, dinteger_t *ofs)
{
*ofs = 0;
if (e->op == TOKaddress)
e = ((AddrExp *)e)->e1;
if (e->op == TOKdotvar)
{
Expression *ex = ((DotVarExp *)e)->e1;
VarDeclaration *v = ((DotVarExp *)e)->var->isVarDeclaration();
assert(v);
StructLiteralExp *se = ex->op == TOKclassreference ? ((ClassReferenceExp *)ex)->value : (StructLiteralExp *)ex;
// We can't use getField, because it makes a copy
int i = -1;
if (ex->op == TOKclassreference)
i = ((ClassReferenceExp *)ex)->getFieldIndex(e->type, v->offset);
else
i = se->getFieldIndex(e->type, v->offset);
assert(i != -1);
e = se->elements->tdata()[i];
}
if (e->op == TOKindex)
{
IndexExp *ie = (IndexExp *)e;
// Note that each AA element is part of its own memory block
if ((ie->e1->type->ty == Tarray || ie->e1->type->ty == Tsarray
|| ie->e1->op == TOKstring || ie->e1->op==TOKarrayliteral) &&
ie->e2->op == TOKint64)
{
*ofs = ie->e2->toInteger();
return ie->e1;
}
}
return e;
}
// return e1 - e2 as an integer, or error if not possible
Expression *pointerDifference(Loc loc, Type *type, Expression *e1, Expression *e2)
{
dinteger_t ofs1, ofs2;
Expression *agg1 = getAggregateFromPointer(e1, &ofs1);
Expression *agg2 = getAggregateFromPointer(e2, &ofs2);
if (agg1 == agg2)
{
Type *pointee = ((TypePointer *)agg1->type)->next;
dinteger_t sz = pointee->size();
return new IntegerExp(loc, (ofs1-ofs2)*sz, type);
}
else if (agg1->op == TOKstring && agg2->op == TOKstring)
{
if (((StringExp *)agg1)->string == ((StringExp *)agg2)->string)
{
Type *pointee = ((TypePointer *)agg1->type)->next;
dinteger_t sz = pointee->size();
return new IntegerExp(loc, (ofs1-ofs2)*sz, type);
}
}
#if LOGASSIGN
printf("FAILED POINTER DIFF\n");
showCtfeExpr(agg1);
showCtfeExpr(agg2);
#endif
error(loc, "%s - %s cannot be interpreted at compile time: cannot subtract "
"pointers to two different memory blocks",
e1->toChars(), e2->toChars());
return EXP_CANT_INTERPRET;
}
// Return eptr op e2, where eptr is a pointer, e2 is an integer,
// and op is TOKadd or TOKmin
Expression *pointerArithmetic(Loc loc, enum TOK op, Type *type,
Expression *eptr, Expression *e2)
{
if (eptr->type->nextOf()->ty == Tvoid)
{
error(loc, "cannot perform arithmetic on void* pointers at compile time");
return EXP_CANT_INTERPRET;
}
dinteger_t ofs1, ofs2;
if (eptr->op == TOKaddress)
eptr = ((AddrExp *)eptr)->e1;
Expression *agg1 = getAggregateFromPointer(eptr, &ofs1);
if (agg1->op != TOKstring && agg1->op != TOKarrayliteral)
{
error(loc, "cannot perform pointer arithmetic on non-arrays at compile time");
return EXP_CANT_INTERPRET;
}
ofs2 = e2->toInteger();
Type *pointee = ((TypePointer *)agg1->type)->next;
dinteger_t sz = pointee->size();
Expression *dollar = ArrayLength(Type::tsize_t, agg1);
assert(dollar != EXP_CANT_INTERPRET);
dinteger_t len = dollar->toInteger();
Expression *val = agg1;
TypeArray *tar = (TypeArray *)val->type;
dinteger_t indx = ofs1;
#if IN_LLVM // LDC: llvm uses typesafe pointer arithmetic
if (op == TOKadd || op == TOKaddass || op == TOKplusplus)
indx += ofs2;
else if (op == TOKmin || op == TOKminass || op == TOKminusminus)
indx -= ofs2;
#else
if (op == TOKadd || op == TOKaddass || op == TOKplusplus)
indx = indx + ofs2/sz;
else if (op == TOKmin || op == TOKminass || op == TOKminusminus)
indx -= ofs2/sz;
#endif
else
{
error(loc, "CTFE Internal compiler error: bad pointer operation");
return EXP_CANT_INTERPRET;
}
if (val->op != TOKarrayliteral && val->op != TOKstring)
{
error(loc, "CTFE Internal compiler error: pointer arithmetic %s", val->toChars());
return EXP_CANT_INTERPRET;
}
if (indx < 0 || indx > len)
{
error(loc, "cannot assign pointer to index %lld inside memory block [0..%lld]", indx, len);
return EXP_CANT_INTERPRET;
}
IntegerExp *ofs = new IntegerExp(loc, indx, Type::tsize_t);
IndexExp *ie = new IndexExp(loc, val, ofs);
ie->type = type;
return ie;
}
typedef Expression *(*fp_t)(Type *, Expression *, Expression *);
Expression *BinExp::interpretCommon(InterState *istate, CtfeGoal goal, fp_t fp)
{ Expression *e;
Expression *e1;
Expression *e2;
#if LOG
printf("BinExp::interpretCommon() %s\n", toChars());
#endif
if (this->e1->type->ty == Tpointer && this->e2->type->ty == Tpointer && op == TOKmin)
{
e1 = this->e1->interpret(istate, ctfeNeedLvalue);
if (exceptionOrCantInterpret(e1))
return e1;
e2 = this->e2->interpret(istate, ctfeNeedLvalue);
if (exceptionOrCantInterpret(e2))
return e2;
return pointerDifference(loc, type, e1, e2);
}
if (this->e1->type->ty == Tpointer && this->e2->type->isintegral())
{
e1 = this->e1->interpret(istate, ctfeNeedLvalue);
if (exceptionOrCantInterpret(e1))
return e1;
e2 = this->e2->interpret(istate);
if (exceptionOrCantInterpret(e2))
return e2;
return pointerArithmetic(loc, op, type, e1, e2);
}
if (this->e2->type->ty == Tpointer && this->e1->type->isintegral() && op==TOKadd)
{
e1 = this->e1->interpret(istate);
if (exceptionOrCantInterpret(e1))
return e1;
e2 = this->e2->interpret(istate, ctfeNeedLvalue);
if (exceptionOrCantInterpret(e2))
return e1;
return pointerArithmetic(loc, op, type, e2, e1);
}
if (this->e1->type->ty == Tpointer || this->e2->type->ty == Tpointer)
{
error("pointer expression %s cannot be interpreted at compile time", toChars());
return EXP_CANT_INTERPRET;
}
e1 = this->e1->interpret(istate);
if (exceptionOrCantInterpret(e1))
return e1;
if (e1->isConst() != 1)
goto Lcant;
e2 = this->e2->interpret(istate);
if (exceptionOrCantInterpret(e2))
return e2;
if (e2->isConst() != 1)
goto Lcant;
e = (*fp)(type, e1, e2);
if (e == EXP_CANT_INTERPRET)
error("%s cannot be interpreted at compile time", toChars());
return e;
Lcant:
return EXP_CANT_INTERPRET;
}
#define BIN_INTERPRET(op) \
Expression *op##Exp::interpret(InterState *istate, CtfeGoal goal) \
{ \
return interpretCommon(istate, goal, &op); \
}
BIN_INTERPRET(Add)
BIN_INTERPRET(Min)
BIN_INTERPRET(Mul)
BIN_INTERPRET(Div)
BIN_INTERPRET(Mod)
BIN_INTERPRET(Shl)
BIN_INTERPRET(Shr)
BIN_INTERPRET(Ushr)
BIN_INTERPRET(And)
BIN_INTERPRET(Or)
BIN_INTERPRET(Xor)
#if DMDV2
BIN_INTERPRET(Pow)
#endif
typedef Expression *(*fp2_t)(Loc loc, enum TOK, Type *, Expression *, Expression *);
/** Return true if agg1 and agg2 are pointers to the same memory block
*/
bool pointToSameMemoryBlock(Expression *agg1, Expression *agg2)
{
// Note that type painting can occur with VarExp, so we
// must compare the variables being pointed to.
return agg1 == agg2 ||
(agg1->op == TOKvar && agg2->op == TOKvar &&
((VarExp *)agg1)->var == ((VarExp *)agg2)->var);
}
// Return 1 if true, 0 if false
// -1 if comparison is illegal because they point to non-comparable memory blocks
int comparePointers(Loc loc, enum TOK op, Type *type, Expression *agg1, dinteger_t ofs1, Expression *agg2, dinteger_t ofs2)
{
if ( pointToSameMemoryBlock(agg1, agg2) )
{
dinteger_t cm = ofs1 - ofs2;
dinteger_t n;
dinteger_t zero = 0;
switch(op)
{
case TOKlt: n = (ofs1 < ofs2); break;
case TOKle: n = (ofs1 <= ofs2); break;
case TOKgt: n = (ofs1 > ofs2); break;
case TOKge: n = (ofs1 >= ofs2); break;
case TOKidentity:
case TOKequal: n = (ofs1 == ofs2); break;
case TOKnotidentity:
case TOKnotequal: n = (ofs1 != ofs2); break;
default:
assert(0);
}
return n;
}
bool null1 = ( agg1->op == TOKnull );
bool null2 = ( agg2->op == TOKnull );
int cmp;
if (null1 || null2)
{
switch (op)
{
case TOKlt: cmp = null1 && !null2; break;
case TOKgt: cmp = !null1 && null2; break;
case TOKle: cmp = null1; break;
case TOKge: cmp = null2; break;
case TOKidentity:
case TOKequal:
case TOKnotidentity: // 'cmp' gets inverted below
case TOKnotequal:
cmp = (null1 == null2);
break;
}
}
else
{
switch(op)
{
case TOKidentity:
case TOKequal:
case TOKnotidentity: // 'cmp' gets inverted below
case TOKnotequal:
cmp = 0;
break;
default:
return -1; // memory blocks are different
}
}
if (op == TOKnotidentity || op == TOKnotequal)
cmp ^= 1;
return cmp;
}
int ctfeRawCmp(Loc loc, Expression *e1, Expression *e2);
/* Conceptually the same as memcmp(e1, e2).
* e1 and e2 may be strings, arrayliterals, or slices.
* For string types, return <0 if e1 < e2, 0 if e1==e2, >0 if e1 > e2.
* For all other types, return 0 if e1 == e2, !=0 if e1 != e2.
*/
int ctfeCmpArrays(Loc loc, Expression *e1, Expression *e2, uinteger_t len)
{
// Resolve slices, if necessary
uinteger_t lo1 = 0;
uinteger_t lo2 = 0;
Expression *x = e1;
if (x->op == TOKslice)
{ lo1 = ((SliceExp *)x)->lwr->toInteger();
x = ((SliceExp*)x)->e1;
}
StringExp *se1 = (x->op == TOKstring) ? (StringExp *)x : 0;
ArrayLiteralExp *ae1 = (x->op == TOKarrayliteral) ? (ArrayLiteralExp *)x : 0;
x = e2;
if (x->op == TOKslice)
{ lo2 = ((SliceExp *)x)->lwr->toInteger();
x = ((SliceExp*)x)->e1;
}
StringExp *se2 = (x->op == TOKstring) ? (StringExp *)x : 0;
ArrayLiteralExp *ae2 = (x->op == TOKarrayliteral) ? (ArrayLiteralExp *)x : 0;
// Now both must be either TOKarrayliteral or TOKstring
if (se1 && se2)
return sliceCmpStringWithString(se1, se2, lo1, lo2, len);
if (se1 && ae2)
return sliceCmpStringWithArray(se1, ae2, lo1, lo2, len);
if (se2 && ae1)
return -sliceCmpStringWithArray(se2, ae1, lo2, lo1, len);
assert (ae1 && ae2);
// Comparing two array literals. This case is potentially recursive.
// If they aren't strings, we just need an equality check rather than
// a full cmp.
bool needCmp = ae1->type->nextOf()->isintegral();
for (size_t i = 0; i < len; i++)
{ Expression *ee1 = (*ae1->elements)[lo1 + i];
Expression *ee2 = (*ae2->elements)[lo2 + i];
if (needCmp)
{ int c = ee1->toInteger() - ee2->toInteger();
if (c)
return c;
}
else
{ if (ctfeRawCmp(loc, ee1, ee2))
return 1;
}
}
return 0;
}
bool isArray(Expression *e)
{
return e->op == TOKarrayliteral || e->op == TOKstring ||
e->op == TOKslice || e->op == TOKnull;
}
/* For strings, return <0 if e1 < e2, 0 if e1==e2, >0 if e1 > e2.
* For all other types, return 0 if e1 == e2, !=0 if e1 != e2.
*/
int ctfeRawCmp(Loc loc, Expression *e1, Expression *e2)
{
if (e1->op == TOKclassreference || e2->op == TOKclassreference)
{ if (e1->op == TOKclassreference && e2->op == TOKclassreference &&
((ClassReferenceExp *)e1)->value == ((ClassReferenceExp *)e2)->value)
return 0;
return 1;
}
if (e1->op == TOKnull && e2->op == TOKnull)
return 0;
if (e1->type->ty == Tpointer && e2->type->ty == Tpointer)
{ // Can only be an equality test.
if (e1->op == TOKnull && e2->op == TOKnull)
return 0;
dinteger_t ofs1, ofs2;
Expression *agg1 = getAggregateFromPointer(e1, &ofs1);
Expression *agg2 = getAggregateFromPointer(e2, &ofs2);
if ((agg1 == agg2) || (agg1->op == TOKvar && agg2->op == TOKvar &&
((VarExp *)agg1)->var == ((VarExp *)agg2)->var))
{ if (ofs1 == ofs2)
return 0;
}
return 1;
}
if (isArray(e1) && isArray(e2))
{
uinteger_t len1 = resolveArrayLength(e1);
uinteger_t len2 = resolveArrayLength(e2);
if (len1 != len2) // only for equality
return len1 - len2;
if (len1 == 0 || len2 == 0)
return len1 - len2; // Equal - both are empty
return ctfeCmpArrays(loc, e1, e2, len1);
}
if (e1->type->isintegral())
{
return e1->toInteger() - e2->toInteger();
}
real_t r1;
real_t r2;
if (e1->type->isreal())
{
r1 = e1->toReal();
r2 = e2->toReal();
goto L1;
}
else if (e1->type->isimaginary())
{
r1 = e1->toImaginary();
r2 = e2->toImaginary();
L1:
#if __DMC__
return (r1 != r2);
#else
if (Port::isNan(r1) || Port::isNan(r2)) // if unordered
{
return 1;
}
else
{
return (r1 != r2);
}
#endif
}
else if (e1->type->iscomplex())
{
return e1->toComplex() != e2->toComplex();
}
if (e1->op == TOKstructliteral && e2->op == TOKstructliteral)
{ StructLiteralExp *es1 = (StructLiteralExp *)e1;
StructLiteralExp *es2 = (StructLiteralExp *)e2;
// For structs, we only need to return 0 or 1 (< and > aren't legal).
if (es1->sd != es2->sd)
return 1;
else if ((!es1->elements || !es1->elements->dim) &&
(!es2->elements || !es2->elements->dim))
return 0; // both arrays are empty
else if (!es1->elements || !es2->elements)
return 1;
else if (es1->elements->dim != es2->elements->dim)
return 1;
else
{
for (size_t i = 0; i < es1->elements->dim; i++)
{ Expression *ee1 = (*es1->elements)[i];
Expression *ee2 = (*es2->elements)[i];
if (ee1 == ee2)
continue;
if (!ee1 || !ee2)
return 1;
int cmp = ctfeRawCmp(loc, ee1, ee2);
if (cmp)
return 1;
}
return 0; // All elements are equal
}
}
error(loc, "CTFE internal error: bad compare");
assert(0);
return 0;
}
// As Equal, but resolves slices before comparing
Expression *ctfeEqual(Loc loc, enum TOK op, Type *type, Expression *e1, Expression *e2)
{
int cmp = !ctfeRawCmp(loc, e1, e2);
if (op == TOKnotequal)
cmp ^= 1;
return new IntegerExp(loc, cmp, type);
}
Expression *ctfeIdentity(Loc loc, enum TOK op, Type *type, Expression *e1, Expression *e2)
{
int cmp;
if (e1->op == TOKnull)
{
cmp = (e2->op == TOKnull);
}
else if (e2->op == TOKnull)
{
cmp = 0;
}
else if (e1->op == TOKsymoff && e2->op == TOKsymoff)
{
SymOffExp *es1 = (SymOffExp *)e1;
SymOffExp *es2 = (SymOffExp *)e2;
cmp = (es1->var == es2->var && es1->offset == es2->offset);
}
else if (e1->type->isreal())
cmp = RealEquals(e1->toReal(), e2->toReal());
else if (e1->type->isimaginary())
cmp = RealEquals(e1->toImaginary(), e2->toImaginary());
else if (e1->type->iscomplex())
{ complex_t v1 = e1->toComplex();
complex_t v2 = e2->toComplex();
cmp = RealEquals(creall(v1), creall(v2)) &&
RealEquals(cimagl(v1), cimagl(v1));
}
else
cmp = !ctfeRawCmp(loc, e1, e2);
if (op == TOKnotidentity || op == TOKnotequal)
cmp ^= 1;
return new IntegerExp(loc, cmp, type);
}
Expression *ctfeCmp(Loc loc, enum TOK op, Type *type, Expression *e1, Expression *e2)
{
return Cmp(op, type, e1, e2);
}
Expression *BinExp::interpretCommon2(InterState *istate, CtfeGoal goal, fp2_t fp)
{ Expression *e;
Expression *e1;
Expression *e2;
#if LOG
printf("BinExp::interpretCommon2() %s\n", toChars());
#endif
if (this->e1->type->ty == Tpointer && this->e2->type->ty == Tpointer)
{
e1 = this->e1->interpret(istate, ctfeNeedLvalue);
if (exceptionOrCantInterpret(e1))
return e1;
e2 = this->e2->interpret(istate, ctfeNeedLvalue);
if (exceptionOrCantInterpret(e2))
return e2;
dinteger_t ofs1, ofs2;
Expression *agg1 = getAggregateFromPointer(e1, &ofs1);
Expression *agg2 = getAggregateFromPointer(e2, &ofs2);
int cmp = comparePointers(loc, op, type, agg1, ofs1, agg2, ofs2);
if (cmp == -1)
{
char dir = (op == TOKgt || op == TOKge) ? '<' : '>';
error("The ordering of pointers to unrelated memory blocks is indeterminate in CTFE."
" To check if they point to the same memory block, use both > and < inside && or ||, "
"eg (%s && %s %c= %s + 1)",
toChars(), this->e1->toChars(), dir, this->e2->toChars());
return EXP_CANT_INTERPRET;
}
return new IntegerExp(loc, cmp, type);
}
e1 = this->e1->interpret(istate);
if (exceptionOrCantInterpret(e1))
return e1;
if (e1->op == TOKslice)
e1 = resolveSlice(e1);
if (e1->isConst() != 1 &&
e1->op != TOKnull &&
e1->op != TOKstring &&
e1->op != TOKarrayliteral &&
e1->op != TOKstructliteral &&
e1->op != TOKclassreference)
{
error("cannot compare %s at compile time", e1->toChars());
goto Lcant;
}
e2 = this->e2->interpret(istate);
if (exceptionOrCantInterpret(e2))
return e2;
if (e2->op == TOKslice)
e2 = resolveSlice(e2);
if (e2->isConst() != 1 &&
e2->op != TOKnull &&
e2->op != TOKstring &&
e2->op != TOKarrayliteral &&
e2->op != TOKstructliteral &&
e2->op != TOKclassreference)
{
error("cannot compare %s at compile time", e2->toChars());
goto Lcant;
}
e = (*fp)(loc, op, type, e1, e2);
if (e == EXP_CANT_INTERPRET)
error("%s cannot be interpreted at compile time", toChars());
return e;
Lcant:
return EXP_CANT_INTERPRET;
}
#define BIN_INTERPRET2(op, opfunc) \
Expression *op##Exp::interpret(InterState *istate, CtfeGoal goal) \
{ \
return interpretCommon2(istate, goal, &opfunc); \
}
BIN_INTERPRET2(Equal, ctfeEqual)
BIN_INTERPRET2(Identity, ctfeIdentity)
BIN_INTERPRET2(Cmp, ctfeCmp)
/* Helper functions for BinExp::interpretAssignCommon
*/
/***************************************
* Duplicate the elements array, then set field 'indexToChange' = newelem.
*/
Expressions *changeOneElement(Expressions *oldelems, size_t indexToChange, Expression *newelem)
{
Expressions *expsx = new Expressions();
++CtfeStatus::numArrayAllocs;
expsx->setDim(oldelems->dim);
for (size_t j = 0; j < expsx->dim; j++)
{
if (j == indexToChange)
(*expsx)[j] = newelem;
else
(*expsx)[j] = oldelems->tdata()[j];
}
return expsx;
}
// Create a new struct literal, which is the same as se except that se.field[offset] = elem
Expression * modifyStructField(Type *type, StructLiteralExp *se, size_t offset, Expression *newval)
{
int fieldi = se->getFieldIndex(newval->type, offset);
if (fieldi == -1)
return EXP_CANT_INTERPRET;
/* Create new struct literal reflecting updated fieldi
*/
Expressions *expsx = changeOneElement(se->elements, fieldi, newval);
StructLiteralExp * ee = new StructLiteralExp(se->loc, se->sd, expsx);
ee->type = se->type;
ee->ownedByCtfe = 1;
return ee;
}
/********************************
* Given an array literal arr (either arrayliteral, stringliteral, or assocArrayLiteral),
* set arr[index] = newval and return the new array.
*
*/
Expression *assignAssocArrayElement(Loc loc, AssocArrayLiteralExp *aae, Expression *index, Expression *newval)
{
/* Create new associative array literal reflecting updated key/value
*/
Expressions *keysx = aae->keys;
Expressions *valuesx = aae->values;
int updated = 0;
for (size_t j = valuesx->dim; j; )
{ j--;
Expression *ekey = aae->keys->tdata()[j];
Expression *ex = ctfeEqual(loc, TOKequal, Type::tbool, ekey, index);
if (exceptionOrCantInterpret(ex))
return ex;
if (ex->isBool(TRUE))
{ valuesx->tdata()[j] = newval;
updated = 1;
}
}
if (!updated)
{ // Append index/newval to keysx[]/valuesx[]
valuesx->push(newval);
keysx->push(index);
}
return newval;
}
// Return true if e is derived from UnaryExp.
// Consider moving this function into Expression.
UnaExp *isUnaExp(Expression *e)
{
switch (e->op)
{
case TOKdotvar:
case TOKindex:
case TOKslice:
case TOKcall:
case TOKdot:
case TOKdotti:
case TOKdottype:
case TOKcast:
return (UnaExp *)e;
default:
break;
}
return NULL;
}
// Returns the variable which is eventually modified, or NULL if an rvalue.
// thisval is the current value of 'this'.
VarDeclaration * findParentVar(Expression *e, Expression *thisval)
{
for (;;)
{
e = resolveReferences(e, thisval);
if (e->op == TOKvar)
break;
if (e->op == TOKindex)
e = ((IndexExp*)e)->e1;
else if (e->op == TOKdotvar)
e = ((DotVarExp *)e)->e1;
else if (e->op == TOKdotti)
e = ((DotTemplateInstanceExp *)e)->e1;
else if (e->op == TOKslice)
e = ((SliceExp*)e)->e1;
else
return NULL;
}
VarDeclaration *v = ((VarExp *)e)->var->isVarDeclaration();
assert(v);
return v;
}
// Given expr, which evaluates to an array/AA/string literal,
// return true if it needs to be copied
bool needToCopyLiteral(Expression *expr)
{
for (;;)
{
switch (expr->op)
{
case TOKarrayliteral:
return !((ArrayLiteralExp *)expr)->ownedByCtfe;
case TOKassocarrayliteral:
return !((AssocArrayLiteralExp *)expr)->ownedByCtfe;
case TOKstructliteral:
return !((StructLiteralExp *)expr)->ownedByCtfe;
case TOKstring:
case TOKthis:
case TOKvar:
return false;
case TOKassign:
return false;
case TOKindex:
case TOKdotvar:
case TOKslice:
case TOKcast:
expr = ((UnaExp *)expr)->e1;
continue;
case TOKcat:
return needToCopyLiteral(((BinExp *)expr)->e1) ||
needToCopyLiteral(((BinExp *)expr)->e2);
case TOKcatass:
expr = ((BinExp *)expr)->e2;
continue;
default:
return false;
}
}
}
Expressions *copyLiteralArray(Expressions *oldelems)
{
if (!oldelems)
return oldelems;
CtfeStatus::numArrayAllocs++;
Expressions *newelems = new Expressions();
newelems->setDim(oldelems->dim);
for (size_t i = 0; i < oldelems->dim; i++)
newelems->tdata()[i] = copyLiteral(oldelems->tdata()[i]);
return newelems;
}
// Make a copy of the ArrayLiteral, AALiteral, String, or StructLiteral.
// This value will be used for in-place modification.
Expression *copyLiteral(Expression *e)
{
if (e->op == TOKstring) // syntaxCopy doesn't make a copy for StringExp!
{
StringExp *se = (StringExp *)e;
unsigned char *s;
s = (unsigned char *)mem.calloc(se->len + 1, se->sz);
memcpy(s, se->string, se->len * se->sz);
StringExp *se2 = new StringExp(se->loc, s, se->len);
se2->committed = se->committed;
se2->postfix = se->postfix;
se2->type = se->type;
se2->sz = se->sz;
se2->ownedByCtfe = true;
return se2;
}
else if (e->op == TOKarrayliteral)
{
ArrayLiteralExp *ae = (ArrayLiteralExp *)e;
ArrayLiteralExp *r = new ArrayLiteralExp(e->loc,
copyLiteralArray(ae->elements));
r->type = e->type;
r->ownedByCtfe = true;
return r;
}
else if (e->op == TOKassocarrayliteral)
{
AssocArrayLiteralExp *aae = (AssocArrayLiteralExp *)e;
AssocArrayLiteralExp *r = new AssocArrayLiteralExp(e->loc,
copyLiteralArray(aae->keys), copyLiteralArray(aae->values));
r->type = e->type;
r->ownedByCtfe = true;
return r;
}
/* syntaxCopy doesn't work for struct literals, because of a nasty special
* case: block assignment is permitted inside struct literals, eg,
* an int[4] array can be initialized with a single int.
*/
else if (e->op == TOKstructliteral)
{
StructLiteralExp *se = (StructLiteralExp *)e;
Expressions *oldelems = se->elements;
Expressions * newelems = new Expressions();
newelems->setDim(oldelems->dim);
for (size_t i = 0; i < newelems->dim; i++)
{
Expression *m = oldelems->tdata()[i];
// We need the struct definition to detect block assignment
AggregateDeclaration *sd = se->sd;
Dsymbol *s = sd->fields[i];
VarDeclaration *v = s->isVarDeclaration();
assert(v);
// If it is a void assignment, use the default initializer
if (!m)
m = v->type->voidInitLiteral(v);
if (m->op == TOKslice)
m = resolveSlice(m);
if ((v->type->ty != m->type->ty) && v->type->ty == Tsarray)
{
// Block assignment from inside struct literals
TypeSArray *tsa = (TypeSArray *)v->type;
uinteger_t length = tsa->dim->toInteger();
m = createBlockDuplicatedArrayLiteral(e->loc, v->type, m, (size_t)length);
}
else if (v->type->ty != Tarray && v->type->ty!=Taarray) // NOTE: do not copy array references
m = copyLiteral(m);
newelems->tdata()[i] = m;
}
#if DMDV2
StructLiteralExp *r = new StructLiteralExp(e->loc, se->sd, newelems, se->stype);
#else
StructLiteralExp *r = new StructLiteralExp(e->loc, se->sd, newelems);
#endif
r->type = e->type;
r->ownedByCtfe = true;
return r;
}
else if (e->op == TOKfunction || e->op == TOKdelegate
|| e->op == TOKsymoff || e->op == TOKnull
|| e->op == TOKvar
|| e->op == TOKint64 || e->op == TOKfloat64
|| e->op == TOKchar || e->op == TOKcomplex80
|| e->op == TOKvoid)
{ // Simple value types
Expression *r = e->syntaxCopy();
r->type = e->type;
return r;
}
else if ( isPointer(e->type) )
{ // For pointers, we only do a shallow copy.
Expression *r;
if (e->op == TOKaddress)
r = new AddrExp(e->loc, ((AddrExp *)e)->e1);
else if (e->op == TOKindex)
r = new IndexExp(e->loc, ((IndexExp *)e)->e1, ((IndexExp *)e)->e2);
else if (e->op == TOKdotvar)
r = new DotVarExp(e->loc, ((DotVarExp *)e)->e1,
((DotVarExp *)e)->var
#if DMDV2
, ((DotVarExp *)e)->hasOverloads
#endif
);
else
assert(0);
r->type = e->type;
return r;
}
else if (e->op == TOKslice)
{ // Array slices only do a shallow copy
Expression *r = new SliceExp(e->loc, ((SliceExp *)e)->e1,
((SliceExp *)e)->lwr, ((SliceExp *)e)->upr);
r->type = e->type;
return r;
}
else if (e->op == TOKclassreference)
return new ClassReferenceExp(e->loc, ((ClassReferenceExp *)e)->value, e->type);
else
{
e->error("Internal Compiler Error: CTFE literal %s", e->toChars());
assert(0);
return e;
}
}
/* Deal with type painting.
* Type painting is a major nuisance: we can't just set
* e->type = type, because that would change the original literal.
* But, we can't simply copy the literal either, because that would change
* the values of any pointers.
*/
Expression *paintTypeOntoLiteral(Type *type, Expression *lit)
{
if (lit->type == type)
return lit;
Expression *e;
if (lit->op == TOKslice)
{
SliceExp *se = (SliceExp *)lit;
e = new SliceExp(lit->loc, se->e1, se->lwr, se->upr);
}
else if (lit->op == TOKindex)
{
IndexExp *ie = (IndexExp *)lit;
e = new IndexExp(lit->loc, ie->e1, ie->e2);
}
else if (lit->op == TOKarrayliteral)
{
e = new SliceExp(lit->loc, lit,
new IntegerExp(0, 0, Type::tsize_t), ArrayLength(Type::tsize_t, lit));
}
else if (lit->op == TOKstring)
{
// For strings, we need to introduce another level of indirection
e = new SliceExp(lit->loc, lit,
new IntegerExp(0, 0, Type::tsize_t), ArrayLength(Type::tsize_t, lit));
}
else if (lit->op == TOKassocarrayliteral)
{
AssocArrayLiteralExp *aae = (AssocArrayLiteralExp *)lit;
// TODO: we should be creating a reference to this AAExp, not
// just a ref to the keys and values.
bool wasOwned = aae->ownedByCtfe;
aae = new AssocArrayLiteralExp(lit->loc, aae->keys, aae->values);
aae->ownedByCtfe = wasOwned;
e = aae;
}
else
{ // Can't type paint from struct to struct*; this needs another
// level of indirection
if (lit->op == TOKstructliteral && isPointer(type) )
lit->error("CTFE internal error painting %s", type->toChars());
e = copyLiteral(lit);
}
e->type = type;
return e;
}
Expression *ctfeCast(Loc loc, Type *type, Type *to, Expression *e)
{
if (e->op == TOKnull)
return paintTypeOntoLiteral(to, e);
if (e->op == TOKclassreference)
{ // Disallow reinterpreting class casts. Do this by ensuring that
// the original class can implicitly convert to the target class
ClassDeclaration *originalClass = ((ClassReferenceExp *)e)->originalClass();
if (originalClass->type->implicitConvTo(to))
return paintTypeOntoLiteral(to, e);
else
return new NullExp(loc, to);
}
Expression *r = Cast(type, to, e);
if (r == EXP_CANT_INTERPRET)
error(loc, "cannot cast %s to %s at compile time", e->toChars(), to->toChars());
if (e->op == TOKarrayliteral)
((ArrayLiteralExp *)e)->ownedByCtfe = true;
if (e->op == TOKstring)
((StringExp *)e)->ownedByCtfe = true;
return r;
}
/* Set dest = src, where both dest and src are container value literals
* (ie, struct literals, or static arrays (can be an array literal or a string)
* Assignment is recursively in-place.
* Purpose: any reference to a member of 'dest' will remain valid after the
* assignment.
*/
void assignInPlace(Expression *dest, Expression *src)
{
assert(dest->op == TOKstructliteral || dest->op == TOKarrayliteral ||
dest->op == TOKstring);
Expressions *oldelems;
Expressions *newelems;
if (dest->op == TOKstructliteral)
{
assert(dest->op == src->op);
oldelems = ((StructLiteralExp *)dest)->elements;
newelems = ((StructLiteralExp *)src)->elements;
}
else if (dest->op == TOKarrayliteral && src->op==TOKarrayliteral)
{
oldelems = ((ArrayLiteralExp *)dest)->elements;
newelems = ((ArrayLiteralExp *)src)->elements;
}
else if (dest->op == TOKstring && src->op == TOKstring)
{
sliceAssignStringFromString((StringExp *)dest, (StringExp *)src, 0);
return;
}
else if (dest->op == TOKarrayliteral && src->op == TOKstring)
{
sliceAssignArrayLiteralFromString((ArrayLiteralExp *)dest, (StringExp *)src, 0);
return;
}
else if (src->op == TOKarrayliteral && dest->op == TOKstring)
{
sliceAssignStringFromArrayLiteral((StringExp *)dest, (ArrayLiteralExp *)src, 0);
return;
}
else assert(0);
assert(oldelems->dim == newelems->dim);
for (size_t i= 0; i < oldelems->dim; ++i)
{
Expression *e = newelems->tdata()[i];
Expression *o = oldelems->tdata()[i];
if (e->op == TOKstructliteral)
{
assert(o->op == e->op);
assignInPlace(o, e);
}
else if (e->type->ty == Tsarray && o->type->ty == Tsarray && e->op != TOKvoid)
{
assignInPlace(o, e);
}
else
{
oldelems->tdata()[i] = newelems->tdata()[i];
}
}
}
void recursiveBlockAssign(ArrayLiteralExp *ae, Expression *val, bool wantRef)
{
assert( ae->type->ty == Tsarray || ae->type->ty == Tarray);
#if DMDV2
Type *desttype = ((TypeArray *)ae->type)->next->castMod(0);
bool directblk = (val->type->toBasetype()->castMod(0)) == desttype;
#else
Type *desttype = ((TypeArray *)ae->type)->next;
bool directblk = (val->type->toBasetype()) == desttype;
#endif
bool cow = !(val->op == TOKstructliteral || val->op == TOKarrayliteral
|| val->op == TOKstring);
for (size_t k = 0; k < ae->elements->dim; k++)
{
if (!directblk && ae->elements->tdata()[k]->op == TOKarrayliteral)
{
recursiveBlockAssign((ArrayLiteralExp *)ae->elements->tdata()[k], val, wantRef);
}
else
{
if (wantRef || cow)
ae->elements->tdata()[k] = val;
else
assignInPlace(ae->elements->tdata()[k], val);
}
}
}
Expression *BinExp::interpretAssignCommon(InterState *istate, CtfeGoal goal, fp_t fp, int post)
{
#if LOG
printf("BinExp::interpretAssignCommon() %s\n", toChars());
#endif
Expression *returnValue = EXP_CANT_INTERPRET;
Expression *e1 = this->e1;
if (!istate)
{
error("value of %s is not known at compile time", e1->toChars());
return returnValue;
}
++CtfeStatus::numAssignments;
/* Before we begin, we need to know if this is a reference assignment
* (dynamic array, AA, or class) or a value assignment.
* Determining this for slice assignments are tricky: we need to know
* if it is a block assignment (a[] = e) rather than a direct slice
* assignment (a[] = b[]). Note that initializers of multi-dimensional
* static arrays can have 2D block assignments (eg, int[7][7] x = 6;).
* So we need to recurse to determine if it is a block assignment.
*/
bool isBlockAssignment = false;
if (e1->op == TOKslice)
{
// a[] = e can have const e. So we compare the naked types.
Type *desttype = e1->type->toBasetype();
#if DMDV2
Type *srctype = e2->type->toBasetype()->castMod(0);
#else
Type *srctype = e2->type->toBasetype();
#endif
while ( desttype->ty == Tsarray || desttype->ty == Tarray)
{
desttype = ((TypeArray *)desttype)->next;
#if DMDV2
if (srctype == desttype->castMod(0))
#else
if (srctype == desttype)
#endif
{
isBlockAssignment = true;
break;
}
}
}
bool wantRef = false;
if (!fp && this->e1->type->toBasetype() == this->e2->type->toBasetype() &&
(e1->type->toBasetype()->ty == Tarray || isAssocArray(e1->type)
|| e1->type->toBasetype()->ty == Tclass)
// e = *x is never a reference, because *x is always a value
&& this->e2->op != TOKstar
)
{
#if DMDV2
wantRef = true;
#else
/* D1 doesn't have const in the type system. But there is still a
* vestigal const in the form of static const variables.
* Problematic code like:
* const int [] x = [1,2,3];
* int [] y = x;
* can be dealt with by making this a non-ref assign (y = x.dup).
* Otherwise it's a big mess.
*/
VarDeclaration * targetVar = findParentVar(e2, istate->localThis);
if (!(targetVar && targetVar->isConst()))
wantRef = true;
// slice assignment of static arrays is not reference assignment
if ((e1->op==TOKslice) && ((SliceExp *)e1)->e1->type->ty == Tsarray)
wantRef = false;
#endif
// If it is assignment from a ref parameter, it's not a ref assignment
if (this->e2->op == TOKvar)
{
VarDeclaration *v = ((VarExp *)this->e2)->var->isVarDeclaration();
if (v && (v->storage_class & (STCref | STCout)))
wantRef = false;
}
}
if (isBlockAssignment && (e2->type->toBasetype()->ty == Tarray || e2->type->toBasetype()->ty == Tsarray))
{
wantRef = true;
}
// If it is a construction of a ref variable, it is a ref assignment
if (op == TOKconstruct && this->e1->op==TOKvar
&& ((VarExp*)this->e1)->var->storage_class & STCref)
{
wantRef = true;
}
if (fp)
{
while (e1->op == TOKcast)
{ CastExp *ce = (CastExp *)e1;
e1 = ce->e1;
}
}
if (exceptionOrCantInterpret(e1))
return e1;
// First, deal with this = e; and call() = e;
if (e1->op == TOKthis)
{
e1 = istate->localThis;
}
if (e1->op == TOKcall)
{
bool oldWaiting = istate->awaitingLvalueReturn;
istate->awaitingLvalueReturn = true;
e1 = e1->interpret(istate);
istate->awaitingLvalueReturn = oldWaiting;
if (exceptionOrCantInterpret(e1))
return e1;
if (e1->op == TOKarrayliteral || e1->op == TOKstring)
{
// f() = e2, when f returns an array, is always a slice assignment.
// Convert into arr[0..arr.length] = e2
e1 = new SliceExp(loc, e1,
new IntegerExp(0, 0, Type::tsize_t),
ArrayLength(Type::tsize_t, e1));
e1->type = type;
}
}
if (e1->op == TOKstar)
{
e1 = e1->interpret(istate, ctfeNeedLvalue);
if (exceptionOrCantInterpret(e1))
return e1;
if (!(e1->op == TOKvar || e1->op == TOKdotvar || e1->op == TOKindex
|| e1->op == TOKslice))
{
error("cannot dereference invalid pointer %s",
this->e1->toChars());
return EXP_CANT_INTERPRET;
}
}
if (!(e1->op == TOKarraylength || e1->op == TOKvar || e1->op == TOKdotvar
|| e1->op == TOKindex || e1->op == TOKslice))
{
error("CTFE internal error: unsupported assignment %s", toChars());
return EXP_CANT_INTERPRET;
}
Expression * newval = NULL;
if (!wantRef)
{ // We need to treat pointers specially, because TOKsymoff can be used to
// return a value OR a pointer
assert(e1);
assert(e1->type);
if ( isPointer(e1->type) && (e2->op == TOKsymoff || e2->op==TOKaddress || e2->op==TOKvar))
newval = this->e2->interpret(istate, ctfeNeedLvalue);
else
newval = this->e2->interpret(istate);
if (exceptionOrCantInterpret(newval))
return newval;
}
// ----------------------------------------------------
// Deal with read-modify-write assignments.
// Set 'newval' to the final assignment value
// Also determine the return value (except for slice
// assignments, which are more complicated)
// ----------------------------------------------------
if (fp || e1->op == TOKarraylength)
{
// If it isn't a simple assignment, we need the existing value
Expression * oldval = e1->interpret(istate);
if (exceptionOrCantInterpret(oldval))
return oldval;
while (oldval->op == TOKvar)
{
oldval = resolveReferences(oldval, istate->localThis);
oldval = oldval->interpret(istate);
if (exceptionOrCantInterpret(oldval))
return oldval;
}
if (fp)
{
// ~= can create new values (see bug 6052)
if (op == TOKcatass)
{
// We need to dup it. We can skip this if it's a dynamic array,
// because it gets copied later anyway
if (newval->type->ty != Tarray)
newval = copyLiteral(newval);
if (newval->op == TOKslice)
newval = resolveSlice(newval);
// It becomes a reference assignment
wantRef = true;
}
if (oldval->op == TOKslice)
oldval = resolveSlice(oldval);
if (this->e1->type->ty == Tpointer && this->e2->type->isintegral()
&& (op==TOKaddass || op == TOKminass ||
op == TOKplusplus || op == TOKminusminus))
{
oldval = this->e1->interpret(istate, ctfeNeedLvalue);
if (exceptionOrCantInterpret(oldval))
return oldval;
newval = this->e2->interpret(istate);
if (exceptionOrCantInterpret(newval))
return newval;
newval = pointerArithmetic(loc, op, type, oldval, newval);
}
else if (this->e1->type->ty == Tpointer)
{
error("pointer expression %s cannot be interpreted at compile time", toChars());
return EXP_CANT_INTERPRET;
}
else
{
newval = (*fp)(type, oldval, newval);
}
if (newval == EXP_CANT_INTERPRET)
{
error("Cannot interpret %s at compile time", toChars());
return EXP_CANT_INTERPRET;
}
if (exceptionOrCantInterpret(newval))
return newval;
// Determine the return value
returnValue = ctfeCast(loc, type, type, post ? oldval : newval);
if (exceptionOrCantInterpret(returnValue))
return returnValue;
}
else
returnValue = newval;
if (e1->op == TOKarraylength)
{
size_t oldlen = oldval->toInteger();
size_t newlen = newval->toInteger();
if (oldlen == newlen) // no change required -- we're done!
return returnValue;
// Now change the assignment from arr.length = n into arr = newval
e1 = ((ArrayLengthExp *)e1)->e1;
if (oldlen != 0)
{ // Get the old array literal.
oldval = e1->interpret(istate);
while (oldval->op == TOKvar)
{ oldval = resolveReferences(oldval, istate->localThis);
oldval = oldval->interpret(istate);
}
}
if (oldval->op == TOKslice)
oldval = resolveSlice(oldval);
Type *t = e1->type->toBasetype();
if (t->ty == Tarray)
{
Type *elemType= NULL;
elemType = ((TypeArray *)t)->next;
assert(elemType);
Expression *defaultElem = elemType->defaultInitLiteral(loc);
Expressions *elements = new Expressions();
elements->setDim(newlen);
size_t copylen = oldlen < newlen ? oldlen : newlen;
if (oldval->op == TOKstring)
{
StringExp *oldse = (StringExp *)oldval;
unsigned char *s = (unsigned char *)mem.calloc(newlen + 1, oldse->sz);
memcpy(s, oldse->string, copylen * oldse->sz);
unsigned defaultValue = (unsigned)(defaultElem->toInteger());
for (size_t elemi = copylen; elemi < newlen; ++elemi)
{
switch (oldse->sz)
{
case 1: s[elemi] = defaultValue; break;
case 2: ((unsigned short *)s)[elemi] = defaultValue; break;
case 4: ((unsigned *)s)[elemi] = defaultValue; break;
default: assert(0);
}
}
StringExp *se = new StringExp(loc, s, newlen);
se->type = t;
se->sz = oldse->sz;
se->committed = oldse->committed;
se->ownedByCtfe = true;
newval = se;
}
else
{
if (oldlen !=0)
assert(oldval->op == TOKarrayliteral);
ArrayLiteralExp *ae = (ArrayLiteralExp *)oldval;
for (size_t i = 0; i < copylen; i++)
(*elements)[i] = ae->elements->tdata()[i];
if (elemType->ty == Tstruct || elemType->ty == Tsarray)
{ /* If it is an aggregate literal representing a value type,
* we need to create a unique copy for each element
*/
for (size_t i = copylen; i < newlen; i++)
(*elements)[i] = copyLiteral(defaultElem);
}
else
{
for (size_t i = copylen; i < newlen; i++)
(*elements)[i] = defaultElem;
}
ArrayLiteralExp *aae = new ArrayLiteralExp(0, elements);
aae->type = t;
newval = aae;
aae->ownedByCtfe = true;
}
// We have changed it into a reference assignment
// Note that returnValue is still the new length.
wantRef = true;
if (e1->op == TOKstar)
{ // arr.length+=n becomes (t=&arr, *(t).length=*(t).length+n);
e1 = e1->interpret(istate, ctfeNeedLvalue);
if (exceptionOrCantInterpret(e1))
return e1;
}
}
else
{
error("%s is not yet supported at compile time", toChars());
return EXP_CANT_INTERPRET;
}
}
}
else if (!wantRef && e1->op != TOKslice)
{ /* Look for special case of struct being initialized with 0.
*/
if (type->toBasetype()->ty == Tstruct && newval->op == TOKint64)
{
newval = type->defaultInitLiteral(loc);
if (newval->op != TOKstructliteral)
{
error("nested structs with constructors are not yet supported in CTFE (Bug 6419)");
return EXP_CANT_INTERPRET;
}
}
newval = ctfeCast(loc, type, type, newval);
if (exceptionOrCantInterpret(newval))
return newval;
returnValue = newval;
}
if (exceptionOrCantInterpret(newval))
return newval;
// -------------------------------------------------
// Make sure destination can be modified
// -------------------------------------------------
// Make sure we're not trying to modify a global or static variable
// We do this by locating the ultimate parent variable which gets modified.
VarDeclaration * ultimateVar = findParentVar(e1, istate->localThis);
if (ultimateVar && ultimateVar->isDataseg() && !ultimateVar->isCTFE())
{ // Can't modify global or static data
error("%s cannot be modified at compile time", ultimateVar->toChars());
return EXP_CANT_INTERPRET;
}
e1 = resolveReferences(e1, istate->localThis);
// Unless we have a simple var assignment, we're
// only modifying part of the variable. So we need to make sure
// that the parent variable exists.
if (e1->op != TOKvar && ultimateVar && !ultimateVar->getValue())
ultimateVar->setValue(copyLiteral(ultimateVar->type->defaultInitLiteral(loc)));
// ---------------------------------------
// Deal with reference assignment
// (We already have 'newval' for arraylength operations)
// ---------------------------------------
if (wantRef && !fp && this->e1->op != TOKarraylength)
{
newval = this->e2->interpret(istate, ctfeNeedLvalue);
if (exceptionOrCantInterpret(newval))
return newval;
// If it is an assignment from a array function parameter passed by
// reference, resolve the reference. (This should NOT happen for
// non-reference types).
if (newval->op == TOKvar && (newval->type->ty == Tarray ||
newval->type->ty == Tclass))
{
newval = newval->interpret(istate);
}
if (newval->op == TOKassocarrayliteral || newval->op == TOKstring ||
newval->op==TOKarrayliteral)
{
if (needToCopyLiteral(newval))
newval = copyLiteral(newval);
}
returnValue = newval;
}
// ---------------------------------------
// Deal with AA index assignment
// ---------------------------------------
/* This needs special treatment if the AA doesn't exist yet.
* There are two special cases:
* (1) If the AA is itself an index of another AA, we may need to create
* multiple nested AA literals before we can insert the new value.
* (2) If the ultimate AA is null, no insertion happens at all. Instead, we
* create nested AA literals, and change it into a assignment.
*/
if (e1->op == TOKindex && ((IndexExp *)e1)->e1->type->toBasetype()->ty == Taarray)
{
IndexExp *ie = (IndexExp *)e1;
int depth = 0; // how many nested AA indices are there?
while (ie->e1->op == TOKindex && ((IndexExp *)ie->e1)->e1->type->toBasetype()->ty == Taarray)
{
ie = (IndexExp *)ie->e1;
++depth;
}
Expression *aggregate = resolveReferences(ie->e1, istate->localThis);
Expression *oldagg = aggregate;
// Get the AA to be modified. (We do an LvalueRef interpret, unless it
// is a simple ref parameter -- in which case, we just want the value)
aggregate = aggregate->interpret(istate, ctfeNeedLvalue);
if (exceptionOrCantInterpret(aggregate))
return aggregate;
if (aggregate->op == TOKassocarrayliteral)
{ // Normal case, ultimate parent AA already exists
// We need to walk from the deepest index up, checking that an AA literal
// already exists on each level.
Expression *index = ((IndexExp *)e1)->e2->interpret(istate);
if (exceptionOrCantInterpret(index))
return index;
if (index->op == TOKslice) // only happens with AA assignment
index = resolveSlice(index);
AssocArrayLiteralExp *existingAA = (AssocArrayLiteralExp *)aggregate;
while (depth > 0)
{ // Walk the syntax tree to find the indexExp at this depth
IndexExp *xe = (IndexExp *)e1;
for (int d= 0; d < depth; ++d)
xe = (IndexExp *)xe->e1;
Expression *indx = xe->e2->interpret(istate);
if (exceptionOrCantInterpret(indx))
return indx;
if (indx->op == TOKslice) // only happens with AA assignment
indx = resolveSlice(indx);
// Look up this index in it up in the existing AA, to get the next level of AA.
AssocArrayLiteralExp *newAA = (AssocArrayLiteralExp *)findKeyInAA(loc, existingAA, indx);
if (exceptionOrCantInterpret(newAA))
return newAA;
if (!newAA)
{ // Doesn't exist yet, create an empty AA...
Expressions *valuesx = new Expressions();
Expressions *keysx = new Expressions();
newAA = new AssocArrayLiteralExp(loc, keysx, valuesx);
newAA->type = xe->type;
newAA->ownedByCtfe = true;
//... and insert it into the existing AA.
existingAA->keys->push(indx);
existingAA->values->push(newAA);
}
existingAA = newAA;
--depth;
}
if (assignAssocArrayElement(loc, existingAA, index, newval) == EXP_CANT_INTERPRET)
return EXP_CANT_INTERPRET;
return returnValue;
}
else
{ /* The AA is currently null. 'aggregate' is actually a reference to
* whatever contains it. It could be anything: var, dotvarexp, ...
* We rewrite the assignment from: aggregate[i][j] = newval;
* into: aggregate = [i:[j: newval]];
*/
while (e1->op == TOKindex && ((IndexExp *)e1)->e1->type->toBasetype()->ty == Taarray)
{
Expression *index = ((IndexExp *)e1)->e2->interpret(istate);
if (exceptionOrCantInterpret(index))
return index;
if (index->op == TOKslice) // only happens with AA assignment
index = resolveSlice(index);
Expressions *valuesx = new Expressions();
Expressions *keysx = new Expressions();
valuesx->push(newval);
keysx->push(index);
AssocArrayLiteralExp *newaae = new AssocArrayLiteralExp(loc, keysx, valuesx);
newaae->ownedByCtfe = true;
newaae->type = e1->type;
newval = newaae;
e1 = ((IndexExp *)e1)->e1;
}
// We must return to the original aggregate, in case it was a reference
wantRef = true;
e1 = oldagg;
// fall through -- let the normal assignment logic take care of it
}
}
// ---------------------------------------
// Deal with dotvar expressions
// ---------------------------------------
// Because structs are not reference types, dotvar expressions can be
// collapsed into a single assignment.
if (!wantRef && e1->op == TOKdotvar)
{
// Strip of all of the leading dotvars, unless we started with a call
// or a ref parameter
// (in which case, we already have the lvalue).
if (this->e1->op != TOKcall && !(this->e1->op==TOKvar
&& ((VarExp*)this->e1)->var->storage_class & (STCref | STCout)))
e1 = e1->interpret(istate, isPointer(type)? ctfeNeedLvalueRef : ctfeNeedLvalue);
if (exceptionOrCantInterpret(e1))
return e1;
if (e1->op == TOKstructliteral && newval->op == TOKstructliteral)
{
assignInPlace(e1, newval);
return returnValue;
}
}
#if LOGASSIGN
if (wantRef)
printf("REF ASSIGN: %s=%s\n", e1->toChars(), newval->toChars());
else
printf("ASSIGN: %s=%s\n", e1->toChars(), newval->toChars());
showCtfeExpr(newval);
#endif
/* Assignment to variable of the form:
* v = newval
*/
if (e1->op == TOKvar)
{
VarExp *ve = (VarExp *)e1;
VarDeclaration *v = ve->var->isVarDeclaration();
if (wantRef)
{
v->setValueNull();
v->setValue(newval);
}
else if (e1->type->toBasetype()->ty == Tstruct)
{
// In-place modification
if (newval->op != TOKstructliteral)
{
error("CTFE internal error assigning struct");
return EXP_CANT_INTERPRET;
}
newval = copyLiteral(newval);
if (v->getValue())
assignInPlace(v->getValue(), newval);
else
v->setValue(newval);
}
else
{
TY tyE1 = e1->type->toBasetype()->ty;
if (tyE1 == Tarray || tyE1 == Taarray)
{ // arr op= arr
v->setValue(newval);
}
else
{
v->setValue(newval);
}
}
}
else if (e1->op == TOKdotvar)
{
/* Assignment to member variable of the form:
* e.v = newval
*/
Expression *exx = ((DotVarExp *)e1)->e1;
if (wantRef && exx->op != TOKstructliteral)
{
exx = exx->interpret(istate);
if (exceptionOrCantInterpret(exx))
return exx;
}
if (exx->op != TOKstructliteral && exx->op != TOKclassreference)
{
error("CTFE internal error: Dotvar assignment");
return EXP_CANT_INTERPRET;
}
VarDeclaration *member = ((DotVarExp *)e1)->var->isVarDeclaration();
if (!member)
{
error("CTFE internal error: Dotvar assignment");
return EXP_CANT_INTERPRET;
}
StructLiteralExp *se = exx->op == TOKstructliteral
? (StructLiteralExp *)exx
: ((ClassReferenceExp *)exx)->value;
int fieldi = exx->op == TOKstructliteral
? findFieldIndexByName(se->sd, member)
: ((ClassReferenceExp *)exx)->findFieldIndexByName(member);
if (fieldi == -1)
{
error("CTFE internal error: cannot find field %s in %s", member->toChars(), exx->toChars());
return EXP_CANT_INTERPRET;
}
assert(fieldi >= 0 && fieldi < se->elements->dim);
// If it's a union, set all other members of this union to void
if (exx->op == TOKstructliteral)
{
assert(se->sd);
int unionStart = se->sd->firstFieldInUnion(fieldi);
int unionSize = se->sd->numFieldsInUnion(fieldi);
for(int i = unionStart; i < unionStart + unionSize; ++i)
{ if (i == fieldi)
continue;
Expression **el = &se->elements->tdata()[i];
if ((*el)->op != TOKvoid)
*el = (*el)->type->voidInitLiteral(member);
}
}
if (newval->op == TOKstructliteral)
assignInPlace(se->elements->tdata()[fieldi], newval);
else
se->elements->tdata()[fieldi] = newval;
return returnValue;
}
else if (e1->op == TOKindex)
{
/* Assignment to array element of the form:
* aggregate[i] = newval
* aggregate is not AA (AAs were dealt with already).
*/
IndexExp *ie = (IndexExp *)e1;
assert(ie->e1->type->toBasetype()->ty != Taarray);
uinteger_t destarraylen = 0;
// Set the $ variable, and find the array literal to modify
if (ie->e1->type->toBasetype()->ty != Tpointer)
{
Expression *oldval = ie->e1->interpret(istate);
if (oldval->op == TOKnull)
{
error("cannot index null array %s", ie->e1->toChars());
return EXP_CANT_INTERPRET;
}
if (oldval->op != TOKarrayliteral && oldval->op != TOKstring
&& oldval->op != TOKslice)
{
error("cannot determine length of %s at compile time",
ie->e1->toChars());
return EXP_CANT_INTERPRET;
}
destarraylen = resolveArrayLength(oldval);
if (ie->lengthVar)
{
IntegerExp *dollarExp = new IntegerExp(loc, destarraylen, Type::tsize_t);
ctfeStack.push(ie->lengthVar);
ie->lengthVar->setValue(dollarExp);
}
}
Expression *index = ie->e2->interpret(istate);
if (ie->lengthVar)
ctfeStack.pop(ie->lengthVar); // $ is defined only inside []
if (exceptionOrCantInterpret(index))
return index;
assert (index->op != TOKslice); // only happens with AA assignment
ArrayLiteralExp *existingAE = NULL;
StringExp *existingSE = NULL;
Expression *aggregate = resolveReferences(ie->e1, istate->localThis);
// Set the index to modify, and check that it is in range
dinteger_t indexToModify = index->toInteger();
if (ie->e1->type->toBasetype()->ty == Tpointer)
{
dinteger_t ofs;
aggregate = aggregate->interpret(istate, ctfeNeedLvalue);
if (exceptionOrCantInterpret(aggregate))
return aggregate;
if (aggregate->op == TOKnull)
{
error("cannot index through null pointer %s", ie->e1->toChars());
return EXP_CANT_INTERPRET;
}
if (aggregate->op == TOKint64)
{
error("cannot index through invalid pointer %s of value %s",
ie->e1->toChars(), aggregate->toChars());
return EXP_CANT_INTERPRET;
}
aggregate = getAggregateFromPointer(aggregate, &ofs);
indexToModify += ofs;
if (aggregate->op != TOKslice && aggregate->op != TOKstring &&
aggregate->op != TOKarrayliteral && aggregate->op != TOKassocarrayliteral)
{
if (indexToModify != 0)
{
error("pointer index [%lld] lies outside memory block [0..1]", indexToModify);
return EXP_CANT_INTERPRET;
}
// It is equivalent to *aggregate = newval.
// Aggregate could be varexp, a dotvar, ...
// TODO: we could support this
error("indexed assignment of non-array pointers is not yet supported at compile time; use *%s = %s instead",
ie->e1->toChars(), e2->toChars());
return EXP_CANT_INTERPRET;
}
destarraylen = resolveArrayLength(aggregate);
}
if (indexToModify >= destarraylen)
{
error("array index %lld is out of bounds [0..%lld]", indexToModify,
destarraylen);
return EXP_CANT_INTERPRET;
}
/* The only possible indexable LValue aggregates are array literals, and
* slices of array literals.
*/
if (aggregate->op == TOKindex || aggregate->op == TOKdotvar ||
aggregate->op == TOKslice || aggregate->op == TOKcall ||
aggregate->op == TOKstar)
{
Expression *origagg = aggregate;
aggregate = aggregate->interpret(istate, ctfeNeedLvalue);
if (exceptionOrCantInterpret(aggregate))
return aggregate;
// The array could be an index of an AA. Resolve it if so.
if (aggregate->op == TOKindex &&
((IndexExp *)aggregate)->e1->op == TOKassocarrayliteral)
{
IndexExp *ix = (IndexExp *)aggregate;
aggregate = findKeyInAA(loc, (AssocArrayLiteralExp *)ix->e1, ix->e2);
if (!aggregate)
{
error("key %s not found in associative array %s",
ix->e2->toChars(), ix->e1->toChars());
return EXP_CANT_INTERPRET;
}
if (exceptionOrCantInterpret(aggregate))
return aggregate;
}
}
if (aggregate->op == TOKvar)
{
VarExp *ve = (VarExp *)aggregate;
VarDeclaration *v = ve->var->isVarDeclaration();
aggregate = v->getValue();
if (aggregate->op == TOKnull)
{
// This would be a runtime segfault
error("cannot index null array %s", v->toChars());
return EXP_CANT_INTERPRET;
}
}
if (aggregate->op == TOKslice)
{
SliceExp *sexp = (SliceExp *)aggregate;
aggregate = sexp->e1;
Expression *lwr = sexp->lwr->interpret(istate);
indexToModify += lwr->toInteger();
}
if (aggregate->op == TOKarrayliteral)
existingAE = (ArrayLiteralExp *)aggregate;
else if (aggregate->op == TOKstring)
existingSE = (StringExp *)aggregate;
else
{
error("CTFE internal compiler error %s", aggregate->toChars());
return EXP_CANT_INTERPRET;
}
if (!wantRef && newval->op == TOKslice)
{
newval = resolveSlice(newval);
if (newval == EXP_CANT_INTERPRET)
{
error("Compiler error: CTFE index assign %s", toChars());
assert(0);
}
}
if (wantRef && newval->op == TOKindex
&& ((IndexExp *)newval)->e1 == aggregate)
{ // It's a circular reference, resolve it now
newval = newval->interpret(istate);
}
if (existingAE)
{
if (newval->op == TOKstructliteral)
assignInPlace((Expression *)(existingAE->elements->tdata()[indexToModify]), newval);
else
existingAE->elements->tdata()[indexToModify] = newval;
return returnValue;
}
if (existingSE)
{
unsigned char *s = (unsigned char *)existingSE->string;
if (!existingSE->ownedByCtfe)
{
error("cannot modify read-only string literal %s", ie->e1->toChars());
return EXP_CANT_INTERPRET;
}
unsigned value = newval->toInteger();
switch (existingSE->sz)
{
case 1: s[indexToModify] = value; break;
case 2: ((unsigned short *)s)[indexToModify] = value; break;
case 4: ((unsigned *)s)[indexToModify] = value; break;
default:
assert(0);
break;
}
return returnValue;
}
else
{
error("Index assignment %s is not yet supported in CTFE ", toChars());
return EXP_CANT_INTERPRET;
}
return returnValue;
}
else if (e1->op == TOKslice)
{
// ------------------------------
// aggregate[] = newval
// aggregate[low..upp] = newval
// ------------------------------
SliceExp * sexp = (SliceExp *)e1;
// Set the $ variable
Expression *oldval = sexp->e1;
bool assignmentToSlicedPointer = false;
if (isPointer(oldval->type))
{ // Slicing a pointer
oldval = oldval->interpret(istate, ctfeNeedLvalue);
if (exceptionOrCantInterpret(oldval))
return oldval;
dinteger_t ofs;
oldval = getAggregateFromPointer(oldval, &ofs);
assignmentToSlicedPointer = true;
} else
oldval = oldval->interpret(istate);
if (oldval->op != TOKarrayliteral && oldval->op != TOKstring
&& oldval->op != TOKslice && oldval->op != TOKnull)
{
if (assignmentToSlicedPointer)
{
error("pointer %s cannot be sliced at compile time (it does not point to an array)",
sexp->e1->toChars());
}
else
error("CTFE ICE: cannot resolve array length");
return EXP_CANT_INTERPRET;
}
uinteger_t dollar = resolveArrayLength(oldval);
if (sexp->lengthVar)
{
Expression *arraylen = new IntegerExp(loc, dollar, Type::tsize_t);
ctfeStack.push(sexp->lengthVar);
sexp->lengthVar->setValue(arraylen);
}
Expression *upper = NULL;
Expression *lower = NULL;
if (sexp->upr)
upper = sexp->upr->interpret(istate);
if (exceptionOrCantInterpret(upper))
{
if (sexp->lengthVar)
ctfeStack.pop(sexp->lengthVar); // $ is defined only in [L..U]
return upper;
}
if (sexp->lwr)
lower = sexp->lwr->interpret(istate);
if (sexp->lengthVar)
ctfeStack.pop(sexp->lengthVar); // $ is defined only in [L..U]
if (exceptionOrCantInterpret(lower))
return lower;
size_t dim = dollar;
size_t upperbound = upper ? upper->toInteger() : dim;
int lowerbound = lower ? lower->toInteger() : 0;
if (!assignmentToSlicedPointer && (((int)lowerbound < 0) || (upperbound > dim)))
{
error("Array bounds [0..%d] exceeded in slice [%d..%d]",
dim, lowerbound, upperbound);
return EXP_CANT_INTERPRET;
}
if (upperbound == lowerbound)
return newval;
Expression *aggregate = resolveReferences(((SliceExp *)e1)->e1, istate->localThis);
dinteger_t firstIndex = lowerbound;
ArrayLiteralExp *existingAE = NULL;
StringExp *existingSE = NULL;
/* The only possible slicable LValue aggregates are array literals,
* and slices of array literals.
*/
if (aggregate->op == TOKindex || aggregate->op == TOKdotvar ||
aggregate->op == TOKslice ||
aggregate->op == TOKstar || aggregate->op == TOKcall)
{
aggregate = aggregate->interpret(istate, ctfeNeedLvalue);
if (exceptionOrCantInterpret(aggregate))
return aggregate;
// The array could be an index of an AA. Resolve it if so.
if (aggregate->op == TOKindex &&
((IndexExp *)aggregate)->e1->op == TOKassocarrayliteral)
{
IndexExp *ix = (IndexExp *)aggregate;
aggregate = findKeyInAA(loc, (AssocArrayLiteralExp *)ix->e1, ix->e2);
if (!aggregate)
{
error("key %s not found in associative array %s",
ix->e2->toChars(), ix->e1->toChars());
return EXP_CANT_INTERPRET;
}
if (exceptionOrCantInterpret(aggregate))
return aggregate;
}
}
if (aggregate->op == TOKvar)
{
VarExp *ve = (VarExp *)(aggregate);
VarDeclaration *v = ve->var->isVarDeclaration();
aggregate = v->getValue();
}
if (aggregate->op == TOKslice)
{ // Slice of a slice --> change the bounds
SliceExp *sexpold = (SliceExp *)aggregate;
dinteger_t hi = upperbound + sexpold->lwr->toInteger();
firstIndex = lowerbound + sexpold->lwr->toInteger();
if (hi > sexpold->upr->toInteger())
{
error("slice [%d..%d] exceeds array bounds [0..%lld]",
lowerbound, upperbound,
sexpold->upr->toInteger() - sexpold->lwr->toInteger());
return EXP_CANT_INTERPRET;
}
aggregate = sexpold->e1;
}
if ( isPointer(aggregate->type) )
{ // Slicing a pointer --> change the bounds
aggregate = sexp->e1->interpret(istate, ctfeNeedLvalue);
dinteger_t ofs;
aggregate = getAggregateFromPointer(aggregate, &ofs);
if (aggregate->op == TOKnull)
{
error("cannot slice null pointer %s", sexp->e1->toChars());
return EXP_CANT_INTERPRET;
}
dinteger_t hi = upperbound + ofs;
firstIndex = lowerbound + ofs;
if (firstIndex < 0 || hi > dim)
{
error("slice [lld..%lld] exceeds memory block bounds [0..%lld]",
firstIndex, hi, dim);
return EXP_CANT_INTERPRET;
}
}
if (aggregate->op == TOKarrayliteral)
existingAE = (ArrayLiteralExp *)aggregate;
else if (aggregate->op == TOKstring)
existingSE = (StringExp *)aggregate;
if (existingSE && !existingSE->ownedByCtfe)
{ error("cannot modify read-only string literal %s", sexp->e1->toChars());
return EXP_CANT_INTERPRET;
}
if (!wantRef && newval->op == TOKslice)
{
newval = resolveSlice(newval);
if (newval == EXP_CANT_INTERPRET)
{
error("Compiler error: CTFE slice %s", toChars());
assert(0);
}
}
if (wantRef && newval->op == TOKindex
&& ((IndexExp *)newval)->e1 == aggregate)
{ // It's a circular reference, resolve it now
newval = newval->interpret(istate);
}
// For slice assignment, we check that the lengths match.
size_t srclen = 0;
if (newval->op == TOKarrayliteral)
srclen = ((ArrayLiteralExp *)newval)->elements->dim;
else if (newval->op == TOKstring)
srclen = ((StringExp *)newval)->len;
if (!isBlockAssignment && srclen != (upperbound - lowerbound))
{
error("Array length mismatch assigning [0..%d] to [%d..%d]", srclen, lowerbound, upperbound);
return EXP_CANT_INTERPRET;
}
if (!isBlockAssignment && newval->op == TOKarrayliteral && existingAE)
{
Expressions *oldelems = existingAE->elements;
Expressions *newelems = ((ArrayLiteralExp *)newval)->elements;
for (size_t j = 0; j < newelems->dim; j++)
{
oldelems->tdata()[j + firstIndex] = newelems->tdata()[j];
}
return newval;
}
else if (newval->op == TOKstring && existingSE)
{
sliceAssignStringFromString((StringExp *)existingSE, (StringExp *)newval, firstIndex);
return newval;
}
else if (newval->op == TOKstring && existingAE
&& existingAE->type->isString())
{ /* Mixed slice: it was initialized as an array literal of chars.
* Now a slice of it is being set with a string.
*/
sliceAssignArrayLiteralFromString(existingAE, (StringExp *)newval, firstIndex);
return newval;
}
else if (newval->op == TOKarrayliteral && existingSE)
{ /* Mixed slice: it was initialized as a string literal.
* Now a slice of it is being set with an array literal.
*/
sliceAssignStringFromArrayLiteral(existingSE, (ArrayLiteralExp *)newval, firstIndex);
return newval;
}
else if (existingSE)
{ // String literal block slice assign
unsigned value = newval->toInteger();
unsigned char *s = (unsigned char *)existingSE->string;
for (size_t j = 0; j < upperbound-lowerbound; j++)
{
switch (existingSE->sz)
{
case 1: s[j+firstIndex] = value; break;
case 2: ((unsigned short *)s)[j+firstIndex] = value; break;
case 4: ((unsigned *)s)[j+firstIndex] = value; break;
default:
assert(0);
break;
}
}
if (goal == ctfeNeedNothing)
return NULL; // avoid creating an unused literal
SliceExp *retslice = new SliceExp(loc, existingSE,
new IntegerExp(loc, firstIndex, Type::tsize_t),
new IntegerExp(loc, firstIndex + upperbound-lowerbound, Type::tsize_t));
retslice->type = this->type;
return retslice->interpret(istate);
}
else if (existingAE)
{
/* Block assignment, initialization of static arrays
* x[] = e
* x may be a multidimensional static array. (Note that this
* only happens with array literals, never with strings).
*/
Expressions * w = existingAE->elements;
assert( existingAE->type->ty == Tsarray ||
existingAE->type->ty == Tarray);
#if DMDV2
Type *desttype = ((TypeArray *)existingAE->type)->next->castMod(0);
bool directblk = (e2->type->toBasetype()->castMod(0)) == desttype;
#else
Type *desttype = ((TypeArray *)existingAE->type)->next;
bool directblk = (e2->type->toBasetype()) == desttype;
#endif
bool cow = !(newval->op == TOKstructliteral || newval->op == TOKarrayliteral
|| newval->op == TOKstring);
for (size_t j = 0; j < upperbound-lowerbound; j++)
{
if (!directblk)
// Multidimensional array block assign
recursiveBlockAssign((ArrayLiteralExp *)w->tdata()[j+firstIndex], newval, wantRef);
else
{
if (wantRef || cow)
existingAE->elements->tdata()[j+firstIndex] = newval;
else
assignInPlace(existingAE->elements->tdata()[j+firstIndex], newval);
}
}
if (goal == ctfeNeedNothing)
return NULL; // avoid creating an unused literal
SliceExp *retslice = new SliceExp(loc, existingAE,
new IntegerExp(loc, firstIndex, Type::tsize_t),
new IntegerExp(loc, firstIndex + upperbound-lowerbound, Type::tsize_t));
retslice->type = this->type;
return retslice->interpret(istate);
}
else
error("Slice operation %s cannot be evaluated at compile time", toChars());
}
else
{
error("%s cannot be evaluated at compile time", toChars());
}
return returnValue;
}
Expression *AssignExp::interpret(InterState *istate, CtfeGoal goal)
{
return interpretAssignCommon(istate, goal, NULL);
}
#define BIN_ASSIGN_INTERPRET_CTFE(op, ctfeOp) \
Expression *op##AssignExp::interpret(InterState *istate, CtfeGoal goal) \
{ \
return interpretAssignCommon(istate, goal, &ctfeOp); \
}
#define BIN_ASSIGN_INTERPRET(op) BIN_ASSIGN_INTERPRET_CTFE(op, op)
BIN_ASSIGN_INTERPRET(Add)
BIN_ASSIGN_INTERPRET(Min)
BIN_ASSIGN_INTERPRET_CTFE(Cat, ctfeCat)
BIN_ASSIGN_INTERPRET(Mul)
BIN_ASSIGN_INTERPRET(Div)
BIN_ASSIGN_INTERPRET(Mod)
BIN_ASSIGN_INTERPRET(Shl)
BIN_ASSIGN_INTERPRET(Shr)
BIN_ASSIGN_INTERPRET(Ushr)
BIN_ASSIGN_INTERPRET(And)
BIN_ASSIGN_INTERPRET(Or)
BIN_ASSIGN_INTERPRET(Xor)
#if DMDV2
BIN_ASSIGN_INTERPRET(Pow)
#endif
Expression *PostExp::interpret(InterState *istate, CtfeGoal goal)
{
#if LOG
printf("PostExp::interpret() %s\n", toChars());
#endif
Expression *e;
if (op == TOKplusplus)
e = interpretAssignCommon(istate, goal, &Add, 1);
else
e = interpretAssignCommon(istate, goal, &Min, 1);
#if LOG
if (e == EXP_CANT_INTERPRET)
printf("PostExp::interpret() CANT\n");
#endif
return e;
}
/* Return 1 if e is a p1 > p2 or p1 >= p2 pointer comparison;
* -1 if e is a p1 < p2 or p1 <= p2 pointer comparison;
* 0 otherwise
*/
int isPointerCmpExp(Expression *e, Expression **p1, Expression **p2)
{
int ret = 1;
while (e->op == TOKnot)
{ ret *= -1;
e = ((NotExp *)e)->e1;
}
switch(e->op)
{
case TOKlt:
case TOKle:
ret *= -1;
/* fall through */
case TOKgt:
case TOKge:
*p1 = ((BinExp *)e)->e1;
*p2 = ((BinExp *)e)->e2;
if ( !(isPointer((*p1)->type) && isPointer((*p2)->type)) )
ret = 0;
break;
default:
ret = 0;
break;
}
return ret;
}
/** Negate a relational operator, eg >= becomes <
*/
TOK reverseRelation(TOK op)
{
switch(op)
{
case TOKge: return TOKlt;
case TOKgt: return TOKle;
case TOKle: return TOKgt;
case TOKlt: return TOKge;
default:
return assert(0), TOKreserved;
}
}
/** If this is a four pointer relation, evaluate it, else return NULL.
*
* This is an expression of the form (p1 > q1 && p2 < q2) or (p1 < q1 || p2 > q2)
* where p1, p2 are expressions yielding pointers to memory block p,
* and q1, q2 are expressions yielding pointers to memory block q.
* This expression is valid even if p and q are independent memory
* blocks and are therefore not normally comparable; the && form returns true
* if [p1..p2] lies inside [q1..q2], and false otherwise; the || form returns
* true if [p1..p2] lies outside [q1..q2], and false otherwise.
*
* Within the expression, any ordering of p1, p2, q1, q2 is permissible;
* the comparison operators can be any of >, <, <=, >=, provided that
* both directions (p > q and p < q) are checked. Additionally the
* relational sub-expressions can be negated, eg
* ( !(q1 < p1) && p2 <= q2 ) is valid.
*/
Expression *BinExp::interpretFourPointerRelation(InterState *istate, CtfeGoal goal)
{
assert(op == TOKandand || op == TOKoror);
/* It can only be an isInside expression, if both e1 and e2 are
* directional pointer comparisons.
* Note that this check can be made statically; it does not depends on
* any runtime values. This allows a JIT implementation to compile a
* special AndAndPossiblyInside, keeping the normal AndAnd case efficient.
*/
// Save the pointer expressions and the comparison directions,
// so we can use them later.
Expression *p1, *p2, *p3, *p4;
int dir1 = isPointerCmpExp(e1, &p1, &p2);
int dir2 = isPointerCmpExp(e2, &p3, &p4);
if ( dir1 == 0 || dir2 == 0 )
return NULL;
//printf("FourPointerRelation %s\n", toChars());
// Evaluate the first two pointers
p1 = p1->interpret(istate);
if (exceptionOrCantInterpret(p1))
return p1;
p2 = p2->interpret(istate);
if (exceptionOrCantInterpret(p1))
return p1;
dinteger_t ofs1, ofs2;
Expression *agg1 = getAggregateFromPointer(p1, &ofs1);
Expression *agg2 = getAggregateFromPointer(p2, &ofs2);
if ( !pointToSameMemoryBlock(agg1, agg2)
&& agg1->op != TOKnull && agg2->op != TOKnull)
{ // Here it is either CANT_INTERPRET,
// or an IsInside comparison returning FALSE.
p3 = p3->interpret(istate);
if (p3 == EXP_CANT_INTERPRET)
return p3;
// Note that it is NOT legal for it to throw an exception!
Expression *except = NULL;
if (exceptionOrCantInterpret(p3))
except = p3;
else
{
p4 = p4->interpret(istate);
if (p4 == EXP_CANT_INTERPRET)
return p4;
if (exceptionOrCantInterpret(p3))
except = p4;
}
if (except)
{ error("Comparison %s of pointers to unrelated memory blocks remains "
"indeterminate at compile time "
"because exception %s was thrown while evaluating %s",
this->e1->toChars(), except->toChars(), this->e2->toChars());
return EXP_CANT_INTERPRET;
}
dinteger_t ofs3,ofs4;
Expression *agg3 = getAggregateFromPointer(p3, &ofs3);
Expression *agg4 = getAggregateFromPointer(p4, &ofs4);
// The valid cases are:
// p1 > p2 && p3 > p4 (same direction, also for < && <)
// p1 > p2 && p3 < p4 (different direction, also < && >)
// Changing any > into >= doesnt affect the result
if ( (dir1 == dir2 && pointToSameMemoryBlock(agg1, agg4)
&& pointToSameMemoryBlock(agg2, agg3))
|| (dir1 != dir2 && pointToSameMemoryBlock(agg1, agg3)
&& pointToSameMemoryBlock(agg2, agg4)) )
{ // it's a legal two-sided comparison
return new IntegerExp(loc, (op == TOKandand) ? 0 : 1, type);
}
// It's an invalid four-pointer comparison. Either the second
// comparison is in the same direction as the first, or else
// more than two memory blocks are involved (either two independent
// invalid comparisons are present, or else agg3 == agg4).
error("Comparison %s of pointers to unrelated memory blocks is "
"indeterminate at compile time, even when combined with %s.",
e1->toChars(), e2->toChars());
return EXP_CANT_INTERPRET;
}
// The first pointer expression didn't need special treatment, so we
// we need to interpret the entire expression exactly as a normal && or ||.
// This is easy because we haven't evaluated e2 at all yet, and we already
// know it will return a bool.
// But we mustn't evaluate the pointer expressions in e1 again, in case
// they have side-effects.
bool nott = false;
Expression *e = e1;
while (e->op == TOKnot)
{ nott= !nott;
e = ((NotExp *)e)->e1;
}
TOK cmpop = e->op;
if (nott)
cmpop = reverseRelation(cmpop);
int cmp = comparePointers(loc, cmpop, e1->type, agg1, ofs1, agg2, ofs2);
// We already know this is a valid comparison.
assert(cmp >= 0);
if ( (op == TOKandand && cmp == 1) || (op == TOKoror && cmp == 0) )
return e2->interpret(istate);
return new IntegerExp(loc, (op == TOKandand) ? 0 : 1, type);
}
Expression *AndAndExp::interpret(InterState *istate, CtfeGoal goal)
{
#if LOG
printf("AndAndExp::interpret() %s\n", toChars());
#endif
// Check for an insidePointer expression, evaluate it if so
Expression *e = interpretFourPointerRelation(istate, goal);
if (e)
return e;
e = e1->interpret(istate);
if (exceptionOrCantInterpret(e))
return e;
int result;
if (e != EXP_CANT_INTERPRET)
{
if (e->isBool(FALSE))
result = 0;
else if (isTrueBool(e))
{
e = e2->interpret(istate);
if (exceptionOrCantInterpret(e))
return e;
if (e == EXP_VOID_INTERPRET)
{
assert(type->ty == Tvoid);
return NULL;
}
if (e->isBool(FALSE))
result = 0;
else if (isTrueBool(e))
result = 1;
else
{
error("%s does not evaluate to a boolean", e->toChars());
e = EXP_CANT_INTERPRET;
}
}
else
{
error("%s cannot be interpreted as a boolean", e->toChars());
e = EXP_CANT_INTERPRET;
}
}
if (e != EXP_CANT_INTERPRET && goal != ctfeNeedNothing)
e = new IntegerExp(loc, result, type);
return e;
}
Expression *OrOrExp::interpret(InterState *istate, CtfeGoal goal)
{
#if LOG
printf("OrOrExp::interpret() %s\n", toChars());
#endif
// Check for an insidePointer expression, evaluate it if so
Expression *e = interpretFourPointerRelation(istate, goal);
if (e)
return e;
e = e1->interpret(istate);
if (exceptionOrCantInterpret(e))
return e;
int result;
if (e != EXP_CANT_INTERPRET)
{
if (isTrueBool(e))
result = 1;
else if (e->isBool(FALSE))
{
e = e2->interpret(istate);
if (exceptionOrCantInterpret(e))
return e;
if (e == EXP_VOID_INTERPRET)
{
assert(type->ty == Tvoid);
return NULL;
}
if (e != EXP_CANT_INTERPRET)
{
if (e->isBool(FALSE))
result = 0;
else if (isTrueBool(e))
result = 1;
else
{
error("%s cannot be interpreted as a boolean", e->toChars());
e = EXP_CANT_INTERPRET;
}
}
}
else
{
error("%s cannot be interpreted as a boolean", e->toChars());
e = EXP_CANT_INTERPRET;
}
}
if (e != EXP_CANT_INTERPRET && goal != ctfeNeedNothing)
e = new IntegerExp(loc, result, type);
return e;
}
// Print a stack trace, starting from callingExp which called fd.
// To shorten the stack trace, try to detect recursion.
void showCtfeBackTrace(InterState *istate, CallExp * callingExp, FuncDeclaration *fd)
{
if (CtfeStatus::stackTraceCallsToSuppress > 0)
{
--CtfeStatus::stackTraceCallsToSuppress;
return;
}
errorSupplemental(callingExp->loc, "called from here: %s", callingExp->toChars());
// Quit if it's not worth trying to compress the stack trace
if (CtfeStatus::callDepth < 6 || global.params.verbose)
return;
// Recursion happens if the current function already exists in the call stack.
int numToSuppress = 0;
int recurseCount = 0;
int depthSoFar = 0;
InterState *lastRecurse = istate;
for (InterState * cur = istate; cur; cur = cur->caller)
{
if (cur->fd == fd)
{ ++recurseCount;
numToSuppress = depthSoFar;
lastRecurse = cur;
}
++depthSoFar;
}
// We need at least three calls to the same function, to make compression worthwhile
if (recurseCount < 2)
return;
// We found a useful recursion. Print all the calls involved in the recursion
errorSupplemental(fd->loc, "%d recursive calls to function %s", recurseCount, fd->toChars());
for (InterState *cur = istate; cur->fd != fd; cur = cur->caller)
{
errorSupplemental(cur->fd->loc, "recursively called from function %s", cur->fd->toChars());
}
// We probably didn't enter the recursion in this function.
// Go deeper to find the real beginning.
InterState * cur = istate;
while (lastRecurse->caller && cur->fd == lastRecurse->caller->fd)
{
cur = cur->caller;
lastRecurse = lastRecurse->caller;
++numToSuppress;
}
CtfeStatus::stackTraceCallsToSuppress = numToSuppress;
}
Expression *CallExp::interpret(InterState *istate, CtfeGoal goal)
{ Expression *e = EXP_CANT_INTERPRET;
#if LOG
printf("CallExp::interpret() %s\n", toChars());
#endif
Expression * pthis = NULL;
FuncDeclaration *fd = NULL;
Expression *ecall = e1;
if (ecall->op == TOKcall)
{
ecall = e1->interpret(istate);
if (exceptionOrCantInterpret(ecall))
return ecall;
}
if (ecall->op == TOKstar)
{ // Calling a function pointer
Expression * pe = ((PtrExp*)ecall)->e1;
if (pe->op == TOKvar) {
VarDeclaration *vd = ((VarExp *)((PtrExp*)ecall)->e1)->var->isVarDeclaration();
if (vd && vd->getValue() && vd->getValue()->op == TOKsymoff)
fd = ((SymOffExp *)vd->getValue())->var->isFuncDeclaration();
else
{
ecall = getVarExp(loc, istate, vd, goal);
if (exceptionOrCantInterpret(ecall))
return ecall;
#if IN_LLVM
if (ecall->op == TOKaddress) {
AddrExp *e = (AddrExp*)ecall;
if (e->e1->op == TOKvar)
fd = ((VarExp *)e->e1)->var->isFuncDeclaration();
}
#else
if (ecall->op == TOKsymoff)
fd = ((SymOffExp *)ecall)->var->isFuncDeclaration();
#endif
}
}
else if (pe->op == TOKsymoff)
fd = ((SymOffExp *)pe)->var->isFuncDeclaration();
else
ecall = ((PtrExp*)ecall)->e1->interpret(istate);
}
if (exceptionOrCantInterpret(ecall))
return ecall;
if (ecall->op == TOKindex)
{ ecall = e1->interpret(istate);
if (exceptionOrCantInterpret(ecall))
return ecall;
}
if (ecall->op == TOKdotvar && !((DotVarExp*)ecall)->var->isFuncDeclaration())
{ ecall = e1->interpret(istate);
if (exceptionOrCantInterpret(ecall))
return ecall;
}
if (ecall->op == TOKdotvar)
{ // Calling a member function
pthis = ((DotVarExp*)e1)->e1;
fd = ((DotVarExp*)e1)->var->isFuncDeclaration();
}
else if (ecall->op == TOKvar)
{
VarDeclaration *vd = ((VarExp *)ecall)->var->isVarDeclaration();
if (vd && vd->getValue())
ecall = vd->getValue();
else // Calling a function
fd = ((VarExp *)e1)->var->isFuncDeclaration();
}
if (ecall->op == TOKdelegate)
{ // Calling a delegate
fd = ((DelegateExp *)ecall)->func;
pthis = ((DelegateExp *)ecall)->e1;
}
else if (ecall->op == TOKfunction)
{ // Calling a delegate literal
fd = ((FuncExp*)ecall)->fd;
}
else if (ecall->op == TOKstar && ((PtrExp*)ecall)->e1->op==TOKfunction)
{ // Calling a function literal
fd = ((FuncExp*)((PtrExp*)ecall)->e1)->fd;
}
TypeFunction *tf = fd ? (TypeFunction *)(fd->type) : NULL;
if (!tf)
{ // DAC: This should never happen, it's an internal compiler error.
//printf("ecall=%s %d %d\n", ecall->toChars(), ecall->op, TOKcall);
if (ecall->op == TOKidentifier)
error("cannot evaluate %s at compile time. Circular reference?", toChars());
else
error("CTFE internal error: cannot evaluate %s at compile time", toChars());
return EXP_CANT_INTERPRET;
}
if (!fd)
{
error("cannot evaluate %s at compile time", toChars());
return EXP_CANT_INTERPRET;
}
if (pthis)
{ // Member function call
Expression *oldpthis;
if (pthis->op == TOKthis)
{
pthis = istate ? istate->localThis : NULL;
oldpthis = pthis;
}
else
{
if (pthis->op == TOKcomma)
pthis = pthis->interpret(istate);
if (exceptionOrCantInterpret(pthis))
return pthis;
// Evaluate 'this'
oldpthis = pthis;
if (pthis->op != TOKvar)
pthis = pthis->interpret(istate, ctfeNeedLvalue);
if (exceptionOrCantInterpret(pthis))
return pthis;
}
if (fd->isVirtual())
{ // Make a virtual function call.
Expression *thisval = pthis;
if (pthis->op == TOKvar)
{ assert(((VarExp*)thisval)->var->isVarDeclaration());
thisval = ((VarExp*)thisval)->var->isVarDeclaration()->getValue();
}
// Get the function from the vtable of the original class
ClassDeclaration *cd;
if (thisval && thisval->op == TOKnull)
{
error("function call through null class reference %s", pthis->toChars());
return EXP_CANT_INTERPRET;
}
if (oldpthis->op == TOKsuper)
{ assert(oldpthis->type->ty == Tclass);
cd = ((TypeClass *)oldpthis->type)->sym;
}
else
{
assert(thisval && thisval->op == TOKclassreference);
cd = ((ClassReferenceExp *)thisval)->originalClass();
}
// We can't just use the vtable index to look it up, because
// vtables for interfaces don't get populated until the glue layer.
fd = cd->findFunc(fd->ident, (TypeFunction *)fd->type);
assert(fd);
}
}
if (fd && fd->semanticRun >= PASSsemantic3done && fd->semantic3Errors)
{
error("CTFE failed because of previous errors in %s", fd->toChars());
return EXP_CANT_INTERPRET;
}
// Check for built-in functions
Expression *eresult = evaluateIfBuiltin(istate, loc, fd, arguments, pthis);
if (eresult)
return eresult;
// Inline .dup. Special case because it needs the return type.
if (!pthis && fd->ident == Id::adDup && arguments && arguments->dim == 2)
{
e = (*arguments)[1];
e = e->interpret(istate);
if (exceptionOrCantInterpret(e))
return e;
if (e != EXP_CANT_INTERPRET)
{
if (e->op == TOKslice)
e= resolveSlice(e);
e = paintTypeOntoLiteral(type, copyLiteral(e));
}
return e;
}
if (!fd->fbody)
{
error("%s cannot be interpreted at compile time,"
" because it has no available source code", fd->toChars());
return EXP_CANT_INTERPRET;
}
eresult = fd->interpret(istate, arguments, pthis);
if (eresult == EXP_CANT_INTERPRET)
{ // Print a stack trace.
if (!global.gag)
showCtfeBackTrace(istate, this, fd);
}
else if (eresult == EXP_VOID_INTERPRET)
;
else
eresult->loc = loc;
return eresult;
}
Expression *CommaExp::interpret(InterState *istate, CtfeGoal goal)
{
#if LOG
printf("CommaExp::interpret() %s\n", toChars());
#endif
CommaExp * firstComma = this;
while (firstComma->e1->op == TOKcomma)
firstComma = (CommaExp *)firstComma->e1;
// If it creates a variable, and there's no context for
// the variable to be created in, we need to create one now.
InterState istateComma;
if (!istate && firstComma->e1->op == TOKdeclaration)
{
ctfeStack.startFrame();
istate = &istateComma;
}
Expression *e = EXP_CANT_INTERPRET;
// If the comma returns a temporary variable, it needs to be an lvalue
// (this is particularly important for struct constructors)
if (e1->op == TOKdeclaration && e2->op == TOKvar
&& ((DeclarationExp *)e1)->declaration == ((VarExp*)e2)->var
&& ((VarExp*)e2)->var->storage_class & STCctfe) // same as Expression::isTemp
{
VarExp* ve = (VarExp *)e2;
VarDeclaration *v = ve->var->isVarDeclaration();
ctfeStack.push(v);
if (!v->init && !v->getValue())
{
v->setValue(copyLiteral(v->type->defaultInitLiteral(loc)));
}
if (!v->getValue()) {
Expression *newval = v->init->toExpression();
// Bug 4027. Copy constructors are a weird case where the
// initializer is a void function (the variable is modified
// through a reference parameter instead).
newval = newval->interpret(istate);
if (exceptionOrCantInterpret(newval))
{
if (istate == &istateComma)
ctfeStack.endFrame(0);
return newval;
}
if (newval != EXP_VOID_INTERPRET)
{
// v isn't necessarily null.
v->setValueWithoutChecking(copyLiteral(newval));
}
}
if (goal == ctfeNeedLvalue || goal == ctfeNeedLvalueRef)
e = e2;
else
e = e2->interpret(istate, goal);
}
else
{
e = e1->interpret(istate, ctfeNeedNothing);
if (!exceptionOrCantInterpret(e))
e = e2->interpret(istate, goal);
}
// If we created a temporary stack frame, end it now.
if (istate == &istateComma)
ctfeStack.endFrame(0);
return e;
}
Expression *CondExp::interpret(InterState *istate, CtfeGoal goal)
{
#if LOG
printf("CondExp::interpret() %s\n", toChars());
#endif
Expression *e;
if ( isPointer(econd->type) )
{
e = econd->interpret(istate, ctfeNeedLvalue);
if (exceptionOrCantInterpret(e))
return e;
if (e->op != TOKnull)
e = new IntegerExp(loc, 1, Type::tbool);
}
else
e = econd->interpret(istate);
if (exceptionOrCantInterpret(e))
return e;
if (isTrueBool(e))
e = e1->interpret(istate, goal);
else if (e->isBool(FALSE))
e = e2->interpret(istate, goal);
else
{
error("%s does not evaluate to boolean result at compile time",
econd->toChars());
e = EXP_CANT_INTERPRET;
}
return e;
}
Expression *ArrayLengthExp::interpret(InterState *istate, CtfeGoal goal)
{ Expression *e;
Expression *e1;
#if LOG
printf("ArrayLengthExp::interpret() %s\n", toChars());
#endif
e1 = this->e1->interpret(istate);
assert(e1);
if (exceptionOrCantInterpret(e1))
return e1;
if (e1->op == TOKstring || e1->op == TOKarrayliteral || e1->op == TOKslice
|| e1->op == TOKassocarrayliteral || e1->op == TOKnull)
{
e = new IntegerExp(loc, resolveArrayLength(e1), type);
}
else
{
error("%s cannot be evaluated at compile time", toChars());
return EXP_CANT_INTERPRET;
}
return e;
}
/* Given an AA literal 'ae', and a key 'e2':
* Return ae[e2] if present, or NULL if not found.
* Return EXP_CANT_INTERPRET on error.
*/
Expression *findKeyInAA(Loc loc, AssocArrayLiteralExp *ae, Expression *e2)
{
/* Search the keys backwards, in case there are duplicate keys
*/
for (size_t i = ae->keys->dim; i;)
{
i--;
Expression *ekey = ae->keys->tdata()[i];
Expression *ex = ctfeEqual(loc, TOKequal, Type::tbool, ekey, e2);
if (ex == EXP_CANT_INTERPRET)
return ex;
if (ex->isBool(TRUE))
{
return ae->values->tdata()[i];
}
}
return NULL;
}
/* Same as for constfold.Index, except that it only works for static arrays,
* dynamic arrays, and strings. We know that e1 is an
* interpreted CTFE expression, so it cannot have side-effects.
*/
Expression *ctfeIndex(Loc loc, Type *type, Expression *e1, uinteger_t indx)
{ //printf("ctfeIndex(e1 = %s)\n", e1->toChars());
assert(e1->type);
if (e1->op == TOKstring)
{ StringExp *es1 = (StringExp *)e1;
if (indx >= es1->len)
{
error(loc, "string index %ju is out of bounds [0 .. %zu]", indx, es1->len);
return EXP_CANT_INTERPRET;
}
else
return new IntegerExp(loc, es1->charAt(indx), type);
}
assert(e1->op == TOKarrayliteral);
ArrayLiteralExp *ale = (ArrayLiteralExp *)e1;
if (indx >= ale->elements->dim)
{
error(loc, "array index %ju is out of bounds %s[0 .. %u]", indx, e1->toChars(), ale->elements->dim);
return EXP_CANT_INTERPRET;
}
Expression *e = ale->elements->tdata()[indx];
return paintTypeOntoLiteral(type, e);
}
Expression *IndexExp::interpret(InterState *istate, CtfeGoal goal)
{
Expression *e1 = NULL;
Expression *e2;
#if LOG
printf("IndexExp::interpret() %s\n", toChars());
#endif
if (this->e1->type->toBasetype()->ty == Tpointer)
{
// Indexing a pointer. Note that there is no $ in this case.
e1 = this->e1->interpret(istate);
if (exceptionOrCantInterpret(e1))
return e1;
e2 = this->e2->interpret(istate);
if (exceptionOrCantInterpret(e2))
return e2;
dinteger_t indx = e2->toInteger();
dinteger_t ofs;
Expression *agg = getAggregateFromPointer(e1, &ofs);
if (agg->op == TOKnull)
{
error("cannot index null pointer %s", this->e1->toChars());
return EXP_CANT_INTERPRET;
}
if ( agg->op == TOKarrayliteral || agg->op == TOKstring)
{
dinteger_t len = ArrayLength(Type::tsize_t, agg)->toInteger();
//Type *pointee = ((TypePointer *)agg->type)->next;
if ((indx + ofs) < 0 || (indx+ofs) > len)
{
error("pointer index [%lld] exceeds allocated memory block [0..%lld]",
indx+ofs, len);
return EXP_CANT_INTERPRET;
}
return ctfeIndex(loc, type, agg, indx+ofs);
}
else
{ // Pointer to a non-array variable
if ((indx + ofs) != 0)
{
error("pointer index [%lld] lies outside memory block [0..1]",
indx+ofs);
return EXP_CANT_INTERPRET;
}
return agg->interpret(istate);
}
}
e1 = this->e1;
if (!(e1->op == TOKarrayliteral && ((ArrayLiteralExp *)e1)->ownedByCtfe))
e1 = e1->interpret(istate);
if (exceptionOrCantInterpret(e1))
return e1;
if (e1->op == TOKnull)
{
if (goal == ctfeNeedLvalue && e1->type->ty == Taarray)
return paintTypeOntoLiteral(type, e1);
error("cannot index null array %s", this->e1->toChars());
return EXP_CANT_INTERPRET;
}
/* Set the $ variable.
* Note that foreach uses indexing but doesn't need $
*/
if (lengthVar && (e1->op == TOKstring || e1->op == TOKarrayliteral
|| e1->op == TOKslice))
{
uinteger_t dollar = resolveArrayLength(e1);
Expression *dollarExp = new IntegerExp(loc, dollar, Type::tsize_t);
ctfeStack.push(lengthVar);
lengthVar->setValue(dollarExp);
}
e2 = this->e2->interpret(istate);
if (lengthVar)
ctfeStack.pop(lengthVar); // $ is defined only inside []
if (exceptionOrCantInterpret(e2))
return e2;
if (e1->op == TOKslice && e2->op == TOKint64)
{
// Simplify index of slice: agg[lwr..upr][indx] --> agg[indx']
uinteger_t indx = e2->toInteger();
uinteger_t ilo = ((SliceExp *)e1)->lwr->toInteger();
uinteger_t iup = ((SliceExp *)e1)->upr->toInteger();
if (indx > iup - ilo)
{
error("index %llu exceeds array length %llu", indx, iup - ilo);
return EXP_CANT_INTERPRET;
}
indx += ilo;
e1 = ((SliceExp *)e1)->e1;
e2 = new IntegerExp(e2->loc, indx, e2->type);
}
Expression *e = NULL;
if ((goal == ctfeNeedLvalue && type->ty != Taarray && type->ty != Tarray
&& type->ty != Tsarray && type->ty != Tstruct && type->ty != Tclass)
|| (goal == ctfeNeedLvalueRef && type->ty != Tsarray && type->ty != Tstruct)
)
{ // Pointer or reference of a scalar type
e = new IndexExp(loc, e1, e2);
e->type = type;
return e;
}
if (e1->op == TOKassocarrayliteral)
{
if (e2->op == TOKslice)
e2 = resolveSlice(e2);
e = findKeyInAA(loc, (AssocArrayLiteralExp *)e1, e2);
if (!e)
{
error("key %s not found in associative array %s",
e2->toChars(), this->e1->toChars());
return EXP_CANT_INTERPRET;
}
}
else
{
if (e2->op != TOKint64)
{
e1->error("CTFE internal error: non-integral index [%s]", this->e2->toChars());
return EXP_CANT_INTERPRET;
}
e = ctfeIndex(loc, type, e1, e2->toInteger());
}
if (exceptionOrCantInterpret(e))
return e;
if (goal == ctfeNeedRvalue && (e->op == TOKslice || e->op == TOKdotvar))
e = e->interpret(istate);
if (goal == ctfeNeedRvalue && e->op == TOKvoid)
{
error("%s is used before initialized", toChars());
errorSupplemental(e->loc, "originally uninitialized here");
return EXP_CANT_INTERPRET;
}
e = paintTypeOntoLiteral(type, e);
return e;
}
Expression *SliceExp::interpret(InterState *istate, CtfeGoal goal)
{
Expression *e1;
Expression *lwr;
Expression *upr;
#if LOG
printf("SliceExp::interpret() %s\n", toChars());
#endif
if (this->e1->type->toBasetype()->ty == Tpointer)
{
// Slicing a pointer. Note that there is no $ in this case.
e1 = this->e1->interpret(istate);
if (exceptionOrCantInterpret(e1))
return e1;
if (e1->op == TOKint64)
{
error("cannot slice invalid pointer %s of value %s",
this->e1->toChars(), e1->toChars());
return EXP_CANT_INTERPRET;
}
/* Evaluate lower and upper bounds of slice
*/
lwr = this->lwr->interpret(istate);
if (exceptionOrCantInterpret(lwr))
return lwr;
upr = this->upr->interpret(istate);
if (exceptionOrCantInterpret(upr))
return upr;
uinteger_t ilwr;
uinteger_t iupr;
ilwr = lwr->toInteger();
iupr = upr->toInteger();
Expression *e;
dinteger_t ofs;
Expression *agg = getAggregateFromPointer(e1, &ofs);
if (agg->op == TOKnull)
{
if (iupr == ilwr)
{
e = new NullExp(loc);
e->type = type;
return e;
}
error("cannot slice null pointer %s", this->e1->toChars());
return EXP_CANT_INTERPRET;
}
if (agg->op != TOKarrayliteral && agg->op != TOKstring)
{
error("pointer %s cannot be sliced at compile time (it does not point to an array)",
this->e1->toChars());
return EXP_CANT_INTERPRET;
}
assert(agg->op == TOKarrayliteral || agg->op == TOKstring);
dinteger_t len = ArrayLength(Type::tsize_t, agg)->toInteger();
//Type *pointee = ((TypePointer *)agg->type)->next;
if ((ilwr + ofs) < 0 || (iupr+ofs) > (len + 1) || iupr < ilwr)
{
error("pointer slice [%lld..%lld] exceeds allocated memory block [0..%lld]",
ilwr+ofs, iupr+ofs, len);
return EXP_CANT_INTERPRET;
}
e = new SliceExp(loc, agg, lwr, upr);
e->type = type;
return e;
}
if (goal == ctfeNeedRvalue && this->e1->op == TOKstring)
e1 = this->e1; // Will get duplicated anyway
else
e1 = this->e1->interpret(istate);
if (exceptionOrCantInterpret(e1))
return e1;
if (e1->op == TOKvar)
e1 = e1->interpret(istate);
if (!this->lwr)
{
if (goal == ctfeNeedLvalue || goal == ctfeNeedLvalueRef)
return e1;
return paintTypeOntoLiteral(type, e1);
}
/* Set the $ variable
*/
if (e1->op != TOKarrayliteral && e1->op != TOKstring &&
e1->op != TOKnull && e1->op != TOKslice)
{
error("Cannot determine length of %s at compile time", e1->toChars());
return EXP_CANT_INTERPRET;
}
uinteger_t dollar = resolveArrayLength(e1);
if (lengthVar)
{
IntegerExp *dollarExp = new IntegerExp(loc, dollar, Type::tsize_t);
ctfeStack.push(lengthVar);
lengthVar->setValue(dollarExp);
}
/* Evaluate lower and upper bounds of slice
*/
lwr = this->lwr->interpret(istate);
if (exceptionOrCantInterpret(lwr))
{
if (lengthVar)
ctfeStack.pop(lengthVar);; // $ is defined only inside [L..U]
return lwr;
}
upr = this->upr->interpret(istate);
if (lengthVar)
ctfeStack.pop(lengthVar); // $ is defined only inside [L..U]
if (exceptionOrCantInterpret(upr))
return upr;
Expression *e;
uinteger_t ilwr;
uinteger_t iupr;
ilwr = lwr->toInteger();
iupr = upr->toInteger();
if (e1->op == TOKnull)
{
if (ilwr== 0 && iupr == 0)
return e1;
e1->error("slice [%llu..%llu] is out of bounds", ilwr, iupr);
return EXP_CANT_INTERPRET;
}
if (e1->op == TOKslice)
{
SliceExp *se = (SliceExp *)e1;
// Simplify slice of slice:
// aggregate[lo1..up1][lwr..upr] ---> aggregate[lwr'..upr']
uinteger_t lo1 = se->lwr->toInteger();
uinteger_t up1 = se->upr->toInteger();
if (ilwr > iupr || iupr > up1 - lo1)
{
error("slice[%llu..%llu] exceeds array bounds[%llu..%llu]",
ilwr, iupr, lo1, up1);
return EXP_CANT_INTERPRET;
}
ilwr += lo1;
iupr += lo1;
e = new SliceExp(loc, se->e1,
new IntegerExp(loc, ilwr, lwr->type),
new IntegerExp(loc, iupr, upr->type));
e->type = type;
return e;
}
if (e1->op == TOKarrayliteral
|| e1->op == TOKstring)
{
if (iupr < ilwr || ilwr < 0 || iupr > dollar)
{
error("slice [%lld..%lld] exceeds array bounds [0..%lld]",
ilwr, iupr, dollar);
return EXP_CANT_INTERPRET;
}
}
e = new SliceExp(loc, e1, lwr, upr);
e->type = type;
return e;
}
Expression *InExp::interpret(InterState *istate, CtfeGoal goal)
{ Expression *e = EXP_CANT_INTERPRET;
#if LOG
printf("InExp::interpret() %s\n", toChars());
#endif
Expression *e1 = this->e1->interpret(istate);
if (exceptionOrCantInterpret(e1))
return e1;
Expression *e2 = this->e2->interpret(istate);
if (exceptionOrCantInterpret(e2))
return e2;
if (e2->op == TOKnull)
return new NullExp(loc, type);
if (e2->op != TOKassocarrayliteral)
{
error(" %s cannot be interpreted at compile time", toChars());
return EXP_CANT_INTERPRET;
}
if (e1->op == TOKslice)
e1 = resolveSlice(e1);
e = findKeyInAA(loc, (AssocArrayLiteralExp *)e2, e1);
if (exceptionOrCantInterpret(e))
return e;
if (!e)
return new NullExp(loc, type);
e = new IndexExp(loc, e2, e1);
e->type = type;
return e;
}
Expression *CatExp::interpret(InterState *istate, CtfeGoal goal)
{ Expression *e;
Expression *e1;
Expression *e2;
#if LOG
printf("CatExp::interpret() %s\n", toChars());
#endif
e1 = this->e1->interpret(istate);
if (exceptionOrCantInterpret(e1))
return e1;
if (e1->op == TOKslice)
{
e1 = resolveSlice(e1);
}
e2 = this->e2->interpret(istate);
if (exceptionOrCantInterpret(e2))
return e2;
if (e2->op == TOKslice)
e2 = resolveSlice(e2);
e = ctfeCat(type, e1, e2);
if (e == EXP_CANT_INTERPRET)
{ error("%s cannot be interpreted at compile time", toChars());
return e;
}
// We know we still own it, because we interpreted both e1 and e2
if (e->op == TOKarrayliteral)
((ArrayLiteralExp *)e)->ownedByCtfe = true;
if (e->op == TOKstring)
((StringExp *)e)->ownedByCtfe = true;
return e;
}
// Return true if t is a pointer (not a function pointer)
bool isPointer(Type *t)
{
Type * tb = t->toBasetype();
return tb->ty == Tpointer && tb->nextOf()->ty != Tfunction;
}
// Return true if t is an AA, or AssociativeArray!(key, value)
bool isAssocArray(Type *t)
{
t = t->toBasetype();
if (t->ty == Taarray)
return true;
#if DMDV2
if (t->ty != Tstruct)
return false;
StructDeclaration *sym = ((TypeStruct *)t)->sym;
if (sym->ident == Id::AssociativeArray && sym->parent &&
sym->parent->parent &&
sym->parent->parent->ident == Id::object)
{
return true;
}
#endif
return false;
}
// Given a template AA type, extract the corresponding built-in AA type
TypeAArray *toBuiltinAAType(Type *t)
{
t = t->toBasetype();
if (t->ty == Taarray)
return (TypeAArray *)t;
#if DMDV2
assert(t->ty == Tstruct);
StructDeclaration *sym = ((TypeStruct *)t)->sym;
assert(sym->ident == Id::AssociativeArray);
TemplateInstance *tinst = sym->parent->isTemplateInstance();
assert(tinst);
return new TypeAArray((Type *)(tinst->tiargs->tdata()[1]), (Type *)(tinst->tiargs->tdata()[0]));
#else
assert(0);
return NULL;
#endif
}
Expression *CastExp::interpret(InterState *istate, CtfeGoal goal)
{ Expression *e;
Expression *e1;
#if LOG
printf("CastExp::interpret() %s\n", toChars());
#endif
e1 = this->e1->interpret(istate, goal);
if (exceptionOrCantInterpret(e1))
return e1;
// If the expression has been cast to void, do nothing.
if (to->ty == Tvoid && goal == ctfeNeedNothing)
return e1;
if (to->ty == Tpointer && e1->op != TOKnull)
{
Type *pointee = ((TypePointer *)type)->next;
// Implement special cases of normally-unsafe casts
#if DMDV2
if (pointee->ty == Taarray && e1->op == TOKaddress
&& isAssocArray(((AddrExp*)e1)->e1->type))
{ // cast from template AA pointer to true AA pointer is OK.
return paintTypeOntoLiteral(to, e1);
}
#endif
if (e1->op == TOKint64)
{ // Happens with Windows HANDLEs, for example.
return paintTypeOntoLiteral(to, e1);
}
bool castBackFromVoid = false;
if (e1->type->ty == Tarray || e1->type->ty == Tsarray || e1->type->ty == Tpointer)
{
// Check for unsupported type painting operations
// For slices, we need the type being sliced,
// since it may have already been type painted
Type *elemtype = e1->type->nextOf();
if (e1->op == TOKslice)
elemtype = ((SliceExp *)e1)->e1->type->nextOf();
// Allow casts from X* to void *, and X** to void** for any X.
// But don't allow cast from X* to void**.
// So, we strip all matching * from source and target to find X.
// Allow casts to X* from void* only if the 'void' was originally an X;
// we check this later on.
Type *ultimatePointee = pointee;
Type *ultimateSrc = elemtype;
while (ultimatePointee->ty == Tpointer && ultimateSrc->ty == Tpointer)
{
ultimatePointee = ultimatePointee->nextOf();
ultimateSrc = ultimateSrc->nextOf();
}
if (ultimatePointee->ty != Tvoid && ultimateSrc->ty != Tvoid
&& !isSafePointerCast(elemtype, pointee))
{
error("reinterpreting cast from %s* to %s* is not supported in CTFE",
elemtype->toChars(), pointee->toChars());
return EXP_CANT_INTERPRET;
}
if (ultimateSrc->ty == Tvoid)
castBackFromVoid = true;
}
if (e1->op == TOKslice)
{
if ( ((SliceExp *)e1)->e1->op == TOKnull)
{
return paintTypeOntoLiteral(type, ((SliceExp *)e1)->e1);
}
e = new IndexExp(loc, ((SliceExp *)e1)->e1, ((SliceExp *)e1)->lwr);
e->type = type;
return e;
}
if (e1->op == TOKarrayliteral || e1->op == TOKstring)
{
e = new IndexExp(loc, e1, new IntegerExp(loc, 0, Type::tsize_t));
e->type = type;
return e;
}
if (e1->op == TOKindex && ((IndexExp *)e1)->e1->type != e1->type)
{ // type painting operation
IndexExp *ie = (IndexExp *)e1;
e = new IndexExp(e1->loc, ie->e1, ie->e2);
if (castBackFromVoid)
{
// get the original type. For strings, it's just the type...
Type *origType = ie->e1->type->nextOf();
// ..but for arrays of type void*, it's the type of the element
Expression *xx = NULL;
if (ie->e1->op == TOKarrayliteral && ie->e2->op == TOKint64)
{ ArrayLiteralExp *ale = (ArrayLiteralExp *)ie->e1;
uinteger_t indx = ie->e2->toInteger();
if (indx < ale->elements->dim)
xx = ale->elements->tdata()[indx];
}
if (xx && xx->op == TOKindex)
origType = ((IndexExp *)xx)->e1->type->nextOf();
else if (xx && xx->op == TOKaddress)
origType= ((AddrExp *)xx)->e1->type;
else if (xx && xx->op == TOKvar)
origType = ((VarExp *)xx)->var->type;
if (!isSafePointerCast(origType, pointee))
{
error("using void* to reinterpret cast from %s* to %s* is not supported in CTFE",
origType->toChars(), pointee->toChars());
return EXP_CANT_INTERPRET;
}
}
e->type = type;
return e;
}
if (e1->op == TOKaddress)
{
Type *origType = ((AddrExp *)e1)->type;
if (isSafePointerCast(origType, pointee))
{
e = new AddrExp(loc, ((AddrExp *)e1)->e1);
e->type = type;
return e;
}
}
if (e1->op == TOKvar)
{ // type painting operation
Type *origType = ((VarExp *)e1)->var->type;
if (castBackFromVoid && !isSafePointerCast(origType, pointee))
{
error("using void* to reinterpret cast from %s* to %s* is not supported in CTFE",
origType->toChars(), pointee->toChars());
return EXP_CANT_INTERPRET;
}
e = new VarExp(loc, ((VarExp *)e1)->var);
e->type = type;
return e;
}
// Check if we have a null pointer (eg, inside a struct)
e1 = e1->interpret(istate);
if (e1->op != TOKnull)
{
error("pointer cast from %s to %s is not supported at compile time",
e1->type->toChars(), to->toChars());
return EXP_CANT_INTERPRET;
}
}
if (to->ty == Tarray && e1->op == TOKslice)
{ // Note that the slice may be void[], so when checking for dangerous
// casts, we need to use the original type, which is se->e1.
SliceExp *se = (SliceExp *)e1;
if ( !isSafePointerCast( se->e1->type->nextOf(), to->nextOf() ) )
{
error("array cast from %s to %s is not supported at compile time",
se->e1->type->toChars(), to->toChars());
return EXP_CANT_INTERPRET;
}
e1 = new SliceExp(e1->loc, se->e1, se->lwr, se->upr);
e1->type = to;
return e1;
}
// Disallow array type painting, except for conversions between built-in
// types of identical size.
if ((to->ty == Tsarray || to->ty == Tarray) &&
(e1->type->ty == Tsarray || e1->type->ty == Tarray) &&
!isSafePointerCast(e1->type->nextOf(), to->nextOf()) )
{
error("array cast from %s to %s is not supported at compile time", e1->type->toChars(), to->toChars());
return EXP_CANT_INTERPRET;
}
if (to->ty == Tsarray && e1->op == TOKslice)
e1 = resolveSlice(e1);
if (to->toBasetype()->ty == Tbool && e1->type->ty==Tpointer)
{
return new IntegerExp(loc, e1->op != TOKnull, to);
}
return ctfeCast(loc, type, to, e1);
}
Expression *AssertExp::interpret(InterState *istate, CtfeGoal goal)
{ Expression *e;
Expression *e1;
#if LOG
printf("AssertExp::interpret() %s\n", toChars());
#endif
#if DMDV2
e1 = this->e1->interpret(istate);
#else
// Deal with pointers (including compiler-inserted assert(&this, "null this"))
if ( isPointer(this->e1->type) )
{
e1 = this->e1->interpret(istate, ctfeNeedLvalue);
if (exceptionOrCantInterpret(e1))
return e1;
if (e1->op != TOKnull)
return new IntegerExp(loc, 1, Type::tbool);
}
else
e1 = this->e1->interpret(istate);
#endif
if (exceptionOrCantInterpret(e1))
return e1;
if (isTrueBool(e1))
{
}
else if (e1->isBool(FALSE))
{
if (msg)
{
e = msg->interpret(istate);
if (exceptionOrCantInterpret(e))
return e;
error("%s", e->toChars());
}
else
error("%s failed", toChars());
goto Lcant;
}
else
{
error("%s is not a compile-time boolean expression", e1->toChars());
goto Lcant;
}
return e1;
Lcant:
return EXP_CANT_INTERPRET;
}
Expression *PtrExp::interpret(InterState *istate, CtfeGoal goal)
{ Expression *e = EXP_CANT_INTERPRET;
#if LOG
printf("PtrExp::interpret() %s\n", toChars());
#endif
// Constant fold *(&structliteral + offset)
if (e1->op == TOKadd)
{ AddExp *ae = (AddExp *)e1;
if (ae->e1->op == TOKaddress && ae->e2->op == TOKint64)
{ AddrExp *ade = (AddrExp *)ae->e1;
Expression *ex = ade->e1;
ex = ex->interpret(istate);
if (exceptionOrCantInterpret(ex))
return ex;
if (ex->op == TOKstructliteral)
{ StructLiteralExp *se = (StructLiteralExp *)ex;
dinteger_t offset = ae->e2->toInteger();
e = se->getField(type, offset);
if (!e)
e = EXP_CANT_INTERPRET;
return e;
}
}
e = Ptr(type, e1);
}
#if DMDV2
#else // this is required for D1, where structs return *this instead of 'this'.
else if (e1->op == TOKthis)
{
if(istate->localThis)
return istate->localThis->interpret(istate);
}
#endif
else
{ // It's possible we have an array bounds error. We need to make sure it
// errors with this line number, not the one where the pointer was set.
e = e1->interpret(istate, ctfeNeedLvalue);
if (exceptionOrCantInterpret(e))
return e;
if (!(e->op == TOKvar || e->op == TOKdotvar || e->op == TOKindex
|| e->op == TOKslice || e->op == TOKaddress))
{
error("dereference of invalid pointer '%s'", e->toChars());
return EXP_CANT_INTERPRET;
}
if (goal != ctfeNeedLvalue)
{
if (e->op == TOKindex && e->type->ty == Tpointer)
{
IndexExp *ie = (IndexExp *)e;
// Is this a real index to an array of pointers, or just a CTFE pointer?
// If the index has the same levels of indirection, it's an index
int srcLevels = 0;
int destLevels = 0;
for(Type *xx = ie->e1->type; xx->ty == Tpointer; xx = xx->nextOf())
++srcLevels;
for(Type *xx = e->type->nextOf(); xx->ty == Tpointer; xx = xx->nextOf())
++destLevels;
bool isGenuineIndex = (srcLevels == destLevels);
if ((ie->e1->op == TOKarrayliteral || ie->e1->op == TOKstring)
&& ie->e2->op == TOKint64)
{
Expression *dollar = ArrayLength(Type::tsize_t, ie->e1);
dinteger_t len = dollar->toInteger();
dinteger_t indx = ie->e2->toInteger();
assert(indx >=0 && indx <= len); // invalid pointer
if (indx == len)
{
error("dereference of pointer %s one past end of memory block limits [0..%lld]",
toChars(), len);
return EXP_CANT_INTERPRET;
}
e = ctfeIndex(loc, type, ie->e1, indx);
if (isGenuineIndex)
{
if (e->op == TOKindex)
e = e->interpret(istate, goal);
else if (e->op == TOKaddress)
e = paintTypeOntoLiteral(type, ((AddrExp *)e)->e1);
}
return e;
}
if (ie->e1->op == TOKassocarrayliteral)
{
e = findKeyInAA(loc, (AssocArrayLiteralExp *)ie->e1, ie->e2);
assert(e != EXP_CANT_INTERPRET);
e = paintTypeOntoLiteral(type, e);
if (isGenuineIndex)
{
if (e->op == TOKindex)
e = e->interpret(istate, goal);
else if (e->op == TOKaddress)
e = paintTypeOntoLiteral(type, ((AddrExp *)e)->e1);
}
return e;
}
}
if (e->op == TOKstructliteral)
return e;
e = e1->interpret(istate, goal);
if (e->op == TOKaddress)
{
e = ((AddrExp*)e)->e1;
if (e->op == TOKdotvar || e->op == TOKindex)
e = e->interpret(istate, goal);
}
else if (e->op == TOKvar)
{
e = e->interpret(istate, goal);
}
if (exceptionOrCantInterpret(e))
return e;
}
else if (e->op == TOKaddress)
e = ((AddrExp*)e)->e1; // *(&x) ==> x
else if (e->op == TOKnull)
{
error("dereference of null pointer '%s'", e1->toChars());
return EXP_CANT_INTERPRET;
}
e->type = type;
}
#if LOG
if (e == EXP_CANT_INTERPRET)
printf("PtrExp::interpret() %s = EXP_CANT_INTERPRET\n", toChars());
#endif
return e;
}
Expression *DotVarExp::interpret(InterState *istate, CtfeGoal goal)
{ Expression *e = EXP_CANT_INTERPRET;
#if LOG
printf("DotVarExp::interpret() %s\n", toChars());
#endif
Expression *ex = e1->interpret(istate);
if (exceptionOrCantInterpret(ex))
return ex;
if (ex != EXP_CANT_INTERPRET)
{
#if DMDV2
// Special case for template AAs: AA.var returns the AA itself.
// ie AA.p ----> AA. This is a hack, to get around the
// corresponding hack in the AA druntime implementation.
if (isAssocArray(ex->type))
return ex;
#endif
if (ex->op == TOKaddress)
ex = ((AddrExp *)ex)->e1;
VarDeclaration *v = var->isVarDeclaration();
if (!v)
error("CTFE internal error: %s", toChars());
if (ex->op == TOKnull && ex->type->toBasetype()->ty == Tclass)
{ error("class '%s' is null and cannot be dereferenced", e1->toChars());
return EXP_CANT_INTERPRET;
}
if (ex->op == TOKstructliteral || ex->op == TOKclassreference)
{
StructLiteralExp *se = ex->op == TOKclassreference ? ((ClassReferenceExp *)ex)->value : (StructLiteralExp *)ex;
// We can't use getField, because it makes a copy
int i = -1;
if (ex->op == TOKclassreference)
i = ((ClassReferenceExp *)ex)->findFieldIndexByName(v);
else
i = findFieldIndexByName(se->sd, v);
if (i == -1)
{
error("couldn't find field %s of type %s in %s", v->toChars(), type->toChars(), se->toChars());
return EXP_CANT_INTERPRET;
}
e = se->elements->tdata()[i];
if (goal == ctfeNeedLvalue || goal == ctfeNeedLvalueRef)
{
// If it is an lvalue literal, return it...
if (e->op == TOKstructliteral)
return e;
if ((type->ty == Tsarray || goal == ctfeNeedLvalue) && (
e->op == TOKarrayliteral ||
e->op == TOKassocarrayliteral || e->op == TOKstring ||
e->op == TOKclassreference || e->op == TOKslice))
return e;
/* Element is an allocated pointer, which was created in
* CastExp.
*/
if (goal == ctfeNeedLvalue && e->op == TOKindex &&
e->type == type &&
isPointer(type) )
return e;
// ...Otherwise, just return the (simplified) dotvar expression
e = new DotVarExp(loc, ex, v);
e->type = type;
return e;
}
if (!e)
{
error("couldn't find field %s in %s", v->toChars(), type->toChars());
e = EXP_CANT_INTERPRET;
}
// If it is an rvalue literal, return it...
if (e->op == TOKstructliteral || e->op == TOKarrayliteral ||
e->op == TOKassocarrayliteral || e->op == TOKstring)
return e;
if (e->op == TOKvoid)
{
VoidInitExp *ve = (VoidInitExp *)e;
error("cannot read uninitialized variable %s in ctfe", toChars());
ve->var->error("was uninitialized and used before set");
return EXP_CANT_INTERPRET;
}
if ( isPointer(type) )
{
return paintTypeOntoLiteral(type, e);
}
if (e->op == TOKvar)
{ // Don't typepaint twice, since that might cause an erroneous copy
e = getVarExp(loc, istate, ((VarExp *)e)->var, goal);
if (e != EXP_CANT_INTERPRET && e->op != TOKthrownexception)
e = paintTypeOntoLiteral(type, e);
return e;
}
return e->interpret(istate, goal);
}
else
error("%s.%s is not yet implemented at compile time", e1->toChars(), var->toChars());
}
#if LOG
if (e == EXP_CANT_INTERPRET)
printf("DotVarExp::interpret() %s = EXP_CANT_INTERPRET\n", toChars());
#endif
return e;
}
Expression *RemoveExp::interpret(InterState *istate, CtfeGoal goal)
{
#if LOG
printf("RemoveExp::interpret() %s\n", toChars());
#endif
Expression *agg = e1->interpret(istate);
if (exceptionOrCantInterpret(agg))
return agg;
Expression *index = e2->interpret(istate);
if (exceptionOrCantInterpret(index))
return index;
if (agg->op == TOKnull)
return EXP_VOID_INTERPRET;
assert(agg->op == TOKassocarrayliteral);
AssocArrayLiteralExp *aae = (AssocArrayLiteralExp *)agg;
Expressions *keysx = aae->keys;
Expressions *valuesx = aae->values;
size_t removed = 0;
for (size_t j = 0; j < valuesx->dim; ++j)
{ Expression *ekey = keysx->tdata()[j];
Expression *ex = ctfeEqual(loc, TOKequal, Type::tbool, ekey, index);
if (exceptionOrCantInterpret(ex))
return ex;
if (ex->isBool(TRUE))
++removed;
else if (removed != 0)
{ keysx->tdata()[j - removed] = ekey;
valuesx->tdata()[j - removed] = valuesx->tdata()[j];
}
}
valuesx->dim = valuesx->dim - removed;
keysx->dim = keysx->dim - removed;
return new IntegerExp(loc, removed?1:0, Type::tbool);
}
/******************************* Special Functions ***************************/
Expression *interpret_length(InterState *istate, Expression *earg)
{
//printf("interpret_length()\n");
earg = earg->interpret(istate);
if (earg == EXP_CANT_INTERPRET)
return NULL;
if (exceptionOrCantInterpret(earg))
return earg;
dinteger_t len = 0;
if (earg->op == TOKassocarrayliteral)
len = ((AssocArrayLiteralExp *)earg)->keys->dim;
else assert(earg->op == TOKnull);
Expression *e = new IntegerExp(earg->loc, len, Type::tsize_t);
return e;
}
Expression *interpret_keys(InterState *istate, Expression *earg, Type *elemType)
{
#if LOG
printf("interpret_keys()\n");
#endif
earg = earg->interpret(istate);
if (earg == EXP_CANT_INTERPRET)
return NULL;
if (exceptionOrCantInterpret(earg))
return earg;
if (earg->op == TOKnull)
return new NullExp(earg->loc);
if (earg->op != TOKassocarrayliteral && earg->type->toBasetype()->ty != Taarray)
return NULL;
assert(earg->op == TOKassocarrayliteral);
AssocArrayLiteralExp *aae = (AssocArrayLiteralExp *)earg;
ArrayLiteralExp *ae = new ArrayLiteralExp(aae->loc, aae->keys);
ae->ownedByCtfe = aae->ownedByCtfe;
ae->type = new TypeSArray(elemType, new IntegerExp(aae->keys->dim));
return copyLiteral(ae);
}
Expression *interpret_values(InterState *istate, Expression *earg, Type *elemType)
{
#if LOG
printf("interpret_values()\n");
#endif
earg = earg->interpret(istate);
if (earg == EXP_CANT_INTERPRET)
return NULL;
if (exceptionOrCantInterpret(earg))
return earg;
if (earg->op == TOKnull)
return new NullExp(earg->loc);
if (earg->op != TOKassocarrayliteral && earg->type->toBasetype()->ty != Taarray)
return NULL;
assert(earg->op == TOKassocarrayliteral);
AssocArrayLiteralExp *aae = (AssocArrayLiteralExp *)earg;
ArrayLiteralExp *ae = new ArrayLiteralExp(aae->loc, aae->values);
ae->ownedByCtfe = aae->ownedByCtfe;
ae->type = new TypeSArray(elemType, new IntegerExp(aae->values->dim));
//printf("result is %s\n", e->toChars());
return copyLiteral(ae);
}
// signature is int delegate(ref Value) OR int delegate(ref Key, ref Value)
Expression *interpret_aaApply(InterState *istate, Expression *aa, Expression *deleg)
{ aa = aa->interpret(istate);
if (exceptionOrCantInterpret(aa))
return aa;
if (aa->op != TOKassocarrayliteral)
return new IntegerExp(deleg->loc, 0, Type::tsize_t);
FuncDeclaration *fd = NULL;
Expression *pthis = NULL;
if (deleg->op == TOKdelegate)
{
fd = ((DelegateExp *)deleg)->func;
pthis = ((DelegateExp *)deleg)->e1;
}
else if (deleg->op == TOKfunction)
fd = ((FuncExp*)deleg)->fd;
assert(fd && fd->fbody);
assert(fd->parameters);
int numParams = fd->parameters->dim;
assert(numParams == 1 || numParams==2);
Type *valueType = fd->parameters->tdata()[numParams-1]->type;
Type *keyType = numParams == 2 ? fd->parameters->tdata()[0]->type
: Type::tsize_t;
Expressions args;
args.setDim(numParams);
AssocArrayLiteralExp *ae = (AssocArrayLiteralExp *)aa;
if (!ae->keys || ae->keys->dim == 0)
return new IntegerExp(deleg->loc, 0, Type::tsize_t);
Expression *eresult;
for (size_t i = 0; i < ae->keys->dim; ++i)
{
Expression *ekey = ae->keys->tdata()[i];
Expression *evalue = ae->values->tdata()[i];
args[numParams - 1] = evalue;
if (numParams == 2) args[0] = ekey;
eresult = fd->interpret(istate, &args, pthis);
if (exceptionOrCantInterpret(eresult))
return eresult;
assert(eresult->op == TOKint64);
if (((IntegerExp *)eresult)->value != 0)
return eresult;
}
return eresult;
}
// Helper function: given a function of type A[] f(...),
// return A.
Type *returnedArrayElementType(FuncDeclaration *fd)
{
assert(fd->type->ty == Tfunction);
assert(fd->type->nextOf()->ty == Tarray);
return ((TypeFunction *)fd->type)->nextOf()->nextOf();
}
/* Decoding UTF strings for foreach loops. Duplicates the functionality of
* the twelve _aApplyXXn functions in aApply.d in the runtime.
*/
Expression *foreachApplyUtf(InterState *istate, Expression *str, Expression *deleg, bool rvs)
{
#if LOG
printf("foreachApplyUtf(%s, %s)\n", str->toChars(), deleg->toChars());
#endif
FuncDeclaration *fd = NULL;
Expression *pthis = NULL;
if (deleg->op == TOKdelegate)
{
fd = ((DelegateExp *)deleg)->func;
pthis = ((DelegateExp *)deleg)->e1;
}
else if (deleg->op == TOKfunction)
fd = ((FuncExp*)deleg)->fd;
assert(fd && fd->fbody);
assert(fd->parameters);
int numParams = fd->parameters->dim;
assert(numParams == 1 || numParams==2);
Type *charType = fd->parameters->tdata()[numParams-1]->type;
Type *indexType = numParams == 2 ? fd->parameters->tdata()[0]->type
: Type::tsize_t;
uinteger_t len = resolveArrayLength(str);
if (len == 0)
return new IntegerExp(deleg->loc, 0, indexType);
if (str->op == TOKslice)
str = resolveSlice(str);
StringExp *se = NULL;
ArrayLiteralExp *ale = NULL;
if (str->op == TOKstring)
se = (StringExp *) str;
else if (str->op == TOKarrayliteral)
ale = (ArrayLiteralExp *)str;
else
{ str->error("CTFE internal error: cannot foreach %s", str->toChars());
return EXP_CANT_INTERPRET;
}
Expressions args;
args.setDim(numParams);
Expression *eresult;
// Buffers for encoding; also used for decoding array literals
unsigned char utf8buf[4];
unsigned short utf16buf[2];
size_t start = rvs ? len : 0;
size_t end = rvs ? 0: len;
for (size_t indx = start; indx != end;)
{
// Step 1: Decode the next dchar from the string.
const char *errmsg = NULL; // Used for reporting decoding errors
dchar_t rawvalue; // Holds the decoded dchar
size_t currentIndex = indx; // The index of the decoded character
if (ale)
{ // If it is an array literal, copy the code points into the buffer
int buflen = 1; // #code points in the buffer
size_t n = 1; // #code points in this char
size_t sz = ale->type->nextOf()->size();
switch(sz)
{
case 1:
if (rvs)
{ // find the start of the string
--indx;
buflen = 1;
while (indx > 0 && buflen < 4)
{ Expression * r = ale->elements->tdata()[indx];
assert(r->op == TOKint64);
unsigned char x = (unsigned char)(((IntegerExp *)r)->value);
if ( (x & 0xC0) != 0x80)
break;
++buflen;
}
}
else
buflen = (indx + 4 > len) ? len - indx : 4;
for (int i=0; i < buflen; ++i)
{
Expression * r = ale->elements->tdata()[indx + i];
assert(r->op == TOKint64);
utf8buf[i] = (unsigned char)(((IntegerExp *)r)->value);
}
n = 0;
errmsg = utf_decodeChar(&utf8buf[0], buflen, &n, &rawvalue);
break;
case 2:
if (rvs)
{ // find the start of the string
--indx;
buflen = 1;
Expression * r = ale->elements->tdata()[indx];
assert(r->op == TOKint64);
unsigned short x = (unsigned short)(((IntegerExp *)r)->value);
if (indx > 0 && x >= 0xDC00 && x <= 0xDFFF)
{
--indx;
++buflen;
}
}
else
buflen = (indx + 2 > len) ? len - indx : 2;
for (int i=0; i < buflen; ++i)
{
Expression * r = ale->elements->tdata()[indx + i];
assert(r->op == TOKint64);
utf16buf[i] = (unsigned short)(((IntegerExp *)r)->value);
}
n = 0;
errmsg = utf_decodeWchar(&utf16buf[0], buflen, &n, &rawvalue);
break;
case 4:
{
if (rvs)
--indx;
Expression * r = ale->elements->tdata()[indx];
assert(r->op == TOKint64);
rawvalue = ((IntegerExp *)r)->value;
n = 1;
}
break;
default:
assert(0);
}
if (!rvs)
indx += n;
}
else
{ // String literals
size_t saveindx; // used for reverse iteration
switch (se->sz)
{
case 1:
if (rvs)
{ // find the start of the string
unsigned char *s = (unsigned char *)se->string;
--indx;
while (indx > 0 && ((s[indx]&0xC0)==0x80))
--indx;
saveindx = indx;
}
errmsg = utf_decodeChar((unsigned char *)se->string, se->len, &indx, &rawvalue);
if (rvs)
indx = saveindx;
break;
case 2:
if (rvs)
{ // find the start
unsigned short *s = (unsigned short *)se->string;
--indx;
if (s[indx] >= 0xDC00 && s[indx]<= 0xDFFF)
--indx;
saveindx = indx;
}
errmsg = utf_decodeWchar((unsigned short *)se->string, se->len, &indx, &rawvalue);
if (rvs)
indx = saveindx;
break;
case 4:
if (rvs)
--indx;
rawvalue = ((unsigned *)(se->string))[indx];
if (!rvs)
++indx;
break;
default:
assert(0);
}
}
if (errmsg)
{ deleg->error("%s", errmsg);
return EXP_CANT_INTERPRET;
}
// Step 2: encode the dchar in the target encoding
int charlen = 1; // How many codepoints are involved?
switch(charType->size())
{
case 1:
charlen = utf_codeLengthChar(rawvalue);
utf_encodeChar(&utf8buf[0], rawvalue);
break;
case 2:
charlen = utf_codeLengthWchar(rawvalue);
utf_encodeWchar(&utf16buf[0], rawvalue);
break;
case 4:
break;
default:
assert(0);
}
if (rvs)
currentIndex = indx;
// Step 3: call the delegate once for each code point
// The index only needs to be set once
if (numParams == 2)
args[0] = new IntegerExp(deleg->loc, currentIndex, indexType);
Expression *val = NULL;
for (int k= 0; k < charlen; ++k)
{
dchar_t codepoint;
switch(charType->size())
{
case 1:
codepoint = utf8buf[k];
break;
case 2:
codepoint = utf16buf[k];
break;
case 4:
codepoint = rawvalue;
break;
default:
assert(0);
}
val = new IntegerExp(str->loc, codepoint, charType);
args[numParams - 1] = val;
eresult = fd->interpret(istate, &args, pthis);
if (exceptionOrCantInterpret(eresult))
return eresult;
assert(eresult->op == TOKint64);
if (((IntegerExp *)eresult)->value != 0)
return eresult;
}
}
return eresult;
}
/* If this is a built-in function, return the interpreted result,
* Otherwise, return NULL.
*/
Expression *evaluateIfBuiltin(InterState *istate, Loc loc,
FuncDeclaration *fd, Expressions *arguments, Expression *pthis)
{
Expression *e = NULL;
int nargs = arguments ? arguments->dim : 0;
#if DMDV2
if (pthis && isAssocArray(pthis->type))
{
if (fd->ident == Id::length && nargs==0)
return interpret_length(istate, pthis);
else if (fd->ident == Id::keys && nargs==0)
return interpret_keys(istate, pthis, returnedArrayElementType(fd));
else if (fd->ident == Id::values && nargs==0)
return interpret_values(istate, pthis, returnedArrayElementType(fd));
else if (fd->ident == Id::rehash && nargs==0)
return pthis->interpret(istate, ctfeNeedLvalue); // rehash is a no-op
}
if (!pthis)
{
enum BUILTIN b = fd->isBuiltin();
if (b)
{ Expressions args;
args.setDim(nargs);
for (size_t i = 0; i < args.dim; i++)
{
Expression *earg = (*arguments)[i];
earg = earg->interpret(istate);
if (exceptionOrCantInterpret(earg))
return earg;
args[i] = earg;
}
e = eval_builtin(loc, b, &args);
if (!e)
e = EXP_CANT_INTERPRET;
}
}
/* Horrid hack to retrieve the builtin AA functions after they've been
* mashed by the inliner.
*/
if (!pthis)
{
Expression *firstarg = nargs > 0 ? (Expression *)(arguments->data[0]) : NULL;
// Check for the first parameter being a templatized AA. Hack: we assume that
// template AA.var is always the AA data itself.
Expression *firstdotvar = (firstarg && firstarg->op == TOKdotvar)
? ((DotVarExp *)firstarg)->e1 : NULL;
if (nargs==3 && isAssocArray(firstarg->type) && !strcmp(fd->ident->string, "_aaApply"))
return interpret_aaApply(istate, firstarg, (Expression *)(arguments->data[2]));
if (nargs==3 && isAssocArray(firstarg->type) &&!strcmp(fd->ident->string, "_aaApply2"))
return interpret_aaApply(istate, firstarg, (Expression *)(arguments->data[2]));
if (firstdotvar && isAssocArray(firstdotvar->type))
{ if (fd->ident == Id::aaLen && nargs == 1)
return interpret_length(istate, firstdotvar->interpret(istate));
else if (fd->ident == Id::aaKeys && nargs == 2)
{
Expression *trueAA = firstdotvar->interpret(istate);
return interpret_keys(istate, trueAA, toBuiltinAAType(trueAA->type)->index);
}
else if (fd->ident == Id::aaValues && nargs == 3)
{
Expression *trueAA = firstdotvar->interpret(istate);
return interpret_values(istate, trueAA, toBuiltinAAType(trueAA->type)->nextOf());
}
else if (fd->ident == Id::aaRehash && nargs == 2)
{
return firstdotvar->interpret(istate, ctfeNeedLvalue);
}
}
}
#endif
#if DMDV1
if (!pthis)
{
Expression *firstarg = nargs > 0 ? (Expression *)(arguments->data[0]) : NULL;
if (firstarg && firstarg->type->toBasetype()->ty == Taarray)
{
TypeAArray *firstAAtype = (TypeAArray *)firstarg->type;
if (fd->ident == Id::aaLen && nargs == 1)
return interpret_length(istate, firstarg);
else if (fd->ident == Id::aaKeys)
return interpret_keys(istate, firstarg, firstAAtype->index);
else if (fd->ident == Id::aaValues)
return interpret_values(istate, firstarg, firstAAtype->nextOf());
else if (nargs==2 && fd->ident == Id::aaRehash)
return firstarg->interpret(istate, ctfeNeedLvalue); //no-op
else if (nargs==3 && !strcmp(fd->ident->string, "_aaApply"))
return interpret_aaApply(istate, firstarg, (Expression *)(arguments->data[2]));
else if (nargs==3 && !strcmp(fd->ident->string, "_aaApply2"))
return interpret_aaApply(istate, firstarg, (Expression *)(arguments->data[2]));
}
}
#endif
#if DMDV2
if (pthis && !fd->fbody && fd->isCtorDeclaration() && fd->parent && fd->parent->parent && fd->parent->parent->ident == Id::object)
{
if (pthis->op == TOKclassreference && fd->parent->ident == Id::Throwable)
{ // At present, the constructors just copy their arguments into the struct.
// But we might need some magic if stack tracing gets added to druntime.
StructLiteralExp *se = ((ClassReferenceExp *)pthis)->value;
assert(arguments->dim <= se->elements->dim);
for (int i = 0; i < arguments->dim; ++i)
{
Expression *e = (*arguments)[i]->interpret(istate);
if (exceptionOrCantInterpret(e))
return e;
se->elements->tdata()[i] = e;
}
return EXP_VOID_INTERPRET;
}
}
#endif
if (nargs == 1 && !pthis &&
(fd->ident == Id::criticalenter || fd->ident == Id::criticalexit))
{ // Support synchronized{} as a no-op
return EXP_VOID_INTERPRET;
}
if (!pthis)
{
size_t idlen = strlen(fd->ident->string);
if (nargs == 2 && (idlen == 10 || idlen == 11)
&& !strncmp(fd->ident->string, "_aApply", 7))
{ // Functions from aApply.d and aApplyR.d in the runtime
bool rvs = (idlen == 11); // true if foreach_reverse
char c = fd->ident->string[idlen-3]; // char width: 'c', 'w', or 'd'
char s = fd->ident->string[idlen-2]; // string width: 'c', 'w', or 'd'
char n = fd->ident->string[idlen-1]; // numParams: 1 or 2.
// There are 12 combinations
if ( (n == '1' || n == '2') &&
(c == 'c' || c == 'w' || c == 'd') &&
(s == 'c' || s == 'w' || s == 'd') && c != s)
{ Expression *str = (*arguments)[0];
str = str->interpret(istate);
if (exceptionOrCantInterpret(str))
return str;
return foreachApplyUtf(istate, str, (*arguments)[1], rvs);
}
}
}
return e;
}
/*************************** CTFE Sanity Checks ***************************/
/* Setter functions for CTFE variable values.
* These functions exist to check for compiler CTFE bugs.
*/
bool isCtfeValueValid(Expression *newval)
{
if (
#if DMDV2
newval->type->ty == Tnull ||
#endif
isPointer(newval->type) )
{
if (newval->op == TOKaddress || newval->op == TOKnull ||
newval->op == TOKstring)
return true;
if (newval->op == TOKindex)
{
Expression *g = ((IndexExp *)newval)->e1;
if (g->op == TOKarrayliteral || g->op == TOKstring ||
g->op == TOKassocarrayliteral)
return true;
}
if (newval->op == TOKvar)
return true;
if (newval->type->nextOf()->ty == Tarray && newval->op == TOKslice)
return true;
if (newval->op == TOKint64)
return true; // Result of a cast, but cannot be dereferenced
// else it must be a reference
}
if (newval->op == TOKclassreference || (newval->op == TOKnull && newval->type->ty == Tclass))
return true;
if (newval->op == TOKvar)
{
VarExp *ve = (VarExp *)newval;
VarDeclaration *vv = ve->var->isVarDeclaration();
// Must not be a reference to a reference
if (!(vv && vv->getValue() && vv->getValue()->op == TOKvar))
return true;
}
if (newval->op == TOKdotvar)
{
if (((DotVarExp *)newval)->e1->op == TOKstructliteral)
{
assert(((StructLiteralExp *)((DotVarExp *)newval)->e1)->ownedByCtfe);
return true;
}
}
if (newval->op == TOKindex)
{
IndexExp *ie = (IndexExp *)newval;
if (ie->e2->op == TOKint64)
{
if (ie->e1->op == TOKarrayliteral || ie->e1->op == TOKstring)
return true;
}
if (ie->e1->op == TOKassocarrayliteral)
return true;
// BUG: Happens ONLY in ref foreach. Should tighten this.
if (ie->e2->op == TOKvar)
return true;
}
if (newval->op == TOKfunction) return true; // function/delegate literal
if (newval->op == TOKdelegate) return true;
if (newval->op == TOKsymoff) // function pointer
{
if (((SymOffExp *)newval)->var->isFuncDeclaration())
return true;
}
#if IN_LLVM
if (newval->op == TOKaddress) { // function pointer
AddrExp *ae = (AddrExp *)newval;
if (ae->e1->op == TOKvar) {
if (((VarExp *)ae->e1)->var->isFuncDeclaration())
return true;
}
}
#endif
if (newval->op == TOKint64 || newval->op == TOKfloat64 ||
newval->op == TOKchar || newval->op == TOKcomplex80)
return true;
// References
if (newval->op == TOKstructliteral)
assert(((StructLiteralExp *)newval)->ownedByCtfe);
if (newval->op == TOKarrayliteral)
assert(((ArrayLiteralExp *)newval)->ownedByCtfe);
if (newval->op == TOKassocarrayliteral)
assert(((AssocArrayLiteralExp *)newval)->ownedByCtfe);
if ((newval->op ==TOKarrayliteral) || ( newval->op==TOKstructliteral) ||
(newval->op==TOKstring) || (newval->op == TOKassocarrayliteral) ||
(newval->op == TOKnull))
{ return true;
}
// Dynamic arrays passed by ref may be null. When this happens
// they may originate from an index or dotvar expression.
if (newval->type->ty == Tarray || newval->type->ty == Taarray)
if (newval->op == TOKdotvar || newval->op == TOKindex)
return true; // actually must be null
if (newval->op == TOKslice)
{
SliceExp *se = (SliceExp *)newval;
assert(se->lwr && se->lwr != EXP_CANT_INTERPRET && se->lwr->op == TOKint64);
assert(se->upr && se->upr != EXP_CANT_INTERPRET && se->upr->op == TOKint64);
assert(se->e1->op == TOKarrayliteral || se->e1->op == TOKstring);
if (se->e1->op == TOKarrayliteral)
assert(((ArrayLiteralExp *)se->e1)->ownedByCtfe);
return true;
}
if (newval->op == TOKvoid)
{
return true;
}
newval->error("CTFE internal error: illegal value %s\n", newval->toChars());
return false;
}
bool VarDeclaration::hasValue()
{
if (ctfeAdrOnStack == (size_t)-1)
return false;
return NULL != getValue();
}
Expression *VarDeclaration::getValue()
{
return ctfeStack.getValue(this);
}
void VarDeclaration::setValueNull()
{
ctfeStack.setValue(this, NULL);
}
// Don't check for validity
void VarDeclaration::setValueWithoutChecking(Expression *newval)
{
ctfeStack.setValue(this, newval);
}
void VarDeclaration::setValue(Expression *newval)
{
assert(isCtfeValueValid(newval));
ctfeStack.setValue(this, newval);
}
Expression *Type::voidInitLiteral(VarDeclaration *var)
{
return new VoidInitExp(var, this);
}
Expression *TypeSArray::voidInitLiteral(VarDeclaration *var)
{
return createBlockDuplicatedArrayLiteral(var->loc, this, next->voidInitLiteral(var), dim->toInteger());
}
Expression *TypeStruct::voidInitLiteral(VarDeclaration *var)
{
Expressions *exps = new Expressions();
exps->setDim(sym->fields.dim);
for (size_t i = 0; i < sym->fields.dim; i++)
{
//(*exps)[i] = new VoidInitExp(var, sym->fields[i]->type);
(*exps)[i] = sym->fields[i]->type->voidInitLiteral(var);
}
StructLiteralExp *se = new StructLiteralExp(var->loc, sym, exps);
se->type = this;
se->ownedByCtfe = true;
return se;
}