Files
ldc/dmd2/init.c
2011-10-25 15:43:49 +04:00

901 lines
24 KiB
C

// Compiler implementation of the D programming language
// Copyright (c) 1999-2011 by Digital Mars
// All Rights Reserved
// written by Walter Bright
// http://www.digitalmars.com
// License for redistribution is by either the Artistic License
// in artistic.txt, or the GNU General Public License in gnu.txt.
// See the included readme.txt for details.
#include <stdio.h>
#include <assert.h>
#include "mars.h"
#include "init.h"
#include "expression.h"
#include "statement.h"
#include "identifier.h"
#include "declaration.h"
#include "aggregate.h"
#include "scope.h"
#include "mtype.h"
#include "hdrgen.h"
/********************************** Initializer *******************************/
Initializer::Initializer(Loc loc)
{
this->loc = loc;
}
Initializer *Initializer::syntaxCopy()
{
return this;
}
Initializer *Initializer::semantic(Scope *sc, Type *t, int needInterpret)
{
return this;
}
Type *Initializer::inferType(Scope *sc)
{
error(loc, "cannot infer type from initializer");
return Type::terror;
}
Initializers *Initializer::arraySyntaxCopy(Initializers *ai)
{ Initializers *a = NULL;
if (ai)
{
a = new Initializers();
a->setDim(ai->dim);
for (size_t i = 0; i < a->dim; i++)
{ Initializer *e = ai->tdata()[i];
e = e->syntaxCopy();
a->tdata()[i] = e;
}
}
return a;
}
char *Initializer::toChars()
{ OutBuffer *buf;
HdrGenState hgs;
memset(&hgs, 0, sizeof(hgs));
buf = new OutBuffer();
toCBuffer(buf, &hgs);
return buf->toChars();
}
/********************************** VoidInitializer ***************************/
VoidInitializer::VoidInitializer(Loc loc)
: Initializer(loc)
{
type = NULL;
}
Initializer *VoidInitializer::syntaxCopy()
{
return new VoidInitializer(loc);
}
Initializer *VoidInitializer::semantic(Scope *sc, Type *t, int needInterpret)
{
//printf("VoidInitializer::semantic(t = %p)\n", t);
type = t;
return this;
}
Expression *VoidInitializer::toExpression()
{
error(loc, "void initializer has no value");
return new IntegerExp(0);
}
void VoidInitializer::toCBuffer(OutBuffer *buf, HdrGenState *hgs)
{
buf->writestring("void");
}
/********************************** StructInitializer *************************/
StructInitializer::StructInitializer(Loc loc)
: Initializer(loc)
{
ad = NULL;
#if IN_LLVM
ltype = NULL;
#endif
}
Initializer *StructInitializer::syntaxCopy()
{
StructInitializer *ai = new StructInitializer(loc);
assert(field.dim == value.dim);
ai->field.setDim(field.dim);
ai->value.setDim(value.dim);
for (size_t i = 0; i < field.dim; i++)
{
ai->field.tdata()[i] = field.tdata()[i];
Initializer *init = value.tdata()[i];
init = init->syntaxCopy();
ai->value.tdata()[i] = init;
}
return ai;
}
void StructInitializer::addInit(Identifier *field, Initializer *value)
{
//printf("StructInitializer::addInit(field = %p, value = %p)\n", field, value);
this->field.push(field);
this->value.push(value);
}
Initializer *StructInitializer::semantic(Scope *sc, Type *t, int needInterpret)
{
int errors = 0;
//printf("StructInitializer::semantic(t = %s) %s\n", t->toChars(), toChars());
vars.setDim(field.dim);
t = t->toBasetype();
if (t->ty == Tstruct)
{
unsigned fieldi = 0;
TypeStruct *ts = (TypeStruct *)t;
ad = ts->sym;
if (ad->ctor)
error(loc, "%s %s has constructors, cannot use { initializers }, use %s( initializers ) instead",
ad->kind(), ad->toChars(), ad->toChars());
size_t nfields = ad->fields.dim;
if (((StructDeclaration *)ad)->isnested) nfields--;
for (size_t i = 0; i < field.dim; i++)
{
Identifier *id = field.tdata()[i];
Initializer *val = value.tdata()[i];
Dsymbol *s;
VarDeclaration *v;
if (id == NULL)
{
if (fieldi >= nfields)
{ error(loc, "too many initializers for %s", ad->toChars());
errors = 1;
field.remove(i);
i--;
continue;
}
else
{
s = ad->fields.tdata()[fieldi];
}
}
else
{
//s = ad->symtab->lookup(id);
s = ad->search(loc, id, 0);
if (!s)
{
error(loc, "'%s' is not a member of '%s'", id->toChars(), t->toChars());
errors = 1;
continue;
}
// Find out which field index it is
for (fieldi = 0; 1; fieldi++)
{
if (fieldi >= nfields)
{
error(loc, "%s.%s is not a per-instance initializable field",
t->toChars(), s->toChars());
errors = 1;
break;
}
if (s == ad->fields.tdata()[fieldi])
break;
}
}
if (s && (v = s->isVarDeclaration()) != NULL)
{
val = val->semantic(sc, v->type, needInterpret);
value.tdata()[i] = val;
vars.tdata()[i] = v;
}
else
{ error(loc, "%s is not a field of %s", id ? id->toChars() : s->toChars(), ad->toChars());
errors = 1;
}
fieldi++;
}
}
else if (t->ty == Tdelegate && value.dim == 0)
{ /* Rewrite as empty delegate literal { }
*/
Parameters *arguments = new Parameters;
Type *tf = new TypeFunction(arguments, NULL, 0, LINKd);
FuncLiteralDeclaration *fd = new FuncLiteralDeclaration(loc, 0, tf, TOKdelegate, NULL);
fd->fbody = new CompoundStatement(loc, new Statements());
fd->endloc = loc;
Expression *e = new FuncExp(loc, fd);
ExpInitializer *ie = new ExpInitializer(loc, e);
return ie->semantic(sc, t, needInterpret);
}
else
{
error(loc, "a struct is not a valid initializer for a %s", t->toChars());
errors = 1;
}
if (errors)
{
field.setDim(0);
value.setDim(0);
vars.setDim(0);
}
return this;
}
/***************************************
* This works by transforming a struct initializer into
* a struct literal. In the future, the two should be the
* same thing.
*/
Expression *StructInitializer::toExpression()
{ Expression *e;
size_t offset;
//printf("StructInitializer::toExpression() %s\n", toChars());
if (!ad) // if fwd referenced
{
return NULL;
}
StructDeclaration *sd = ad->isStructDeclaration();
if (!sd)
return NULL;
Expressions *elements = new Expressions();
size_t nfields = ad->fields.dim;
#if DMDV2
if (sd->isnested)
nfields--;
#endif
elements->setDim(nfields);
for (size_t i = 0; i < elements->dim; i++)
{
elements->tdata()[i] = NULL;
}
unsigned fieldi = 0;
for (size_t i = 0; i < value.dim; i++)
{
Identifier *id = field.tdata()[i];
if (id)
{
Dsymbol * s = ad->search(loc, id, 0);
if (!s)
{
error(loc, "'%s' is not a member of '%s'", id->toChars(), sd->toChars());
goto Lno;
}
// Find out which field index it is
for (fieldi = 0; 1; fieldi++)
{
if (fieldi >= nfields)
{
s->error("is not a per-instance initializable field");
goto Lno;
}
if (s == ad->fields.tdata()[fieldi])
break;
}
}
else if (fieldi >= nfields)
{ error(loc, "too many initializers for '%s'", ad->toChars());
goto Lno;
}
Initializer *iz = value.tdata()[i];
if (!iz)
goto Lno;
Expression *ex = iz->toExpression();
if (!ex)
goto Lno;
if (elements->tdata()[fieldi])
{ error(loc, "duplicate initializer for field '%s'",
ad->fields.tdata()[fieldi]->toChars());
goto Lno;
}
elements->tdata()[fieldi] = ex;
++fieldi;
}
// Now, fill in any missing elements with default initializers.
// We also need to validate any anonymous unions
offset = 0;
for (size_t i = 0; i < elements->dim; )
{
VarDeclaration * vd = ad->fields.tdata()[i]->isVarDeclaration();
//printf("test2 [%d] : %s %d %d\n", i, vd->toChars(), (int)offset, (int)vd->offset);
if (vd->offset < offset)
{
// Only the first field of a union can have an initializer
if (elements->tdata()[i])
goto Lno;
}
else
{
if (!elements->tdata()[i])
// Default initialize
elements->tdata()[i] = vd->type->defaultInit();
}
offset = vd->offset + vd->type->size();
i++;
#if 0
int unionSize = ad->numFieldsInUnion(i);
if (unionSize == 1)
{ // Not a union -- default initialize if missing
if (!elements->tdata()[i])
elements->tdata()[i] = vd->type->defaultInit();
}
else
{ // anonymous union -- check for errors
int found = -1; // index of the first field with an initializer
for (int j = i; j < i + unionSize; ++j)
{
if (!elements->tdata()[j])
continue;
if (found >= 0)
{
VarDeclaration * v1 = ((Dsymbol *)ad->fields.data[found])->isVarDeclaration();
VarDeclaration * v = ((Dsymbol *)ad->fields.data[j])->isVarDeclaration();
error(loc, "%s cannot have initializers for fields %s and %s in same union",
ad->toChars(),
v1->toChars(), v->toChars());
goto Lno;
}
found = j;
}
if (found == -1)
{
error(loc, "no initializer for union that contains field %s",
vd->toChars());
goto Lno;
}
}
i += unionSize;
#endif
}
e = new StructLiteralExp(loc, sd, elements);
e->type = sd->type;
return e;
Lno:
delete elements;
return NULL;
}
void StructInitializer::toCBuffer(OutBuffer *buf, HdrGenState *hgs)
{
//printf("StructInitializer::toCBuffer()\n");
buf->writebyte('{');
for (size_t i = 0; i < field.dim; i++)
{
if (i > 0)
buf->writebyte(',');
Identifier *id = field.tdata()[i];
if (id)
{
buf->writestring(id->toChars());
buf->writebyte(':');
}
Initializer *iz = value.tdata()[i];
if (iz)
iz->toCBuffer(buf, hgs);
}
buf->writebyte('}');
}
/********************************** ArrayInitializer ************************************/
ArrayInitializer::ArrayInitializer(Loc loc)
: Initializer(loc)
{
dim = 0;
type = NULL;
sem = 0;
}
Initializer *ArrayInitializer::syntaxCopy()
{
//printf("ArrayInitializer::syntaxCopy()\n");
ArrayInitializer *ai = new ArrayInitializer(loc);
assert(index.dim == value.dim);
ai->index.setDim(index.dim);
ai->value.setDim(value.dim);
for (size_t i = 0; i < ai->value.dim; i++)
{ Expression *e = index.tdata()[i];
if (e)
e = e->syntaxCopy();
ai->index.tdata()[i] = e;
Initializer *init = value.tdata()[i];
init = init->syntaxCopy();
ai->value.tdata()[i] = init;
}
return ai;
}
void ArrayInitializer::addInit(Expression *index, Initializer *value)
{
this->index.push(index);
this->value.push(value);
dim = 0;
type = NULL;
}
Initializer *ArrayInitializer::semantic(Scope *sc, Type *t, int needInterpret)
{ unsigned i;
unsigned length;
const unsigned amax = 0x80000000;
//printf("ArrayInitializer::semantic(%s)\n", t->toChars());
if (sem) // if semantic() already run
return this;
sem = 1;
type = t;
t = t->toBasetype();
switch (t->ty)
{
case Tpointer:
case Tsarray:
case Tarray:
break;
default:
error(loc, "cannot use array to initialize %s", type->toChars());
goto Lerr;
}
length = 0;
for (i = 0; i < index.dim; i++)
{
Expression *idx = index.tdata()[i];
if (idx)
{ idx = idx->semantic(sc);
idx = idx->optimize(WANTvalue | WANTinterpret);
index.tdata()[i] = idx;
length = idx->toInteger();
}
Initializer *val = value.tdata()[i];
val = val->semantic(sc, t->nextOf(), needInterpret);
value.tdata()[i] = val;
length++;
if (length == 0)
{ error(loc, "array dimension overflow");
goto Lerr;
}
if (length > dim)
dim = length;
}
if (t->ty == Tsarray)
{
dinteger_t edim = ((TypeSArray *)t)->dim->toInteger();
if (dim > edim)
{
error(loc, "array initializer has %u elements, but array length is %jd", dim, edim);
goto Lerr;
}
}
if ((unsigned long) dim * t->nextOf()->size() >= amax)
{ error(loc, "array dimension %u exceeds max of %u", dim, amax / t->nextOf()->size());
goto Lerr;
}
return this;
Lerr:
return new ExpInitializer(loc, new ErrorExp());
}
/********************************
* If possible, convert array initializer to array literal.
* Otherwise return NULL.
*/
Expression *ArrayInitializer::toExpression()
{ Expressions *elements;
//printf("ArrayInitializer::toExpression(), dim = %d\n", dim);
//static int i; if (++i == 2) halt();
size_t edim;
Type *t = NULL;
if (type)
{
if (type == Type::terror)
return new ErrorExp();
t = type->toBasetype();
switch (t->ty)
{
case Tsarray:
edim = ((TypeSArray *)t)->dim->toInteger();
break;
case Tpointer:
case Tarray:
edim = dim;
break;
default:
assert(0);
}
}
else
{
edim = value.dim;
for (size_t i = 0, j = 0; i < value.dim; i++, j++)
{
if (index.tdata()[i])
j = index.tdata()[i]->toInteger();
if (j >= edim)
edim = j + 1;
}
}
elements = new Expressions();
elements->setDim(edim);
elements->zero();
for (size_t i = 0, j = 0; i < value.dim; i++, j++)
{
if (index.tdata()[i])
j = (index.tdata()[i])->toInteger();
assert(j < edim);
Initializer *iz = value.tdata()[i];
if (!iz)
goto Lno;
Expression *ex = iz->toExpression();
if (!ex)
{
goto Lno;
}
elements->tdata()[j] = ex;
}
/* Fill in any missing elements with the default initializer
*/
{
Expression *init = NULL;
for (size_t i = 0; i < edim; i++)
{
if (!elements->tdata()[i])
{
if (!type)
goto Lno;
if (!init)
init = ((TypeNext *)t)->next->defaultInit();
elements->tdata()[i] = init;
}
}
Expression *e = new ArrayLiteralExp(loc, elements);
e->type = type;
return e;
}
Lno:
return NULL;
}
/********************************
* If possible, convert array initializer to associative array initializer.
*/
Expression *ArrayInitializer::toAssocArrayLiteral()
{
Expression *e;
//printf("ArrayInitializer::toAssocArrayInitializer()\n");
//static int i; if (++i == 2) halt();
Expressions *keys = new Expressions();
keys->setDim(value.dim);
Expressions *values = new Expressions();
values->setDim(value.dim);
for (size_t i = 0; i < value.dim; i++)
{
e = index.tdata()[i];
if (!e)
goto Lno;
keys->tdata()[i] = e;
Initializer *iz = value.tdata()[i];
if (!iz)
goto Lno;
e = iz->toExpression();
if (!e)
goto Lno;
values->tdata()[i] = e;
}
e = new AssocArrayLiteralExp(loc, keys, values);
return e;
Lno:
delete keys;
delete values;
error(loc, "not an associative array initializer");
return new ErrorExp();
}
int ArrayInitializer::isAssociativeArray()
{
for (size_t i = 0; i < value.dim; i++)
{
if (index.tdata()[i])
return 1;
}
return 0;
}
Type *ArrayInitializer::inferType(Scope *sc)
{
//printf("ArrayInitializer::inferType() %s\n", toChars());
assert(0);
return NULL;
#if 0
type = Type::terror;
for (size_t i = 0; i < value.dim; i++)
{
if (index.data[i])
goto Laa;
}
for (size_t i = 0; i < value.dim; i++)
{
Initializer *iz = (Initializer *)value.data[i];
if (iz)
{ Type *t = iz->inferType(sc);
if (i == 0)
{ /* BUG: This gets the type from the first element.
* Fix to use all the elements to figure out the type.
*/
t = new TypeSArray(t, new IntegerExp(value.dim));
t = t->semantic(loc, sc);
type = t;
}
}
}
return type;
Laa:
/* It's possibly an associative array initializer.
* BUG: inferring type from first member.
*/
Initializer *iz = (Initializer *)value.data[0];
Expression *indexinit = (Expression *)index.data[0];
if (iz && indexinit)
{ Type *t = iz->inferType(sc);
indexinit = indexinit->semantic(sc);
Type *indext = indexinit->type;
t = new TypeAArray(t, indext);
type = t->semantic(loc, sc);
}
else
error(loc, "cannot infer type from this array initializer");
return type;
#endif
}
void ArrayInitializer::toCBuffer(OutBuffer *buf, HdrGenState *hgs)
{
buf->writebyte('[');
for (size_t i = 0; i < index.dim; i++)
{
if (i > 0)
buf->writebyte(',');
Expression *ex = index.tdata()[i];
if (ex)
{
ex->toCBuffer(buf, hgs);
buf->writebyte(':');
}
Initializer *iz = value.tdata()[i];
if (iz)
iz->toCBuffer(buf, hgs);
}
buf->writebyte(']');
}
/********************************** ExpInitializer ************************************/
ExpInitializer::ExpInitializer(Loc loc, Expression *exp)
: Initializer(loc)
{
this->exp = exp;
}
Initializer *ExpInitializer::syntaxCopy()
{
return new ExpInitializer(loc, exp->syntaxCopy());
}
bool arrayHasNonConstPointers(Expressions *elems);
bool hasNonConstPointers(Expression *e)
{
if (e->op == TOKnull)
return false;
if (e->op == TOKstructliteral)
{
StructLiteralExp *se = (StructLiteralExp *)e;
return arrayHasNonConstPointers(se->elements);
}
if (e->op == TOKarrayliteral)
{
if (!e->type->nextOf()->hasPointers())
return false;
ArrayLiteralExp *ae = (ArrayLiteralExp *)e;
return arrayHasNonConstPointers(ae->elements);
}
if (e->op == TOKassocarrayliteral)
{
AssocArrayLiteralExp *ae = (AssocArrayLiteralExp *)e;
if (ae->type->nextOf()->hasPointers() &&
arrayHasNonConstPointers(ae->values))
return true;
if (((TypeAArray *)ae->type)->index->hasPointers())
return arrayHasNonConstPointers(ae->keys);
return false;
}
if (e->type->ty== Tpointer && e->type->nextOf()->ty != Tfunction)
{
#if IN_LLVM
// address of a global is OK
if (e->op == TOKaddress || e->op == TOKcast)
return false;
if (e->op == TOKadd || e->op == TOKmin) {
BinExp *be = (BinExp*)e;
if (be->e1->type->ty == Tpointer || be->e2->type->ty == Tpointer)
return false;
}
#else
if (e->op == TOKsymoff) // address of a global is OK
return false;
#endif
if (e->op == TOKint64) // cast(void *)int is OK
return false;
if (e->op == TOKstring) // "abc".ptr is OK
return false;
return true;
}
return false;
}
bool arrayHasNonConstPointers(Expressions *elems)
{
for (size_t i = 0; i < elems->dim; i++)
{
if (!elems->tdata()[i])
continue;
if (hasNonConstPointers(elems->tdata()[i]))
return true;
}
return false;
}
Initializer *ExpInitializer::semantic(Scope *sc, Type *t, int needInterpret)
{
//printf("ExpInitializer::semantic(%s), type = %s\n", exp->toChars(), t->toChars());
exp = exp->semantic(sc);
exp = resolveProperties(sc, exp);
int wantOptimize = needInterpret ? WANTinterpret|WANTvalue : WANTvalue;
int olderrors = global.errors;
exp = exp->optimize(wantOptimize);
if (!global.gag && olderrors != global.errors)
return this; // Failed, suppress duplicate error messages
// Make sure all pointers are constants
if (needInterpret && hasNonConstPointers(exp))
{
exp->error("cannot use non-constant CTFE pointer in an initializer '%s'", exp->toChars());
return this;
}
Type *tb = t->toBasetype();
/* Look for case of initializing a static array with a too-short
* string literal, such as:
* char[5] foo = "abc";
* Allow this by doing an explicit cast, which will lengthen the string
* literal.
*/
if (exp->op == TOKstring && tb->ty == Tsarray && exp->type->ty == Tsarray)
{ StringExp *se = (StringExp *)exp;
if (!se->committed && se->type->ty == Tsarray &&
((TypeSArray *)se->type)->dim->toInteger() <
((TypeSArray *)t)->dim->toInteger())
{
exp = se->castTo(sc, t);
goto L1;
}
}
// Look for the case of statically initializing an array
// with a single member.
if (tb->ty == Tsarray &&
!tb->nextOf()->equals(exp->type->toBasetype()->nextOf()) &&
exp->implicitConvTo(tb->nextOf())
)
{
t = tb->nextOf();
}
exp = exp->implicitCastTo(sc, t);
L1:
exp = exp->optimize(wantOptimize);
//printf("-ExpInitializer::semantic(): "); exp->print();
return this;
}
Type *ExpInitializer::inferType(Scope *sc)
{
//printf("ExpInitializer::inferType() %s\n", toChars());
exp = exp->semantic(sc);
exp = resolveProperties(sc, exp);
// Give error for overloaded function addresses
if (exp->op == TOKsymoff)
{ SymOffExp *se = (SymOffExp *)exp;
if (se->hasOverloads && !se->var->isFuncDeclaration()->isUnique())
exp->error("cannot infer type from overloaded function symbol %s", exp->toChars());
}
// Give error for overloaded function addresses
if (exp->op == TOKdelegate)
{ DelegateExp *se = (DelegateExp *)exp;
if (
se->func->isFuncDeclaration() &&
!se->func->isFuncDeclaration()->isUnique())
exp->error("cannot infer type from overloaded function symbol %s", exp->toChars());
}
Type *t = exp->type;
if (!t)
t = Initializer::inferType(sc);
return t;
}
Expression *ExpInitializer::toExpression()
{
return exp;
}
void ExpInitializer::toCBuffer(OutBuffer *buf, HdrGenState *hgs)
{
exp->toCBuffer(buf, hgs);
}