Files
ldc/gen/toir.cpp
Christian Kamm 9f0b3fb062 [svn r335] The basics of exception handling are in place.
Still need to make sure calls are turned into invokes everywhere. (NewExpression for instance)
Still some rough edges and corner cases to figure out.
Needs testing!
2008-07-02 22:20:18 +02:00

3109 lines
92 KiB
C++

// Backend stubs
/* DMDFE backend stubs
* This file contains the implementations of the backend routines.
* For dmdfe these do nothing but print a message saying the module
* has been parsed. Substitute your own behaviors for these routimes.
*/
#include <stdio.h>
#include <math.h>
#include <sstream>
#include <fstream>
#include <iostream>
#include "gen/llvm.h"
#include "attrib.h"
#include "total.h"
#include "init.h"
#include "mtype.h"
#include "hdrgen.h"
#include "port.h"
#include "gen/irstate.h"
#include "gen/logger.h"
#include "gen/tollvm.h"
#include "gen/llvmhelpers.h"
#include "gen/runtime.h"
#include "gen/arrays.h"
#include "gen/structs.h"
#include "gen/classes.h"
#include "gen/typeinf.h"
#include "gen/complex.h"
#include "gen/dvalue.h"
#include "gen/aa.h"
#include "gen/functions.h"
#include "gen/todebug.h"
//////////////////////////////////////////////////////////////////////////////////////////
DValue* DeclarationExp::toElem(IRState* p)
{
Logger::print("DeclarationExp::toElem: %s | T=%s\n", toChars(), type->toChars());
LOG_SCOPE;
// variable declaration
if (VarDeclaration* vd = declaration->isVarDeclaration())
{
Logger::println("VarDeclaration");
// static
if (vd->isDataseg())
{
vd->toObjFile(); // TODO
}
else
{
if (global.params.llvmAnnotate)
DtoAnnotation(toChars());
Logger::println("vdtype = %s", vd->type->toChars());
// referenced by nested delegate?
if (vd->nestedref) {
Logger::println("has nestedref set");
assert(vd->ir.irLocal);
vd->ir.irLocal->value = p->func()->decl->ir.irFunc->nestedVar;
assert(vd->ir.irLocal->value);
assert(vd->ir.irLocal->nestedIndex >= 0);
}
// normal stack variable
else {
// allocate storage on the stack
const LLType* lltype = DtoType(vd->type);
if(gTargetData->getTypeSizeInBits(lltype) == 0)
{
error("Allocating a variable of type %s and size zero is not implemented. (the behaviour of alloca with zero size is undefined)", vd->type->toChars());
fatal();
}
llvm::AllocaInst* allocainst = new llvm::AllocaInst(lltype, vd->toChars(), p->topallocapoint());
//allocainst->setAlignment(vd->type->alignsize()); // TODO
assert(!vd->ir.irLocal);
vd->ir.irLocal = new IrLocal(vd);
vd->ir.irLocal->value = allocainst;
if (global.params.symdebug)
{
DtoDwarfLocalVariable(allocainst, vd);
}
}
Logger::cout() << "llvm value for decl: " << *vd->ir.irLocal->value << '\n';
DValue* ie = DtoInitializer(vd->init);
}
return new DVarValue(vd, vd->ir.getIrValue(), true);
}
// struct declaration
else if (StructDeclaration* s = declaration->isStructDeclaration())
{
Logger::println("StructDeclaration");
DtoForceConstInitDsymbol(s);
}
// function declaration
else if (FuncDeclaration* f = declaration->isFuncDeclaration())
{
Logger::println("FuncDeclaration");
DtoForceDeclareDsymbol(f);
}
// alias declaration
else if (AliasDeclaration* a = declaration->isAliasDeclaration())
{
Logger::println("AliasDeclaration - no work");
// do nothing
}
// enum
else if (EnumDeclaration* e = declaration->isEnumDeclaration())
{
Logger::println("EnumDeclaration - no work");
// do nothing
}
// class
else if (ClassDeclaration* e = declaration->isClassDeclaration())
{
Logger::println("ClassDeclaration");
DtoForceConstInitDsymbol(e);
}
// typedef
else if (TypedefDeclaration* tdef = declaration->isTypedefDeclaration())
{
Logger::println("TypedefDeclaration");
DtoTypeInfoOf(tdef->type, false);
}
// attribute declaration
else if (AttribDeclaration* a = declaration->isAttribDeclaration())
{
Logger::println("AttribDeclaration");
for (int i=0; i < a->decl->dim; ++i)
{
DtoForceDeclareDsymbol((Dsymbol*)a->decl->data[i]);
}
}
// unsupported declaration
else
{
error("Unimplemented DeclarationExp type. kind: %s", declaration->kind());
assert(0);
}
return 0;
}
//////////////////////////////////////////////////////////////////////////////////////////
DValue* VarExp::toElem(IRState* p)
{
Logger::print("VarExp::toElem: %s | %s\n", toChars(), type->toChars());
LOG_SCOPE;
assert(var);
if (VarDeclaration* vd = var->isVarDeclaration())
{
Logger::println("VarDeclaration %s", vd->toChars());
// _arguments
if (vd->ident == Id::_arguments)
{
Logger::println("Id::_arguments");
/*if (!vd->ir.getIrValue())
vd->ir.getIrValue() = p->func()->decl->irFunc->_arguments;
assert(vd->ir.getIrValue());
return new DVarValue(vd, vd->ir.getIrValue(), true);*/
LLValue* v = p->func()->decl->ir.irFunc->_arguments;
assert(v);
return new DVarValue(vd, v, true);
}
// _argptr
else if (vd->ident == Id::_argptr)
{
Logger::println("Id::_argptr");
/*if (!vd->ir.getIrValue())
vd->ir.getIrValue() = p->func()->decl->irFunc->_argptr;
assert(vd->ir.getIrValue());
return new DVarValue(vd, vd->ir.getIrValue(), true);*/
LLValue* v = p->func()->decl->ir.irFunc->_argptr;
assert(v);
return new DVarValue(vd, v, true);
}
// _dollar
else if (vd->ident == Id::dollar)
{
Logger::println("Id::dollar");
assert(!p->arrays.empty());
LLValue* tmp = DtoArrayLen(p->arrays.back());
return new DVarValue(vd, tmp, false);
}
// typeinfo
else if (TypeInfoDeclaration* tid = vd->isTypeInfoDeclaration())
{
Logger::println("TypeInfoDeclaration");
DtoForceDeclareDsymbol(tid);
assert(tid->ir.getIrValue());
const LLType* vartype = DtoType(type);
LLValue* m;
if (tid->ir.getIrValue()->getType() != getPtrToType(vartype))
m = p->ir->CreateBitCast(tid->ir.getIrValue(), vartype, "tmp");
else
m = tid->ir.getIrValue();
return new DVarValue(vd, m, true);
}
// classinfo
else if (ClassInfoDeclaration* cid = vd->isClassInfoDeclaration())
{
Logger::println("ClassInfoDeclaration: %s", cid->cd->toChars());
DtoDeclareClassInfo(cid->cd);
assert(cid->cd->ir.irStruct->classInfo);
return new DVarValue(vd, cid->cd->ir.irStruct->classInfo, true);
}
// nested variable
else if (vd->nestedref) {
Logger::println("nested variable");
return new DVarValue(vd, DtoNestedVariable(vd), true);
}
// function parameter
else if (vd->isParameter()) {
Logger::println("function param");
if (vd->isRef() || vd->isOut() || DtoIsPassedByRef(vd->type) || llvm::isa<llvm::AllocaInst>(vd->ir.getIrValue())) {
return new DVarValue(vd, vd->ir.getIrValue(), true);
}
else if (llvm::isa<llvm::Argument>(vd->ir.getIrValue())) {
return new DImValue(type, vd->ir.getIrValue());
}
else assert(0);
}
else {
// take care of forward references of global variables
if (vd->isDataseg() || (vd->storage_class & STCextern)) {
vd->toObjFile();
DtoConstInitGlobal(vd);
}
if (!vd->ir.getIrValue() || DtoType(vd->type)->isAbstract()) {
Logger::println("global variable not resolved :/ %s", vd->toChars());
Logger::cout() << *DtoType(vd->type) << '\n';
assert(0);
}
return new DVarValue(vd, vd->ir.getIrValue(), true);
}
}
else if (FuncDeclaration* fdecl = var->isFuncDeclaration())
{
Logger::println("FuncDeclaration");
if (fdecl->llvmInternal != LLVMva_arg) {// && fdecl->llvmValue == 0)
DtoForceDeclareDsymbol(fdecl);
}
return new DFuncValue(fdecl, fdecl->ir.irFunc->func);
}
else if (SymbolDeclaration* sdecl = var->isSymbolDeclaration())
{
// this seems to be the static initialiser for structs
Type* sdecltype = DtoDType(sdecl->type);
Logger::print("Sym: type=%s\n", sdecltype->toChars());
assert(sdecltype->ty == Tstruct);
TypeStruct* ts = (TypeStruct*)sdecltype;
assert(ts->sym);
DtoForceConstInitDsymbol(ts->sym);
assert(ts->sym->ir.irStruct->init);
return new DVarValue(type, ts->sym->ir.irStruct->init, true);
}
else
{
assert(0 && "Unimplemented VarExp type");
}
return 0;
}
//////////////////////////////////////////////////////////////////////////////////////////
LLConstant* VarExp::toConstElem(IRState* p)
{
Logger::print("VarExp::toConstElem: %s | %s\n", toChars(), type->toChars());
LOG_SCOPE;
if (SymbolDeclaration* sdecl = var->isSymbolDeclaration())
{
// this seems to be the static initialiser for structs
Type* sdecltype = DtoDType(sdecl->type);
Logger::print("Sym: type=%s\n", sdecltype->toChars());
assert(sdecltype->ty == Tstruct);
TypeStruct* ts = (TypeStruct*)sdecltype;
DtoForceConstInitDsymbol(ts->sym);
assert(ts->sym->ir.irStruct->constInit);
return ts->sym->ir.irStruct->constInit;
}
else if (TypeInfoDeclaration* ti = var->isTypeInfoDeclaration())
{
const LLType* vartype = DtoType(type);
LLConstant* m = DtoTypeInfoOf(ti->tinfo, false);
if (m->getType() != getPtrToType(vartype))
m = llvm::ConstantExpr::getBitCast(m, vartype);
return m;
}
assert(0 && "Unsupported const VarExp kind");
return NULL;
}
//////////////////////////////////////////////////////////////////////////////////////////
DValue* IntegerExp::toElem(IRState* p)
{
Logger::print("IntegerExp::toElem: %s | %s\n", toChars(), type->toChars());
LOG_SCOPE;
LLConstant* c = toConstElem(p);
return new DConstValue(type, c);
}
//////////////////////////////////////////////////////////////////////////////////////////
LLConstant* IntegerExp::toConstElem(IRState* p)
{
Logger::print("IntegerExp::toConstElem: %s | %s\n", toChars(), type->toChars());
LOG_SCOPE;
const LLType* t = DtoType(type);
if (isaPointer(t)) {
Logger::println("pointer");
LLConstant* i = llvm::ConstantInt::get(DtoSize_t(),(uint64_t)value,false);
return llvm::ConstantExpr::getIntToPtr(i, t);
}
assert(llvm::isa<LLIntegerType>(t));
LLConstant* c = llvm::ConstantInt::get(t,(uint64_t)value,!type->isunsigned());
assert(c);
Logger::cout() << "value = " << *c << '\n';
return c;
}
//////////////////////////////////////////////////////////////////////////////////////////
DValue* RealExp::toElem(IRState* p)
{
Logger::print("RealExp::toElem: %s | %s\n", toChars(), type->toChars());
LOG_SCOPE;
LLConstant* c = toConstElem(p);
return new DConstValue(type, c);
}
//////////////////////////////////////////////////////////////////////////////////////////
LLConstant* RealExp::toConstElem(IRState* p)
{
Logger::print("RealExp::toConstElem: %s | %s\n", toChars(), type->toChars());
LOG_SCOPE;
Type* t = DtoDType(type);
return DtoConstFP(t, value);
}
//////////////////////////////////////////////////////////////////////////////////////////
DValue* NullExp::toElem(IRState* p)
{
Logger::print("NullExp::toElem(type=%s): %s\n", type->toChars(),toChars());
LOG_SCOPE;
LLConstant* c = toConstElem(p);
return new DNullValue(type, c);
}
//////////////////////////////////////////////////////////////////////////////////////////
LLConstant* NullExp::toConstElem(IRState* p)
{
Logger::print("NullExp::toConstElem(type=%s): %s\n", type->toChars(),toChars());
LOG_SCOPE;
const LLType* t = DtoType(type);
if (type->ty == Tarray) {
assert(isaStruct(t));
return llvm::ConstantAggregateZero::get(t);
}
else {
return llvm::Constant::getNullValue(t);
}
assert(0);
return NULL;
}
//////////////////////////////////////////////////////////////////////////////////////////
DValue* ComplexExp::toElem(IRState* p)
{
Logger::print("ComplexExp::toElem(): %s | %s\n", toChars(), type->toChars());
LOG_SCOPE;
LLConstant* c = toConstElem(p);
if (c->isNullValue()) {
Type* t = DtoDType(type);
if (t->ty == Tcomplex32)
c = DtoConstFP(Type::tfloat32, 0);
else
c = DtoConstFP(Type::tfloat64, 0);
return new DComplexValue(type, c, c);
}
return new DComplexValue(type, c->getOperand(0), c->getOperand(1));
}
//////////////////////////////////////////////////////////////////////////////////////////
LLConstant* ComplexExp::toConstElem(IRState* p)
{
Logger::print("ComplexExp::toConstElem(): %s | %s\n", toChars(), type->toChars());
LOG_SCOPE;
return DtoConstComplex(type, value.re, value.im);
}
//////////////////////////////////////////////////////////////////////////////////////////
DValue* StringExp::toElem(IRState* p)
{
Logger::print("StringExp::toElem: %s | %s\n", toChars(), type->toChars());
LOG_SCOPE;
Type* dtype = DtoDType(type);
Type* cty = DtoDType(dtype->next);
const LLType* ct = DtoType(cty);
if (ct == LLType::VoidTy)
ct = LLType::Int8Ty;
//printf("ct = %s\n", type->next->toChars());
const LLArrayType* at = LLArrayType::get(ct,len+1);
LLConstant* _init;
if (cty->size() == 1) {
uint8_t* str = (uint8_t*)string;
std::string cont((char*)str, len);
_init = llvm::ConstantArray::get(cont,true);
}
else if (cty->size() == 2) {
uint16_t* str = (uint16_t*)string;
std::vector<LLConstant*> vals;
for(size_t i=0; i<len; ++i) {
vals.push_back(llvm::ConstantInt::get(ct, str[i], false));;
}
vals.push_back(llvm::ConstantInt::get(ct, 0, false));
_init = llvm::ConstantArray::get(at,vals);
}
else if (cty->size() == 4) {
uint32_t* str = (uint32_t*)string;
std::vector<LLConstant*> vals;
for(size_t i=0; i<len; ++i) {
vals.push_back(llvm::ConstantInt::get(ct, str[i], false));;
}
vals.push_back(llvm::ConstantInt::get(ct, 0, false));
_init = llvm::ConstantArray::get(at,vals);
}
else
assert(0);
llvm::GlobalValue::LinkageTypes _linkage = llvm::GlobalValue::InternalLinkage;//WeakLinkage;
Logger::cout() << "type: " << *at << "\ninit: " << *_init << '\n';
llvm::GlobalVariable* gvar = new llvm::GlobalVariable(at,true,_linkage,_init,".stringliteral",gIR->module);
llvm::ConstantInt* zero = llvm::ConstantInt::get(LLType::Int32Ty, 0, false);
LLConstant* idxs[2] = { zero, zero };
LLConstant* arrptr = llvm::ConstantExpr::getGetElementPtr(gvar,idxs,2);
if (dtype->ty == Tarray) {
LLConstant* clen = llvm::ConstantInt::get(DtoSize_t(),len,false);
if (!p->topexp() || p->topexp()->e2 != this) {
LLValue* tmpmem = new llvm::AllocaInst(DtoType(dtype),"tempstring",p->topallocapoint());
DtoSetArray(tmpmem, clen, arrptr);
return new DVarValue(type, tmpmem, true);
}
else if (p->topexp()->e2 == this) {
DValue* arr = p->topexp()->v;
assert(arr);
if (arr->isSlice()) {
return new DSliceValue(type, clen, arrptr);
}
else {
DtoSetArray(arr->getRVal(), clen, arrptr);
return new DImValue(type, arr->getLVal(), true);
}
}
assert(0);
}
else if (dtype->ty == Tsarray) {
const LLType* dstType = getPtrToType(LLArrayType::get(ct, len));
LLValue* emem = (gvar->getType() == dstType) ? gvar : DtoBitCast(gvar, dstType);
return new DVarValue(type, emem, true);
}
else if (dtype->ty == Tpointer) {
return new DImValue(type, arrptr);
}
assert(0);
return 0;
}
//////////////////////////////////////////////////////////////////////////////////////////
LLConstant* StringExp::toConstElem(IRState* p)
{
Logger::print("StringExp::toConstElem: %s | %s\n", toChars(), type->toChars());
LOG_SCOPE;
Type* t = DtoDType(type);
Type* cty = DtoDType(t->next);
bool nullterm = (t->ty != Tsarray);
size_t endlen = nullterm ? len+1 : len;
const LLType* ct = DtoType(cty);
const LLArrayType* at = LLArrayType::get(ct,endlen);
LLConstant* _init;
if (cty->size() == 1) {
uint8_t* str = (uint8_t*)string;
std::string cont((char*)str, len);
_init = llvm::ConstantArray::get(cont, nullterm);
}
else if (cty->size() == 2) {
uint16_t* str = (uint16_t*)string;
std::vector<LLConstant*> vals;
for(size_t i=0; i<len; ++i) {
vals.push_back(llvm::ConstantInt::get(ct, str[i], false));;
}
if (nullterm)
vals.push_back(llvm::ConstantInt::get(ct, 0, false));
_init = llvm::ConstantArray::get(at,vals);
}
else if (cty->size() == 4) {
uint32_t* str = (uint32_t*)string;
std::vector<LLConstant*> vals;
for(size_t i=0; i<len; ++i) {
vals.push_back(llvm::ConstantInt::get(ct, str[i], false));;
}
if (nullterm)
vals.push_back(llvm::ConstantInt::get(ct, 0, false));
_init = llvm::ConstantArray::get(at,vals);
}
else
assert(0);
if (t->ty == Tsarray)
{
return _init;
}
llvm::GlobalValue::LinkageTypes _linkage = llvm::GlobalValue::InternalLinkage;//WeakLinkage;
llvm::GlobalVariable* gvar = new llvm::GlobalVariable(_init->getType(),true,_linkage,_init,".stringliteral",gIR->module);
llvm::ConstantInt* zero = llvm::ConstantInt::get(LLType::Int32Ty, 0, false);
LLConstant* idxs[2] = { zero, zero };
LLConstant* arrptr = llvm::ConstantExpr::getGetElementPtr(gvar,idxs,2);
if (t->ty == Tpointer) {
return arrptr;
}
else if (t->ty == Tarray) {
LLConstant* clen = llvm::ConstantInt::get(DtoSize_t(),len,false);
return DtoConstSlice(clen, arrptr);
}
assert(0);
return NULL;
}
//////////////////////////////////////////////////////////////////////////////////////////
DValue* AssignExp::toElem(IRState* p)
{
Logger::print("AssignExp::toElem: %s | %s = %s\n", toChars(), e1->type->toChars(), e2->type ? e2->type->toChars() : 0);
LOG_SCOPE;
p->exps.push_back(IRExp(e1,e2,NULL));
DValue* l = e1->toElem(p);
p->topexp()->v = l;
DValue* r = e2->toElem(p);
p->exps.pop_back();
Logger::println("performing assignment");
DImValue* im = r->isIm();
if (!im || !im->inPlace()) {
Logger::println("assignment not inplace");
if (DArrayLenValue* al = l->isArrayLen())
{
DSliceValue* slice = DtoResizeDynArray(l->getType(), l, r);
DtoAssign(l, slice);
}
else
{
DtoAssign(l, r);
}
}
if (l->isSlice() || l->isComplex())
return l;
LLValue* v;
if (l->isVar() && l->isVar()->lval)
v = l->getLVal();
else
v = l->getRVal();
return new DVarValue(type, v, true);
}
//////////////////////////////////////////////////////////////////////////////////////////
DValue* AddExp::toElem(IRState* p)
{
Logger::print("AddExp::toElem: %s | %s\n", toChars(), type->toChars());
LOG_SCOPE;
DValue* l = e1->toElem(p);
DValue* r = e2->toElem(p);
Type* t = DtoDType(type);
Type* e1type = DtoDType(e1->type);
Type* e1next = e1type->next ? DtoDType(e1type->next) : NULL;
Type* e2type = DtoDType(e2->type);
if (e1type != e2type) {
if (llvmFieldIndex) {
assert(e1type->ty == Tpointer && e1next && e1next->ty == Tstruct);
Logger::println("add to AddrExp of struct");
assert(r->isConst());
llvm::ConstantInt* cofs = llvm::cast<llvm::ConstantInt>(r->isConst()->c);
TypeStruct* ts = (TypeStruct*)e1next;
DStructIndexVector offsets;
LLValue* v = DtoIndexStruct(l->getRVal(), ts->sym, t->next, cofs->getZExtValue(), offsets);
return new DFieldValue(type, v, true);
}
else if (e1type->ty == Tpointer) {
Logger::println("add to pointer");
if (r->isConst()) {
llvm::ConstantInt* cofs = llvm::cast<llvm::ConstantInt>(r->isConst()->c);
if (cofs->isZero()) {
Logger::println("is zero");
return new DImValue(type, l->getRVal());
}
}
LLValue* v = llvm::GetElementPtrInst::Create(l->getRVal(), r->getRVal(), "tmp", p->scopebb());
return new DImValue(type, v);
}
else if (t->iscomplex()) {
return DtoComplexAdd(type, l, r);
}
assert(0);
}
else if (t->iscomplex()) {
return DtoComplexAdd(type, l, r);
}
else {
return DtoBinAdd(l,r);
}
}
//////////////////////////////////////////////////////////////////////////////////////////
DValue* AddAssignExp::toElem(IRState* p)
{
Logger::print("AddAssignExp::toElem: %s\n", toChars());
LOG_SCOPE;
p->exps.push_back(IRExp(e1,e2,NULL));
DValue* l = e1->toElem(p);
DValue* r = e2->toElem(p);
p->exps.pop_back();
Type* t = DtoDType(type);
DValue* res;
if (DtoDType(e1->type)->ty == Tpointer) {
LLValue* gep = llvm::GetElementPtrInst::Create(l->getRVal(),r->getRVal(),"tmp",p->scopebb());
res = new DImValue(type, gep);
}
else if (t->iscomplex()) {
res = DtoComplexAdd(e1->type, l, r);
}
else {
res = DtoBinAdd(l,r);
}
DtoAssign(l, res);
// used as lvalue :/
if (p->topexp() && p->topexp()->e1 == this)
{
assert(!l->isLRValue());
return l;
}
else
{
return res;
}
}
//////////////////////////////////////////////////////////////////////////////////////////
DValue* MinExp::toElem(IRState* p)
{
Logger::print("MinExp::toElem: %s | %s\n", toChars(), type->toChars());
LOG_SCOPE;
DValue* l = e1->toElem(p);
DValue* r = e2->toElem(p);
Type* t = DtoDType(type);
Type* t1 = DtoDType(e1->type);
Type* t2 = DtoDType(e2->type);
if (t1->ty == Tpointer && t2->ty == Tpointer) {
LLValue* lv = l->getRVal();
LLValue* rv = r->getRVal();
Logger::cout() << "lv: " << *lv << " rv: " << *rv << '\n';
lv = p->ir->CreatePtrToInt(lv, DtoSize_t(), "tmp");
rv = p->ir->CreatePtrToInt(rv, DtoSize_t(), "tmp");
LLValue* diff = p->ir->CreateSub(lv,rv,"tmp");
if (diff->getType() != DtoType(type))
diff = p->ir->CreateIntToPtr(diff, DtoType(type), "tmp");
return new DImValue(type, diff);
}
else if (t1->ty == Tpointer) {
LLValue* idx = p->ir->CreateNeg(r->getRVal(), "tmp");
LLValue* v = llvm::GetElementPtrInst::Create(l->getRVal(), idx, "tmp", p->scopebb());
return new DImValue(type, v);
}
else if (t->iscomplex()) {
return DtoComplexSub(type, l, r);
}
else {
return DtoBinSub(l,r);
}
}
//////////////////////////////////////////////////////////////////////////////////////////
DValue* MinAssignExp::toElem(IRState* p)
{
Logger::print("MinAssignExp::toElem: %s | %s\n", toChars(), type->toChars());
LOG_SCOPE;
DValue* l = e1->toElem(p);
DValue* r = e2->toElem(p);
Type* t = DtoDType(type);
DValue* res;
if (DtoDType(e1->type)->ty == Tpointer) {
Logger::println("ptr");
LLValue* tmp = r->getRVal();
LLValue* zero = llvm::ConstantInt::get(tmp->getType(),0,false);
tmp = llvm::BinaryOperator::createSub(zero,tmp,"tmp",p->scopebb());
tmp = llvm::GetElementPtrInst::Create(l->getRVal(),tmp,"tmp",p->scopebb());
res = new DImValue(type, tmp);
}
else if (t->iscomplex()) {
Logger::println("complex");
res = DtoComplexSub(type, l, r);
}
else {
Logger::println("basic");
res = DtoBinSub(l,r);
}
DtoAssign(l, res);
return l;
}
//////////////////////////////////////////////////////////////////////////////////////////
DValue* MulExp::toElem(IRState* p)
{
Logger::print("MulExp::toElem: %s | %s\n", toChars(), type->toChars());
LOG_SCOPE;
DValue* l = e1->toElem(p);
DValue* r = e2->toElem(p);
if (type->iscomplex()) {
return DtoComplexMul(type, l, r);
}
return DtoBinMul(l,r);
}
//////////////////////////////////////////////////////////////////////////////////////////
DValue* MulAssignExp::toElem(IRState* p)
{
Logger::print("MulAssignExp::toElem: %s | %s\n", toChars(), type->toChars());
LOG_SCOPE;
DValue* l = e1->toElem(p);
DValue* r = e2->toElem(p);
DValue* res;
if (type->iscomplex()) {
res = DtoComplexMul(type, l, r);
}
else {
res = DtoBinMul(l,r);
}
DtoAssign(l, res);
return l;
}
//////////////////////////////////////////////////////////////////////////////////////////
DValue* DivExp::toElem(IRState* p)
{
Logger::print("DivExp::toElem: %s | %s\n", toChars(), type->toChars());
LOG_SCOPE;
DValue* l = e1->toElem(p);
DValue* r = e2->toElem(p);
if (type->iscomplex()) {
return DtoComplexDiv(type, l, r);
}
return DtoBinDiv(l, r);
}
//////////////////////////////////////////////////////////////////////////////////////////
DValue* DivAssignExp::toElem(IRState* p)
{
Logger::print("DivAssignExp::toElem: %s | %s\n", toChars(), type->toChars());
LOG_SCOPE;
DValue* l = e1->toElem(p);
DValue* r = e2->toElem(p);
DValue* res;
if (type->iscomplex()) {
res = DtoComplexDiv(type, l, r);
}
else {
res = DtoBinDiv(l,r);
}
DtoAssign(l, res);
return l;
}
//////////////////////////////////////////////////////////////////////////////////////////
DValue* ModExp::toElem(IRState* p)
{
Logger::print("ModExp::toElem: %s | %s\n", toChars(), type->toChars());
LOG_SCOPE;
DValue* l = e1->toElem(p);
DValue* r = e2->toElem(p);
return DtoBinRem(l, r);
}
//////////////////////////////////////////////////////////////////////////////////////////
DValue* ModAssignExp::toElem(IRState* p)
{
Logger::print("ModAssignExp::toElem: %s | %s\n", toChars(), type->toChars());
LOG_SCOPE;
DValue* l = e1->toElem(p);
DValue* r = e2->toElem(p);
DValue* res = DtoBinRem(l, r);
DtoAssign(l, res);
return l;
}
//////////////////////////////////////////////////////////////////////////////////////////
// TODO: the method below could really use a cleanup/splitup
DValue* CallExp::toElem(IRState* p)
{
Logger::print("CallExp::toElem: %s | %s\n", toChars(), type->toChars());
LOG_SCOPE;
DValue* fn = e1->toElem(p);
TypeFunction* tf = 0;
Type* e1type = DtoDType(e1->type);
bool delegateCall = false;
LINK dlink = LINKd;
// hidden struct return parameter handling
bool retinptr = false;
// regular functions
if (e1type->ty == Tfunction) {
tf = (TypeFunction*)e1type;
if (tf->llvmRetInPtr) {
retinptr = true;
}
dlink = tf->linkage;
}
// delegates
else if (e1type->ty == Tdelegate) {
Logger::println("delegateTy = %s\n", e1type->toChars());
assert(e1type->next->ty == Tfunction);
tf = (TypeFunction*)e1type->next;
if (tf->llvmRetInPtr) {
retinptr = true;
}
dlink = tf->linkage;
delegateCall = true;
}
// invalid
else {
assert(tf);
}
// handling of special intrinsics
bool va_magic = false;
bool va_intrinsic = false;
DFuncValue* dfv = fn->isFunc();
if (dfv && dfv->func) {
FuncDeclaration* fndecl = dfv->func;
// vararg intrinsic
if (fndecl->llvmInternal == LLVMva_intrinsic) {
va_magic = true;
va_intrinsic = true;
}
// va_start instruction
else if (fndecl->llvmInternal == LLVMva_start) {
va_magic = true;
}
// va_arg instruction
else if (fndecl->llvmInternal == LLVMva_arg) {
//Argument* fnarg = Argument::getNth(tf->parameters, 0);
Expression* exp = (Expression*)arguments->data[0];
DValue* expelem = exp->toElem(p);
Type* t = DtoDType(type);
const LLType* llt = DtoType(type);
if (DtoIsPassedByRef(t))
llt = getPtrToType(llt);
// TODO
// issue a warning for broken va_arg instruction.
if (strcmp(global.params.llvmArch, "x86") != 0) {
warning("%s: va_arg for C variadic functions is probably broken for anything but x86", loc.toChars());
}
// done
return new DImValue(type, p->ir->CreateVAArg(expelem->getLVal(),llt,"tmp"));
}
// alloca
else if (fndecl->llvmInternal == LLVMalloca) {
//Argument* fnarg = Argument::getNth(tf->parameters, 0);
Expression* exp = (Expression*)arguments->data[0];
DValue* expv = exp->toElem(p);
if (expv->getType()->toBasetype()->ty != Tint32)
expv = DtoCast(expv, Type::tint32);
LLValue* alloc = new llvm::AllocaInst(LLType::Int8Ty, expv->getRVal(), "alloca", p->scopebb());
// done
return new DImValue(type, alloc);
}
}
// args
size_t n = arguments->dim;
DFuncValue* dfn = fn->isFunc();
if (dfn && dfn->func && dfn->func->llvmInternal == LLVMva_start)
n = 1;
if (delegateCall || (dfn && dfn->vthis)) n++;
if (retinptr) n++;
if (tf->linkage == LINKd && tf->varargs == 1) n+=2;
if (dfn && dfn->func && dfn->func->isNested()) n++;
LLValue* funcval = fn->getRVal();
assert(funcval != 0);
std::vector<LLValue*> llargs(n, 0);
const LLFunctionType* llfnty = 0;
// TODO: review the stuff below, using the llvm type to choose seem like a bad idea. the D type should be used.
//
// normal function call
if (llvm::isa<LLFunctionType>(funcval->getType())) {
llfnty = llvm::cast<LLFunctionType>(funcval->getType());
}
// pointer to something
else if (isaPointer(funcval->getType())) {
// pointer to function pointer - I think this not really supposed to happen, but does :/
// seems like sometimes we get a func* other times a func**
if (isaPointer(funcval->getType()->getContainedType(0))) {
funcval = DtoLoad(funcval);
}
// function pointer
if (llvm::isa<LLFunctionType>(funcval->getType()->getContainedType(0))) {
//Logger::cout() << "function pointer type:\n" << *funcval << '\n';
llfnty = llvm::cast<LLFunctionType>(funcval->getType()->getContainedType(0));
}
// struct pointer - delegate
else if (isaStruct(funcval->getType()->getContainedType(0))) {
funcval = DtoGEPi(funcval,0,1);
funcval = DtoLoad(funcval);
const LLType* ty = funcval->getType()->getContainedType(0);
llfnty = llvm::cast<LLFunctionType>(ty);
}
// unknown
else {
Logger::cout() << "what kind of pointer are we calling? : " << *funcval->getType() << '\n';
}
}
else {
Logger::cout() << "what are we calling? : " << *funcval << '\n';
}
assert(llfnty);
//Logger::cout() << "Function LLVM type: " << *llfnty << '\n';
// argument handling
LLFunctionType::param_iterator argiter = llfnty->param_begin();
int j = 0;
IRExp* topexp = p->topexp();
bool isInPlace = false;
// attrs
llvm::PAListPtr palist;
// hidden struct return arguments
// TODO: use sret param attr
if (retinptr) {
if (topexp && topexp->e2 == this) {
assert(topexp->v);
LLValue* tlv = topexp->v->getLVal();
assert(isaStruct(tlv->getType()->getContainedType(0)));
llargs[j] = tlv;
isInPlace = true;
/*if (DtoIsPassedByRef(tf->next)) {
isInPlace = true;
}
else
assert(0);*/
}
else {
llargs[j] = new llvm::AllocaInst(argiter->get()->getContainedType(0),"rettmp",p->topallocapoint());
}
if (dfn && dfn->func && dfn->func->runTimeHack) {
const LLType* rettype = getPtrToType(DtoType(type));
if (llargs[j]->getType() != llfnty->getParamType(j)) {
Logger::println("llvmRunTimeHack==true - force casting return value param");
Logger::cout() << "casting: " << *llargs[j] << " to type: " << *llfnty->getParamType(j) << '\n';
llargs[j] = DtoBitCast(llargs[j], llfnty->getParamType(j));
}
}
++j;
++argiter;
}
// this arguments
if (dfn && dfn->vthis) {
Logger::cout() << "This Call" << '\n';// func val:" << *funcval << '\n';
if (dfn->vthis->getType() != argiter->get()) {
//Logger::cout() << "value: " << *dfn->vthis << " totype: " << *argiter->get() << '\n';
llargs[j] = DtoBitCast(dfn->vthis, argiter->get());
}
else {
llargs[j] = dfn->vthis;
}
++j;
++argiter;
}
// delegate context arguments
else if (delegateCall) {
Logger::println("Delegate Call");
LLValue* contextptr = DtoGEPi(fn->getRVal(),0,0);
llargs[j] = DtoLoad(contextptr);
++j;
++argiter;
}
// nested call
else if (dfn && dfn->func && dfn->func->isNested()) {
Logger::println("Nested Call");
LLValue* contextptr = DtoNestedContext(dfn->func->toParent2()->isFuncDeclaration());
if (!contextptr)
contextptr = llvm::ConstantPointerNull::get(getPtrToType(LLType::Int8Ty));
llargs[j] = DtoBitCast(contextptr, getPtrToType(LLType::Int8Ty));
++j;
++argiter;
}
// va arg function special argument passing
if (va_magic)
{
size_t n = va_intrinsic ? arguments->dim : 1;
for (int i=0; i<n; i++,j++)
{
Argument* fnarg = Argument::getNth(tf->parameters, i);
Expression* exp = (Expression*)arguments->data[i];
DValue* expelem = exp->toElem(p);
llargs[j] = DtoBitCast(expelem->getLVal(), getPtrToType(LLType::Int8Ty));
}
}
// d variadic function
else if (tf->linkage == LINKd && tf->varargs == 1)
{
Logger::println("doing d-style variadic arguments");
size_t nimplicit = j;
std::vector<const LLType*> vtypes;
// number of non variadic args
int begin = tf->parameters->dim;
Logger::println("num non vararg params = %d", begin);
// build struct with argument types
for (int i=begin; i<arguments->dim; i++)
{
Argument* argu = Argument::getNth(tf->parameters, i);
Expression* argexp = (Expression*)arguments->data[i];
vtypes.push_back(DtoType(argexp->type));
size_t sz = getABITypeSize(vtypes.back());
if (sz < PTRSIZE)
vtypes.back() = DtoSize_t();
}
const LLStructType* vtype = LLStructType::get(vtypes);
Logger::cout() << "d-variadic argument struct type:\n" << *vtype << '\n';
LLValue* mem = new llvm::AllocaInst(vtype,"_argptr_storage",p->topallocapoint());
// store arguments in the struct
for (int i=begin,k=0; i<arguments->dim; i++,k++)
{
Expression* argexp = (Expression*)arguments->data[i];
if (global.params.llvmAnnotate)
DtoAnnotation(argexp->toChars());
LLValue* argdst = DtoGEPi(mem,0,k);
argdst = DtoBitCast(argdst, getPtrToType(DtoType(argexp->type)));
DtoVariadicArgument(argexp, argdst);
}
// build type info array
assert(Type::typeinfo->ir.irStruct->constInit);
const LLType* typeinfotype = DtoType(Type::typeinfo->type);
const LLArrayType* typeinfoarraytype = LLArrayType::get(typeinfotype,vtype->getNumElements());
llvm::GlobalVariable* typeinfomem =
new llvm::GlobalVariable(typeinfoarraytype, true, llvm::GlobalValue::InternalLinkage, NULL, "._arguments.storage", gIR->module);
Logger::cout() << "_arguments storage: " << *typeinfomem << '\n';
std::vector<LLConstant*> vtypeinfos;
for (int i=begin,k=0; i<arguments->dim; i++,k++)
{
Expression* argexp = (Expression*)arguments->data[i];
vtypeinfos.push_back(DtoTypeInfoOf(argexp->type));
}
// apply initializer
LLConstant* tiinits = llvm::ConstantArray::get(typeinfoarraytype, vtypeinfos);
typeinfomem->setInitializer(tiinits);
// put data in d-array
std::vector<LLConstant*> pinits;
pinits.push_back(DtoConstSize_t(vtype->getNumElements()));
pinits.push_back(llvm::ConstantExpr::getBitCast(typeinfomem, getPtrToType(typeinfotype)));
const LLType* tiarrty = llfnty->getParamType(j)->getContainedType(0);
tiinits = llvm::ConstantStruct::get(pinits);
LLValue* typeinfoarrayparam = new llvm::GlobalVariable(tiarrty,
true, llvm::GlobalValue::InternalLinkage, tiinits, "._arguments.array", gIR->module);
// specify arguments
llargs[j] = typeinfoarrayparam;;
j++;
llargs[j] = p->ir->CreateBitCast(mem, getPtrToType(LLType::Int8Ty), "tmp");
j++;
// pass non variadic args
for (int i=0; i<begin; i++)
{
Argument* fnarg = Argument::getNth(tf->parameters, i);
DValue* argval = DtoArgument(fnarg, (Expression*)arguments->data[i]);
llargs[j] = argval->getRVal();
if (fnarg->llvmByVal)
palist = palist.addAttr(j, llvm::ParamAttr::ByVal);
j++;
}
// make sure arg vector has the right size
llargs.resize(nimplicit+begin+2);
}
// normal function call
else
{
Logger::println("doing normal arguments");
for (int i=0; i<arguments->dim; i++,j++) {
Argument* fnarg = Argument::getNth(tf->parameters, i);
if (global.params.llvmAnnotate)
DtoAnnotation(((Expression*)arguments->data[i])->toChars());
DValue* argval = DtoArgument(fnarg, (Expression*)arguments->data[i]);
llargs[j] = argval->getRVal();
if (fnarg && llargs[j]->getType() != llfnty->getParamType(j)) {
llargs[j] = DtoBitCast(llargs[j], llfnty->getParamType(j));
}
if (fnarg && fnarg->llvmByVal)
palist = palist.addAttr(j+1, llvm::ParamAttr::ByVal);
// this hack is necessary :/
// thing is DMD doesn't create correct signatures for the DMD generated calls to the runtime.
// only the return type is right, no arguments (parameters==NULL) ...
if (dfn && dfn->func && dfn->func->runTimeHack) {
llvm::Function* fn = dfn->func->ir.irFunc->func;
assert(fn);
if (fn->getParamAttrs().paramHasAttr(j+1, llvm::ParamAttr::ByVal))
palist = palist.addAttr(j+1, llvm::ParamAttr::ByVal);
if (llfnty->getParamType(j) != NULL) {
if (llargs[j]->getType() != llfnty->getParamType(j)) {
Logger::println("llvmRunTimeHack==true - force casting argument");
Logger::cout() << "casting: " << *llargs[j] << " to type: " << *llfnty->getParamType(j) << '\n';
llargs[j] = DtoBitCast(llargs[j], llfnty->getParamType(j));
}
}
}
}
}
#if 0
Logger::println("%d params passed", n);
for (int i=0; i<llargs.size(); ++i) {
assert(llargs[i]);
Logger::cout() << "arg["<<i<<"] = " << *llargs[i] << '\n';
}
#endif
// void returns cannot not be named
const char* varname = "";
if (llfnty->getReturnType() != LLType::VoidTy)
varname = "tmp";
//Logger::cout() << "Calling: " << *funcval << '\n';
// call the function
LLValue* retllval;
if(p->landingPads.empty())
{
llvm::CallInst* call = llvm::CallInst::Create(funcval, llargs.begin(), llargs.end(), varname, p->scopebb());
retllval = (retinptr) ? llargs[0] : call;
if (retinptr && dfn && dfn->func && dfn->func->runTimeHack) {
const LLType* rettype = getPtrToType(DtoType(type));
if (retllval->getType() != rettype) {
Logger::println("llvmRunTimeHack==true - force casting return value");
Logger::cout() << "from: " << *retllval->getType() << " to: " << *rettype << '\n';
retllval = DtoBitCast(retllval, rettype);
}
}
// set calling convention
if (dfn && dfn->func) {
int li = dfn->func->llvmInternal;
if (li != LLVMintrinsic && li != LLVMva_start && li != LLVMva_intrinsic) {
call->setCallingConv(DtoCallingConv(dlink));
}
}
/*else if (delegateCall) {
call->setCallingConv(DtoCallingConv(dlink));
}*/
else if (dfn && dfn->cc != (unsigned)-1) {
call->setCallingConv(dfn->cc);
}
else {
call->setCallingConv(DtoCallingConv(dlink));
}
// param attrs
call->setParamAttrs(palist);
}
else
{
llvm::BasicBlock* postinvoke = llvm::BasicBlock::Create("postinvoke", p->topfunc(), p->scopeend());
llvm::InvokeInst* call = llvm::InvokeInst::Create(funcval, postinvoke, *p->landingPads.rbegin(), llargs.begin(), llargs.end(), varname, p->scopebb());
p->scope() = IRScope(postinvoke, p->scopeend());
//FIXME: Code duplication!
retllval = (retinptr) ? llargs[0] : call;
if (retinptr && dfn && dfn->func && dfn->func->runTimeHack) {
const LLType* rettype = getPtrToType(DtoType(type));
if (retllval->getType() != rettype) {
Logger::println("llvmRunTimeHack==true - force casting return value");
Logger::cout() << "from: " << *retllval->getType() << " to: " << *rettype << '\n';
retllval = DtoBitCast(retllval, rettype);
}
}
// set calling convention
if (dfn && dfn->func) {
int li = dfn->func->llvmInternal;
if (li != LLVMintrinsic && li != LLVMva_start && li != LLVMva_intrinsic) {
call->setCallingConv(DtoCallingConv(dlink));
}
}
/*else if (delegateCall) {
call->setCallingConv(DtoCallingConv(dlink));
}*/
else if (dfn && dfn->cc != (unsigned)-1) {
call->setCallingConv(dfn->cc);
}
else {
call->setCallingConv(DtoCallingConv(dlink));
}
// param attrs
call->setParamAttrs(palist);
}
return new DImValue(type, retllval, isInPlace);
}
//////////////////////////////////////////////////////////////////////////////////////////
DValue* CastExp::toElem(IRState* p)
{
Logger::print("CastExp::toElem: %s | %s\n", toChars(), type->toChars());
LOG_SCOPE;
DValue* u = e1->toElem(p);
DValue* v = DtoCast(u, to);
if (v->isSlice()) {
assert(!gIR->topexp() || gIR->topexp()->e1 != this);
return v;
}
else if (DLRValue* lr = u->isLRValue())
return new DLRValue(lr->getLType(), lr->getLVal(), to, v->getRVal());
else if (u->isVar() && u->isVar()->lval)
return new DLRValue(e1->type, u->getLVal(), to, v->getRVal());
else if (gIR->topexp() && gIR->topexp()->e1 == this)
return new DLRValue(e1->type, u->getLVal(), to, v->getRVal());
return v;
}
//////////////////////////////////////////////////////////////////////////////////////////
DValue* SymOffExp::toElem(IRState* p)
{
Logger::print("SymOffExp::toElem: %s | %s\n", toChars(), type->toChars());
LOG_SCOPE;
assert(0 && "SymOffExp::toElem should no longer be called :/");
return 0;
}
//////////////////////////////////////////////////////////////////////////////////////////
DValue* AddrExp::toElem(IRState* p)
{
Logger::println("AddrExp::toElem: %s | %s", toChars(), type->toChars());
LOG_SCOPE;
DValue* v = e1->toElem(p);
if (v->isField()) {
Logger::println("is field");
return v;
}
else if (DFuncValue* fv = v->isFunc()) {
Logger::println("is func");
//Logger::println("FuncDeclaration");
FuncDeclaration* fd = fv->func;
assert(fd);
DtoForceDeclareDsymbol(fd);
return new DFuncValue(fd, fd->ir.irFunc->func);
}
else if (DImValue* im = v->isIm()) {
Logger::println("is immediate");
return v;
}
Logger::println("is nothing special");
return new DFieldValue(type, v->getLVal(), false);
}
//////////////////////////////////////////////////////////////////////////////////////////
DValue* PtrExp::toElem(IRState* p)
{
Logger::println("PtrExp::toElem: %s | %s", toChars(), type->toChars());
LOG_SCOPE;
DValue* a = e1->toElem(p);
if (p->topexp() && p->topexp()->e1 == this) {
Logger::println("lval PtrExp");
return new DVarValue(type, a->getRVal(), true);
}
// this should be deterministic but right now lvalue casts don't propagate lvalueness !?!
LLValue* lv = a->getRVal();
LLValue* v = lv;
if (DtoCanLoad(v))
v = DtoLoad(v);
return new DLRValue(e1->type, lv, type, v);
}
//////////////////////////////////////////////////////////////////////////////////////////
DValue* DotVarExp::toElem(IRState* p)
{
Logger::print("DotVarExp::toElem: %s | %s\n", toChars(), type->toChars());
LOG_SCOPE;
DValue* l = e1->toElem(p);
Type* t = DtoDType(type);
Type* e1type = DtoDType(e1->type);
//Logger::println("e1type=%s", e1type->toChars());
//Logger::cout() << *DtoType(e1type) << '\n';
if (VarDeclaration* vd = var->isVarDeclaration()) {
LLValue* arrptr;
if (e1type->ty == Tpointer) {
assert(e1type->next->ty == Tstruct);
TypeStruct* ts = (TypeStruct*)e1type->next;
Logger::println("Struct member offset:%d", vd->offset);
LLValue* src = l->getRVal();
DStructIndexVector vdoffsets;
arrptr = DtoIndexStruct(src, ts->sym, vd->type, vd->offset, vdoffsets);
}
else if (e1type->ty == Tclass) {
TypeClass* tc = (TypeClass*)e1type;
Logger::println("Class member offset: %d", vd->offset);
LLValue* src = l->getRVal();
DStructIndexVector vdoffsets;
arrptr = DtoIndexClass(src, tc->sym, vd->type, vd->offset, vdoffsets);
}
else
assert(0);
//Logger::cout() << "mem: " << *arrptr << '\n';
return new DVarValue(vd, arrptr, true);
}
else if (FuncDeclaration* fdecl = var->isFuncDeclaration())
{
DtoResolveDsymbol(fdecl);
LLValue* funcval;
LLValue* vthis2 = 0;
if (e1type->ty == Tclass) {
TypeClass* tc = (TypeClass*)e1type;
if (tc->sym->isInterfaceDeclaration()) {
vthis2 = DtoCastInterfaceToObject(l, NULL)->getRVal();
}
}
LLValue* vthis = l->getRVal();
if (!vthis2) vthis2 = vthis;
//unsigned cc = (unsigned)-1;
// super call
if (e1->op == TOKsuper) {
DtoForceDeclareDsymbol(fdecl);
funcval = fdecl->ir.irFunc->func;
assert(funcval);
}
// normal virtual call
else if (fdecl->isAbstract() || (!fdecl->isFinal() && fdecl->isVirtual())) {
assert(fdecl->vtblIndex > 0);
assert(e1type->ty == Tclass);
LLValue* zero = llvm::ConstantInt::get(LLType::Int32Ty, 0, false);
LLValue* vtblidx = llvm::ConstantInt::get(LLType::Int32Ty, (size_t)fdecl->vtblIndex, false);
//Logger::cout() << "vthis: " << *vthis << '\n';
funcval = DtoGEP(vthis, zero, zero);
funcval = DtoLoad(funcval);
funcval = DtoGEP(funcval, zero, vtblidx, toChars());
funcval = DtoLoad(funcval);
#if OPAQUE_VTBLS
funcval = DtoBitCast(funcval, getPtrToType(DtoType(fdecl->type)));
Logger::cout() << "funcval casted: " << *funcval << '\n';
#endif
}
// static call
else {
DtoForceDeclareDsymbol(fdecl);
funcval = fdecl->ir.irFunc->func;
assert(funcval);
//assert(funcval->getType() == DtoType(fdecl->type));
}
return new DFuncValue(fdecl, funcval, vthis2);
}
else {
printf("unsupported dotvarexp: %s\n", var->toChars());
}
assert(0);
return 0;
}
//////////////////////////////////////////////////////////////////////////////////////////
DValue* ThisExp::toElem(IRState* p)
{
Logger::print("ThisExp::toElem: %s | %s\n", toChars(), type->toChars());
LOG_SCOPE;
if (VarDeclaration* vd = var->isVarDeclaration()) {
LLValue* v;
v = p->func()->decl->ir.irFunc->thisVar;
if (llvm::isa<llvm::AllocaInst>(v))
v = DtoLoad(v);
const LLType* t = DtoType(type);
if (v->getType() != t)
v = DtoBitCast(v, t);
return new DThisValue(vd, v);
}
assert(0);
return 0;
}
//////////////////////////////////////////////////////////////////////////////////////////
DValue* IndexExp::toElem(IRState* p)
{
Logger::print("IndexExp::toElem: %s | %s\n", toChars(), type->toChars());
LOG_SCOPE;
DValue* l = e1->toElem(p);
Type* e1type = DtoDType(e1->type);
p->arrays.push_back(l); // if $ is used it must be an array so this is fine.
DValue* r = e2->toElem(p);
p->arrays.pop_back();
LLValue* zero = DtoConstUint(0);
LLValue* one = DtoConstUint(1);
LLValue* arrptr = 0;
if (e1type->ty == Tpointer) {
arrptr = DtoGEP1(l->getRVal(),r->getRVal());
}
else if (e1type->ty == Tsarray) {
arrptr = DtoGEP(l->getRVal(), zero, r->getRVal());
}
else if (e1type->ty == Tarray) {
arrptr = DtoArrayPtr(l);
arrptr = DtoGEP1(arrptr,r->getRVal());
}
else if (e1type->ty == Taarray) {
return DtoAAIndex(type, l, r);
}
else {
Logger::println("invalid index exp! e1type: %s", e1type->toChars());
assert(0);
}
return new DVarValue(type, arrptr, true);
}
//////////////////////////////////////////////////////////////////////////////////////////
DValue* SliceExp::toElem(IRState* p)
{
Logger::print("SliceExp::toElem: %s | %s\n", toChars(), type->toChars());
LOG_SCOPE;
// this is the new slicing code, it's different in that a full slice will no longer retain the original pointer.
// but this was broken if there *was* no original pointer, ie. a slice of a slice...
// now all slices have *both* the 'len' and 'ptr' fields set to != null.
// value being sliced
LLValue* elen;
LLValue* eptr;
DValue* e = e1->toElem(p);
// handle pointer slicing
Type* etype = e1->type->toBasetype();
if (etype->ty == Tpointer)
{
assert(lwr);
eptr = e->getRVal();
}
// array slice
else
{
eptr = DtoArrayPtr(e);
}
// has lower bound, pointer needs adjustment
if (lwr)
{
// must have upper bound too then
assert(upr);
// get bounds (make sure $ works)
p->arrays.push_back(e);
DValue* lo = lwr->toElem(p);
DValue* up = upr->toElem(p);
p->arrays.pop_back();
LLValue* vlo = lo->getRVal();
LLValue* vup = up->getRVal();
// offset by lower
eptr = DtoGEP1(eptr, vlo);
// adjust length
elen = p->ir->CreateSub(vup, vlo, "tmp");
}
// no bounds or full slice -> just convert to slice
else
{
assert(e1->type->toBasetype()->ty != Tpointer);
elen = DtoArrayLen(e);
}
return new DSliceValue(type, elen, eptr);
}
//////////////////////////////////////////////////////////////////////////////////////////
DValue* CmpExp::toElem(IRState* p)
{
Logger::print("CmpExp::toElem: %s | %s\n", toChars(), type->toChars());
LOG_SCOPE;
DValue* l = e1->toElem(p);
DValue* r = e2->toElem(p);
Type* t = DtoDType(e1->type);
Type* e2t = DtoDType(e2->type);
assert(DtoType(t) == DtoType(e2t));
LLValue* eval = 0;
if (t->isintegral() || t->ty == Tpointer)
{
llvm::ICmpInst::Predicate cmpop;
bool skip = false;
switch(op)
{
case TOKlt:
case TOKul:
cmpop = t->isunsigned() ? llvm::ICmpInst::ICMP_ULT : llvm::ICmpInst::ICMP_SLT;
break;
case TOKle:
case TOKule:
cmpop = t->isunsigned() ? llvm::ICmpInst::ICMP_ULE : llvm::ICmpInst::ICMP_SLE;
break;
case TOKgt:
case TOKug:
cmpop = t->isunsigned() ? llvm::ICmpInst::ICMP_UGT : llvm::ICmpInst::ICMP_SGT;
break;
case TOKge:
case TOKuge:
cmpop = t->isunsigned() ? llvm::ICmpInst::ICMP_UGE : llvm::ICmpInst::ICMP_SGE;
break;
case TOKue:
cmpop = llvm::ICmpInst::ICMP_EQ;
break;
case TOKlg:
cmpop = llvm::ICmpInst::ICMP_NE;
break;
case TOKleg:
skip = true;
eval = llvm::ConstantInt::getTrue();
break;
case TOKunord:
skip = true;
eval = llvm::ConstantInt::getFalse();
break;
default:
assert(0);
}
if (!skip)
{
LLValue* a = l->getRVal();
LLValue* b = r->getRVal();
Logger::cout() << "type 1: " << *a << '\n';
Logger::cout() << "type 2: " << *b << '\n';
eval = new llvm::ICmpInst(cmpop, a, b, "tmp", p->scopebb());
}
}
else if (t->isfloating())
{
llvm::FCmpInst::Predicate cmpop;
switch(op)
{
case TOKlt:
cmpop = llvm::FCmpInst::FCMP_OLT;break;
case TOKle:
cmpop = llvm::FCmpInst::FCMP_OLE;break;
case TOKgt:
cmpop = llvm::FCmpInst::FCMP_OGT;break;
case TOKge:
cmpop = llvm::FCmpInst::FCMP_OGE;break;
case TOKunord:
cmpop = llvm::FCmpInst::FCMP_UNO;break;
case TOKule:
cmpop = llvm::FCmpInst::FCMP_ULE;break;
case TOKul:
cmpop = llvm::FCmpInst::FCMP_ULT;break;
case TOKuge:
cmpop = llvm::FCmpInst::FCMP_UGE;break;
case TOKug:
cmpop = llvm::FCmpInst::FCMP_UGT;break;
case TOKue:
cmpop = llvm::FCmpInst::FCMP_UEQ;break;
case TOKlg:
cmpop = llvm::FCmpInst::FCMP_ONE;break;
case TOKleg:
cmpop = llvm::FCmpInst::FCMP_ORD;break;
default:
assert(0);
}
eval = new llvm::FCmpInst(cmpop, l->getRVal(), r->getRVal(), "tmp", p->scopebb());
}
else if (t->ty == Tsarray || t->ty == Tarray)
{
Logger::println("static or dynamic array");
eval = DtoArrayCompare(op,l,r);
}
else
{
assert(0 && "Unsupported CmpExp type");
}
return new DImValue(type, eval);
}
//////////////////////////////////////////////////////////////////////////////////////////
DValue* EqualExp::toElem(IRState* p)
{
Logger::print("EqualExp::toElem: %s | %s\n", toChars(), type->toChars());
LOG_SCOPE;
DValue* l = e1->toElem(p);
DValue* r = e2->toElem(p);
Type* t = DtoDType(e1->type);
Type* e2t = DtoDType(e2->type);
//assert(t == e2t);
LLValue* eval = 0;
if (t->isintegral() || t->ty == Tpointer)
{
Logger::println("integral or pointer");
llvm::ICmpInst::Predicate cmpop;
switch(op)
{
case TOKequal:
cmpop = llvm::ICmpInst::ICMP_EQ;
break;
case TOKnotequal:
cmpop = llvm::ICmpInst::ICMP_NE;
break;
default:
assert(0);
}
LLValue* lv = l->getRVal();
LLValue* rv = r->getRVal();
if (rv->getType() != lv->getType()) {
rv = DtoBitCast(rv, lv->getType());
}
eval = new llvm::ICmpInst(cmpop, lv, rv, "tmp", p->scopebb());
}
else if (t->iscomplex())
{
Logger::println("complex");
eval = DtoComplexEquals(op, l, r);
}
else if (t->isfloating())
{
Logger::println("floating");
llvm::FCmpInst::Predicate cmpop;
switch(op)
{
case TOKequal:
cmpop = llvm::FCmpInst::FCMP_OEQ;
break;
case TOKnotequal:
cmpop = llvm::FCmpInst::FCMP_UNE;
break;
default:
assert(0);
}
eval = new llvm::FCmpInst(cmpop, l->getRVal(), r->getRVal(), "tmp", p->scopebb());
}
else if (t->ty == Tsarray || t->ty == Tarray)
{
Logger::println("static or dynamic array");
eval = DtoArrayEquals(op,l,r);
}
else if (t->ty == Tdelegate)
{
Logger::println("delegate");
eval = DtoDelegateCompare(op,l->getRVal(),r->getRVal());
}
else
{
assert(0 && "Unsupported EqualExp type");
}
return new DImValue(type, eval);
}
//////////////////////////////////////////////////////////////////////////////////////////
DValue* PostExp::toElem(IRState* p)
{
Logger::print("PostExp::toElem: %s | %s\n", toChars(), type->toChars());
LOG_SCOPE;
DValue* l = e1->toElem(p);
DValue* r = e2->toElem(p);
LLValue* val = l->getRVal();
LLValue* post = 0;
Type* e1type = DtoDType(e1->type);
Type* e2type = DtoDType(e2->type);
if (e1type->isintegral())
{
assert(e2type->isintegral());
LLValue* one = llvm::ConstantInt::get(val->getType(), 1, !e2type->isunsigned());
if (op == TOKplusplus) {
post = llvm::BinaryOperator::createAdd(val,one,"tmp",p->scopebb());
}
else if (op == TOKminusminus) {
post = llvm::BinaryOperator::createSub(val,one,"tmp",p->scopebb());
}
}
else if (e1type->ty == Tpointer)
{
assert(e2type->isintegral());
LLConstant* minusone = llvm::ConstantInt::get(DtoSize_t(),(uint64_t)-1,true);
LLConstant* plusone = llvm::ConstantInt::get(DtoSize_t(),(uint64_t)1,false);
LLConstant* whichone = (op == TOKplusplus) ? plusone : minusone;
post = llvm::GetElementPtrInst::Create(val, whichone, "tmp", p->scopebb());
}
else if (e1type->isfloating())
{
assert(e2type->isfloating());
LLValue* one = DtoConstFP(e1type, 1.0);
if (op == TOKplusplus) {
post = llvm::BinaryOperator::createAdd(val,one,"tmp",p->scopebb());
}
else if (op == TOKminusminus) {
post = llvm::BinaryOperator::createSub(val,one,"tmp",p->scopebb());
}
}
else
assert(post);
DtoStore(post,l->getLVal());
return new DImValue(type,val,true);
}
//////////////////////////////////////////////////////////////////////////////////////////
DValue* NewExp::toElem(IRState* p)
{
Logger::print("NewExp::toElem: %s | %s\n", toChars(), type->toChars());
LOG_SCOPE;
assert(newtype);
Type* ntype = DtoDType(newtype);
// new class
if (ntype->ty == Tclass) {
Logger::println("new class");
return DtoNewClass((TypeClass*)ntype, this);
}
// new dynamic array
else if (ntype->ty == Tarray)
{
Logger::println("new dynamic array: %s", newtype->toChars());
// get dim
assert(arguments);
assert(arguments->dim >= 1);
if (arguments->dim == 1)
{
DValue* sz = ((Expression*)arguments->data[0])->toElem(p);
// allocate & init
return DtoNewDynArray(newtype, sz, true);
}
else
{
size_t ndims = arguments->dim;
std::vector<DValue*> dims(ndims);
for (size_t i=0; i<ndims; ++i)
dims[i] = ((Expression*)arguments->data[i])->toElem(p);
return DtoNewMulDimDynArray(newtype, &dims[0], ndims, true);
}
}
// new static array
else if (ntype->ty == Tsarray)
{
assert(0);
}
// new struct
else if (ntype->ty == Tstruct)
{
Logger::println("new struct on heap: %s\n", newtype->toChars());
// allocate
LLValue* mem = DtoNew(newtype);
// init
TypeStruct* ts = (TypeStruct*)ntype;
if (ts->isZeroInit()) {
DtoAggrZeroInit(mem);
}
else {
assert(ts->sym);
DtoAggrCopy(mem,ts->sym->ir.irStruct->init);
}
return new DImValue(type, mem, false);
}
// new basic type
else
{
// allocate
LLValue* mem = DtoNew(newtype);
DVarValue tmpvar(newtype, mem, true);
// default initialize
Expression* exp = newtype->defaultInit(loc);
DValue* iv = exp->toElem(gIR);
DtoAssign(&tmpvar, iv);
// return as pointer-to
return new DImValue(type, mem, false);
}
assert(0);
}
//////////////////////////////////////////////////////////////////////////////////////////
DValue* DeleteExp::toElem(IRState* p)
{
Logger::print("DeleteExp::toElem: %s | %s\n", toChars(), type->toChars());
LOG_SCOPE;
DValue* dval = e1->toElem(p);
Type* et = DtoDType(e1->type);
// simple pointer
if (et->ty == Tpointer)
{
LLValue* rval = dval->getRVal();
DtoDeleteMemory(rval);
if (dval->isVar() && dval->isVar()->lval)
DtoStore(llvm::Constant::getNullValue(rval->getType()), dval->getLVal());
}
// class
else if (et->ty == Tclass)
{
bool onstack = false;
TypeClass* tc = (TypeClass*)et;
if (tc->sym->isInterfaceDeclaration())
{
DtoDeleteInterface(dval->getRVal());
onstack = true;
}
else if (DVarValue* vv = dval->isVar()) {
if (vv->var && vv->var->onstack) {
if (tc->sym->dtors.dim > 0)
DtoFinalizeClass(dval->getRVal());
onstack = true;
}
}
if (!onstack) {
LLValue* rval = dval->getRVal();
DtoDeleteClass(rval);
}
if (!dval->isThis() && dval->isVar() && dval->isVar()->lval) {
LLValue* lval = dval->getLVal();
DtoStore(llvm::Constant::getNullValue(lval->getType()->getContainedType(0)), lval);
}
}
// dyn array
else if (et->ty == Tarray)
{
DtoDeleteArray(dval);
if (!dval->isSlice())
DtoSetArrayToNull(dval->getRVal());
}
// unknown/invalid
else
{
assert(0 && "invalid delete");
}
// no value to return
return NULL;
}
//////////////////////////////////////////////////////////////////////////////////////////
DValue* ArrayLengthExp::toElem(IRState* p)
{
Logger::print("ArrayLengthExp::toElem: %s | %s\n", toChars(), type->toChars());
LOG_SCOPE;
DValue* u = e1->toElem(p);
Logger::println("e1 = %s", e1->type->toChars());
if (p->topexp() && p->topexp()->e1 == this)
{
return new DArrayLenValue(e1->type, u->getLVal());
}
else
{
return new DImValue(type, DtoArrayLen(u));
}
}
//////////////////////////////////////////////////////////////////////////////////////////
DValue* AssertExp::toElem(IRState* p)
{
Logger::print("AssertExp::toElem: %s | %s\n", toChars(), type->toChars());
LOG_SCOPE;
// condition
DValue* cond = e1->toElem(p);
// create basic blocks
llvm::BasicBlock* oldend = p->scopeend();
llvm::BasicBlock* assertbb = llvm::BasicBlock::Create("assert", p->topfunc(), oldend);
llvm::BasicBlock* endbb = llvm::BasicBlock::Create("noassert", p->topfunc(), oldend);
// test condition
LLValue* condval = cond->getRVal();
condval = DtoBoolean(condval);
// branch
llvm::BranchInst::Create(endbb, assertbb, condval, p->scopebb());
// call assert runtime functions
p->scope() = IRScope(assertbb,endbb);
DtoAssert(&loc, msg ? msg->toElem(p) : NULL);
// assert inserts unreachable terminator
// if (!gIR->scopereturned())
// llvm::BranchInst::Create(endbb, p->scopebb());
// rewrite the scope
p->scope() = IRScope(endbb,oldend);
// no meaningful return value
return NULL;
}
//////////////////////////////////////////////////////////////////////////////////////////
DValue* NotExp::toElem(IRState* p)
{
Logger::print("NotExp::toElem: %s | %s\n", toChars(), type->toChars());
LOG_SCOPE;
DValue* u = e1->toElem(p);
LLValue* b = DtoBoolean(u->getRVal());
LLConstant* zero = llvm::ConstantInt::get(LLType::Int1Ty, 0, true);
b = p->ir->CreateICmpEQ(b,zero);
return new DImValue(type, b);
}
//////////////////////////////////////////////////////////////////////////////////////////
DValue* AndAndExp::toElem(IRState* p)
{
Logger::print("AndAndExp::toElem: %s | %s\n", toChars(), type->toChars());
LOG_SCOPE;
// allocate a temporary for the final result. failed to come up with a better way :/
LLValue* resval = 0;
llvm::BasicBlock* entryblock = &p->topfunc()->front();
resval = new llvm::AllocaInst(LLType::Int1Ty,"andandtmp",p->topallocapoint());
DValue* u = e1->toElem(p);
llvm::BasicBlock* oldend = p->scopeend();
llvm::BasicBlock* andand = llvm::BasicBlock::Create("andand", gIR->topfunc(), oldend);
llvm::BasicBlock* andandend = llvm::BasicBlock::Create("andandend", gIR->topfunc(), oldend);
LLValue* ubool = DtoBoolean(u->getRVal());
DtoStore(ubool,resval);
llvm::BranchInst::Create(andand,andandend,ubool,p->scopebb());
p->scope() = IRScope(andand, andandend);
DValue* v = e2->toElem(p);
LLValue* vbool = DtoBoolean(v->getRVal());
LLValue* uandvbool = llvm::BinaryOperator::create(llvm::BinaryOperator::And, ubool, vbool,"tmp",p->scopebb());
DtoStore(uandvbool,resval);
llvm::BranchInst::Create(andandend,p->scopebb());
p->scope() = IRScope(andandend, oldend);
resval = DtoLoad(resval);
return new DImValue(type, resval);
}
//////////////////////////////////////////////////////////////////////////////////////////
DValue* OrOrExp::toElem(IRState* p)
{
Logger::print("OrOrExp::toElem: %s | %s\n", toChars(), type->toChars());
LOG_SCOPE;
// allocate a temporary for the final result. failed to come up with a better way :/
LLValue* resval = 0;
llvm::BasicBlock* entryblock = &p->topfunc()->front();
resval = new llvm::AllocaInst(LLType::Int1Ty,"orortmp",p->topallocapoint());
DValue* u = e1->toElem(p);
llvm::BasicBlock* oldend = p->scopeend();
llvm::BasicBlock* oror = llvm::BasicBlock::Create("oror", gIR->topfunc(), oldend);
llvm::BasicBlock* ororend = llvm::BasicBlock::Create("ororend", gIR->topfunc(), oldend);
LLValue* ubool = DtoBoolean(u->getRVal());
DtoStore(ubool,resval);
llvm::BranchInst::Create(ororend,oror,ubool,p->scopebb());
p->scope() = IRScope(oror, ororend);
DValue* v = e2->toElem(p);
LLValue* vbool = DtoBoolean(v->getRVal());
DtoStore(vbool,resval);
llvm::BranchInst::Create(ororend,p->scopebb());
p->scope() = IRScope(ororend, oldend);
resval = new llvm::LoadInst(resval,"tmp",p->scopebb());
return new DImValue(type, resval);
}
//////////////////////////////////////////////////////////////////////////////////////////
#define BinBitExp(X,Y) \
DValue* X##Exp::toElem(IRState* p) \
{ \
Logger::print("%sExp::toElem: %s | %s\n", #X, toChars(), type->toChars()); \
LOG_SCOPE; \
DValue* u = e1->toElem(p); \
DValue* v = e2->toElem(p); \
LLValue* x = llvm::BinaryOperator::create(llvm::Instruction::Y, u->getRVal(), v->getRVal(), "tmp", p->scopebb()); \
return new DImValue(type, x); \
} \
\
DValue* X##AssignExp::toElem(IRState* p) \
{ \
Logger::print("%sAssignExp::toElem: %s | %s\n", #X, toChars(), type->toChars()); \
LOG_SCOPE; \
p->exps.push_back(IRExp(e1,e2,NULL)); \
DValue* u = e1->toElem(p); \
p->topexp()->v = u; \
DValue* v = e2->toElem(p); \
p->exps.pop_back(); \
LLValue* uval = u->getRVal(); \
LLValue* vval = v->getRVal(); \
LLValue* tmp = llvm::BinaryOperator::create(llvm::Instruction::Y, uval, vval, "tmp", p->scopebb()); \
DtoStore(DtoPointedType(u->getLVal(), tmp), u->getLVal()); \
return u; \
}
BinBitExp(And,And);
BinBitExp(Or,Or);
BinBitExp(Xor,Xor);
BinBitExp(Shl,Shl);
//BinBitExp(Shr,AShr);
BinBitExp(Ushr,LShr);
DValue* ShrExp::toElem(IRState* p)
{
Logger::print("ShrExp::toElem: %s | %s\n", toChars(), type->toChars());
LOG_SCOPE;
DValue* u = e1->toElem(p);
DValue* v = e2->toElem(p);
LLValue* x;
if (e1->type->isunsigned())
x = p->ir->CreateLShr(u->getRVal(), v->getRVal(), "tmp");
else
x = p->ir->CreateAShr(u->getRVal(), v->getRVal(), "tmp");
return new DImValue(type, x);
}
DValue* ShrAssignExp::toElem(IRState* p)
{
Logger::print("ShrAssignExp::toElem: %s | %s\n", toChars(), type->toChars());
LOG_SCOPE;
p->exps.push_back(IRExp(e1,e2,NULL));
DValue* u = e1->toElem(p);
p->topexp()->v = u;
DValue* v = e2->toElem(p);
p->exps.pop_back();
LLValue* uval = u->getRVal();
LLValue* vval = v->getRVal();
LLValue* tmp;
if (e1->type->isunsigned())
tmp = p->ir->CreateLShr(uval, vval, "tmp");
else
tmp = p->ir->CreateAShr(uval, vval, "tmp");
DtoStore(DtoPointedType(u->getLVal(), tmp), u->getLVal());
return u;
}
//////////////////////////////////////////////////////////////////////////////////////////
DValue* HaltExp::toElem(IRState* p)
{
Logger::print("HaltExp::toElem: %s\n", toChars());
LOG_SCOPE;
#if 1
DtoAssert(&loc, NULL);
#else
// call the new (?) trap intrinsic
p->ir->CreateCall(GET_INTRINSIC_DECL(trap),"");
new llvm::UnreachableInst(p->scopebb());
#endif
// this terminated the basicblock, start a new one
// this is sensible, since someone might goto behind the assert
// and prevents compiler errors if a terminator follows the assert
llvm::BasicBlock* oldend = gIR->scopeend();
llvm::BasicBlock* bb = llvm::BasicBlock::Create("afterhalt", p->topfunc(), oldend);
p->scope() = IRScope(bb,oldend);
return 0;
}
//////////////////////////////////////////////////////////////////////////////////////////
DValue* DelegateExp::toElem(IRState* p)
{
Logger::print("DelegateExp::toElem: %s | %s\n", toChars(), type->toChars());
LOG_SCOPE;
const LLPointerType* int8ptrty = getPtrToType(LLType::Int8Ty);
LLValue* lval;
bool inplace = false;
if (p->topexp() && p->topexp()->e2 == this) {
assert(p->topexp()->v);
lval = p->topexp()->v->getLVal();
inplace = true;
}
else {
lval = new llvm::AllocaInst(DtoType(type), "tmpdelegate", p->topallocapoint());
}
DValue* u = e1->toElem(p);
LLValue* uval;
if (DFuncValue* f = u->isFunc()) {
assert(f->func);
LLValue* contextptr = DtoNestedContext(f->func->toParent2()->isFuncDeclaration());
if (!contextptr)
uval = LLConstant::getNullValue(getVoidPtrType());
else
uval = DtoBitCast(contextptr, getVoidPtrType());
}
else {
DValue* src = u;
if (ClassDeclaration* cd = u->getType()->isClassHandle())
{
Logger::println("context type is class handle");
if (cd->isInterfaceDeclaration())
{
Logger::println("context type is interface");
src = DtoCastInterfaceToObject(u, ClassDeclaration::object->type);
}
}
uval = src->getRVal();
}
Logger::cout() << "context = " << *uval << '\n';
LLValue* context = DtoGEPi(lval,0,0);
LLValue* castcontext = DtoBitCast(uval, int8ptrty);
DtoStore(castcontext, context);
LLValue* fptr = DtoGEPi(lval,0,1);
Logger::println("func: '%s'", func->toPrettyChars());
LLValue* castfptr;
if (func->isVirtual())
castfptr = DtoVirtualFunctionPointer(u, func);
else if (func->isAbstract())
assert(0 && "TODO delegate to abstract method");
else if (func->toParent()->isInterfaceDeclaration())
assert(0 && "TODO delegate to interface method");
else
{
DtoForceDeclareDsymbol(func);
castfptr = func->ir.irFunc->func;
}
castfptr = DtoBitCast(castfptr, fptr->getType()->getContainedType(0));
DtoStore(castfptr, fptr);
return new DImValue(type, lval, inplace);
}
//////////////////////////////////////////////////////////////////////////////////////////
DValue* IdentityExp::toElem(IRState* p)
{
Logger::print("IdentityExp::toElem: %s | %s\n", toChars(), type->toChars());
LOG_SCOPE;
DValue* u = e1->toElem(p);
DValue* v = e2->toElem(p);
Type* t1 = e1->type->toBasetype();
// handle dynarray specially
if (t1->ty == Tarray)
return new DImValue(type, DtoDynArrayIs(op,u,v));
LLValue* l = u->getRVal();
LLValue* r = v->getRVal();
LLValue* eval = 0;
if (t1->ty == Tdelegate) {
if (v->isNull()) {
r = NULL;
}
else {
assert(l->getType() == r->getType());
}
eval = DtoDelegateCompare(op,l,r);
}
else if (t1->isfloating())
{
llvm::FCmpInst::Predicate pred = (op == TOKidentity) ? llvm::FCmpInst::FCMP_OEQ : llvm::FCmpInst::FCMP_ONE;
eval = new llvm::FCmpInst(pred, l, r, "tmp", p->scopebb());
}
else if (t1->ty == Tpointer)
{
if (l->getType() != r->getType()) {
if (v->isNull())
r = llvm::ConstantPointerNull::get(isaPointer(l->getType()));
else
r = DtoBitCast(r, l->getType());
}
llvm::ICmpInst::Predicate pred = (op == TOKidentity) ? llvm::ICmpInst::ICMP_EQ : llvm::ICmpInst::ICMP_NE;
eval = new llvm::ICmpInst(pred, l, r, "tmp", p->scopebb());
}
else {
llvm::ICmpInst::Predicate pred = (op == TOKidentity) ? llvm::ICmpInst::ICMP_EQ : llvm::ICmpInst::ICMP_NE;
//Logger::cout() << "l = " << *l << " r = " << *r << '\n';
eval = new llvm::ICmpInst(pred, l, r, "tmp", p->scopebb());
}
return new DImValue(type, eval);
}
//////////////////////////////////////////////////////////////////////////////////////////
DValue* CommaExp::toElem(IRState* p)
{
Logger::print("CommaExp::toElem: %s | %s\n", toChars(), type->toChars());
LOG_SCOPE;
DValue* u = e1->toElem(p);
DValue* v = e2->toElem(p);
assert(e2->type == type);
return v;
}
//////////////////////////////////////////////////////////////////////////////////////////
DValue* CondExp::toElem(IRState* p)
{
Logger::print("CondExp::toElem: %s | %s\n", toChars(), type->toChars());
LOG_SCOPE;
Type* dtype = DtoDType(type);
const LLType* resty = DtoType(dtype);
// allocate a temporary for the final result. failed to come up with a better way :/
llvm::BasicBlock* entryblock = &p->topfunc()->front();
LLValue* resval = new llvm::AllocaInst(resty,"condtmp",p->topallocapoint());
DVarValue* dvv = new DVarValue(type, resval, true);
llvm::BasicBlock* oldend = p->scopeend();
llvm::BasicBlock* condtrue = llvm::BasicBlock::Create("condtrue", gIR->topfunc(), oldend);
llvm::BasicBlock* condfalse = llvm::BasicBlock::Create("condfalse", gIR->topfunc(), oldend);
llvm::BasicBlock* condend = llvm::BasicBlock::Create("condend", gIR->topfunc(), oldend);
DValue* c = econd->toElem(p);
LLValue* cond_val = DtoBoolean(c->getRVal());
llvm::BranchInst::Create(condtrue,condfalse,cond_val,p->scopebb());
p->scope() = IRScope(condtrue, condfalse);
DValue* u = e1->toElem(p);
DtoAssign(dvv, u);
llvm::BranchInst::Create(condend,p->scopebb());
p->scope() = IRScope(condfalse, condend);
DValue* v = e2->toElem(p);
DtoAssign(dvv, v);
llvm::BranchInst::Create(condend,p->scopebb());
p->scope() = IRScope(condend, oldend);
return dvv;
}
//////////////////////////////////////////////////////////////////////////////////////////
DValue* ComExp::toElem(IRState* p)
{
Logger::print("ComExp::toElem: %s | %s\n", toChars(), type->toChars());
LOG_SCOPE;
DValue* u = e1->toElem(p);
LLValue* value = u->getRVal();
LLValue* minusone = llvm::ConstantInt::get(value->getType(), -1, true);
value = llvm::BinaryOperator::create(llvm::Instruction::Xor, value, minusone, "tmp", p->scopebb());
return new DImValue(type, value);
}
//////////////////////////////////////////////////////////////////////////////////////////
DValue* NegExp::toElem(IRState* p)
{
Logger::print("NegExp::toElem: %s | %s\n", toChars(), type->toChars());
LOG_SCOPE;
DValue* l = e1->toElem(p);
if (type->iscomplex()) {
return DtoComplexNeg(type, l);
}
LLValue* val = l->getRVal();
Type* t = DtoDType(type);
LLValue* zero = 0;
if (t->isintegral())
zero = llvm::ConstantInt::get(val->getType(), 0, true);
else if (t->isfloating()) {
zero = DtoConstFP(type, 0.0);
}
else
assert(0);
val = llvm::BinaryOperator::createSub(zero,val,"tmp",p->scopebb());
return new DImValue(type, val);
}
//////////////////////////////////////////////////////////////////////////////////////////
DValue* CatExp::toElem(IRState* p)
{
Logger::print("CatExp::toElem: %s | %s\n", toChars(), type->toChars());
LOG_SCOPE;
Type* t = DtoDType(type);
bool arrNarr = DtoDType(e1->type) == DtoDType(e2->type);
// array ~ array
if (arrNarr)
{
return DtoCatArrays(type, e1, e2);
}
// array ~ element
// element ~ array
else
{
return DtoCatArrayElement(type, e1, e2);
}
}
//////////////////////////////////////////////////////////////////////////////////////////
DValue* CatAssignExp::toElem(IRState* p)
{
Logger::print("CatAssignExp::toElem: %s | %s\n", toChars(), type->toChars());
LOG_SCOPE;
DValue* l = e1->toElem(p);
Type* e1type = DtoDType(e1->type);
Type* elemtype = DtoDType(e1type->next);
Type* e2type = DtoDType(e2->type);
if (e2type == elemtype) {
DSliceValue* slice = DtoCatAssignElement(l,e2);
DtoAssign(l, slice);
}
else if (e1type == e2type) {
DSliceValue* slice = DtoCatAssignArray(l,e2);
DtoAssign(l, slice);
}
else
assert(0 && "only one element at a time right now");
return l;
}
//////////////////////////////////////////////////////////////////////////////////////////
DValue* FuncExp::toElem(IRState* p)
{
Logger::print("FuncExp::toElem: %s | %s\n", toChars(), type->toChars());
LOG_SCOPE;
assert(fd);
if (fd->isNested()) Logger::println("nested");
Logger::println("kind = %s\n", fd->kind());
DtoForceDefineDsymbol(fd);
bool temp = false;
LLValue* lval = NULL;
if (p->topexp() && p->topexp()->e2 == this) {
assert(p->topexp()->v);
lval = p->topexp()->v->getLVal();
}
else {
const LLType* dgty = DtoType(type);
Logger::cout() << "delegate without explicit storage:" << '\n' << *dgty << '\n';
lval = new llvm::AllocaInst(dgty,"dgstorage",p->topallocapoint());
temp = true;
}
LLValue* context = DtoGEPi(lval,0,0);
const LLPointerType* pty = isaPointer(context->getType()->getContainedType(0));
LLValue* llvmNested = p->func()->decl->ir.irFunc->nestedVar;
if (llvmNested == NULL) {
LLValue* nullcontext = llvm::ConstantPointerNull::get(pty);
DtoStore(nullcontext, context);
}
else {
LLValue* nestedcontext = DtoBitCast(llvmNested, pty);
DtoStore(nestedcontext, context);
}
LLValue* fptr = DtoGEPi(lval,0,1,"tmp",p->scopebb());
assert(fd->ir.irFunc->func);
LLValue* castfptr = DtoBitCast(fd->ir.irFunc->func, fptr->getType()->getContainedType(0));
DtoStore(castfptr, fptr);
if (temp)
return new DVarValue(type, lval, true);
else
return new DImValue(type, lval, true);
}
//////////////////////////////////////////////////////////////////////////////////////////
DValue* ArrayLiteralExp::toElem(IRState* p)
{
Logger::print("ArrayLiteralExp::toElem: %s | %s\n", toChars(), type->toChars());
LOG_SCOPE;
// D types
Type* arrayType = type->toBasetype();
Type* elemType = arrayType->nextOf()->toBasetype();
// is dynamic ?
bool dyn = (arrayType->ty == Tarray);
// length
size_t len = elements->dim;
// store into slice?
bool sliceInPlace = false;
// llvm target type
const LLType* llType = DtoType(arrayType);
Logger::cout() << (dyn?"dynamic":"static") << " array literal with length " << len << " of D type: '" << arrayType->toChars() << "' has llvm type: '" << *llType << "'\n";
// llvm storage type
const LLType* llStoType = LLArrayType::get(DtoType(elemType), len);
Logger::cout() << "llvm storage type: '" << *llStoType << "'\n";
// dst pointer
LLValue* dstMem = 0;
// rvalue of assignment
if (p->topexp() && p->topexp()->e2 == this)
{
DValue* topval = p->topexp()->v;
// slice assignment (copy)
if (DSliceValue* s = topval->isSlice())
{
assert(s->ptr->getType()->getContainedType(0) == llStoType->getContainedType(0));
dstMem = DtoBitCast(s->ptr, getPtrToType(llStoType));
sliceInPlace = true;
// FIXME: insert bounds checks
}
// static array assignment
else if (topval->getType()->toBasetype()->ty == Tsarray)
{
dstMem = topval->getLVal();
}
// otherwise we still need to alloca storage
}
// alloca storage if not found already
if (!dstMem)
{
dstMem = new llvm::AllocaInst(llStoType, "arrayliteral", p->topallocapoint());
}
Logger::cout() << "using dest mem: " << *dstMem << '\n';
// store elements
for (size_t i=0; i<len; ++i)
{
Expression* expr = (Expression*)elements->data[i];
LLValue* elemAddr = DtoGEPi(dstMem,0,i,"tmp",p->scopebb());
// emulate assignment
DVarValue* vv = new DVarValue(expr->type, elemAddr, true);
p->exps.push_back(IRExp(NULL, expr, vv));
DValue* e = expr->toElem(p);
p->exps.pop_back();
DImValue* im = e->isIm();
if (!im || !im->inPlace()) {
DtoAssign(vv, e);
}
}
// return storage directly ?
if (!dyn || (dyn && sliceInPlace))
return new DImValue(type, dstMem, true);
// wrap in a slice
return new DSliceValue(type, DtoConstSize_t(len), DtoGEPi(dstMem,0,0,"tmp"));
}
//////////////////////////////////////////////////////////////////////////////////////////
LLConstant* ArrayLiteralExp::toConstElem(IRState* p)
{
Logger::print("ArrayLiteralExp::toConstElem: %s | %s\n", toChars(), type->toChars());
LOG_SCOPE;
const LLType* t = DtoType(type);
Logger::cout() << "array literal has llvm type: " << *t << '\n';
assert(isaArray(t));
const LLArrayType* arrtype = isaArray(t);
assert(arrtype->getNumElements() == elements->dim);
std::vector<LLConstant*> vals(elements->dim, NULL);
for (unsigned i=0; i<elements->dim; ++i)
{
Expression* expr = (Expression*)elements->data[i];
vals[i] = expr->toConstElem(p);
}
return llvm::ConstantArray::get(arrtype, vals);
}
//////////////////////////////////////////////////////////////////////////////////////////
DValue* StructLiteralExp::toElem(IRState* p)
{
Logger::print("StructLiteralExp::toElem: %s | %s\n", toChars(), type->toChars());
LOG_SCOPE;
LLValue* sptr;
const LLType* llt = DtoType(type);
LLValue* mem = 0;
bool isinplace = true;
// already has memory (r-value of assignment)
IRExp* topexp = p->topexp();
if (topexp && topexp->e2 == this && !topexp->v->isSlice())
{
assert(topexp->e2 == this);
sptr = topexp->v->getLVal();
}
// temporary struct literal
else
{
sptr = new llvm::AllocaInst(llt,"tmpstructliteral",p->topallocapoint());
isinplace = false;
}
// num elements in literal
unsigned n = elements->dim;
// unions might have different types for each literal
if (sd->ir.irStruct->hasUnions) {
// build the type of the literal
std::vector<const LLType*> tys;
for (unsigned i=0; i<n; ++i) {
Expression* vx = (Expression*)elements->data[i];
if (!vx) continue;
tys.push_back(DtoType(vx->type));
}
const LLStructType* t = LLStructType::get(tys);
if (t != llt) {
if (getABITypeSize(t) != getABITypeSize(llt)) {
Logger::cout() << "got size " << getABITypeSize(t) << ", expected " << getABITypeSize(llt) << '\n';
assert(0 && "type size mismatch");
}
sptr = DtoBitCast(sptr, getPtrToType(t));
Logger::cout() << "sptr type is now: " << *t << '\n';
}
}
// build
unsigned j = 0;
for (unsigned i=0; i<n; ++i)
{
Expression* vx = (Expression*)elements->data[i];
if (!vx) continue;
Logger::cout() << "getting index " << j << " of " << *sptr << '\n';
LLValue* arrptr = DtoGEPi(sptr,0,j);
DValue* darrptr = new DVarValue(vx->type, arrptr, true);
p->exps.push_back(IRExp(NULL,vx,darrptr));
DValue* ve = vx->toElem(p);
p->exps.pop_back();
if (!ve->inPlace())
DtoAssign(darrptr, ve);
j++;
}
return new DImValue(type, sptr, isinplace);
}
//////////////////////////////////////////////////////////////////////////////////////////
LLConstant* StructLiteralExp::toConstElem(IRState* p)
{
Logger::print("StructLiteralExp::toConstElem: %s | %s\n", toChars(), type->toChars());
LOG_SCOPE;
unsigned n = elements->dim;
std::vector<LLConstant*> vals(n, NULL);
for (unsigned i=0; i<n; ++i)
{
Expression* vx = (Expression*)elements->data[i];
vals[i] = vx->toConstElem(p);
}
assert(DtoDType(type)->ty == Tstruct);
const LLType* t = DtoType(type);
const LLStructType* st = isaStruct(t);
return llvm::ConstantStruct::get(st,vals);
}
//////////////////////////////////////////////////////////////////////////////////////////
DValue* InExp::toElem(IRState* p)
{
Logger::print("InExp::toElem: %s | %s\n", toChars(), type->toChars());
LOG_SCOPE;
DValue* key = e1->toElem(p);
DValue* aa = e2->toElem(p);
return DtoAAIn(type, aa, key);
}
DValue* RemoveExp::toElem(IRState* p)
{
Logger::print("RemoveExp::toElem: %s\n", toChars());
LOG_SCOPE;
DValue* aa = e1->toElem(p);
DValue* key = e2->toElem(p);
DtoAARemove(aa, key);
return NULL; // does not produce anything useful
}
//////////////////////////////////////////////////////////////////////////////////////////
DValue* AssocArrayLiteralExp::toElem(IRState* p)
{
Logger::print("AssocArrayLiteralExp::toElem: %s | %s\n", toChars(), type->toChars());
LOG_SCOPE;
assert(keys);
assert(values);
assert(keys->dim == values->dim);
Type* aatype = DtoDType(type);
Type* vtype = aatype->next;
const LLType* aalltype = DtoType(type);
// it should be possible to avoid the temporary in some cases
LLValue* tmp = new llvm::AllocaInst(aalltype,"aaliteral",p->topallocapoint());
DValue* aa = new DVarValue(type, tmp, true);
DtoStore(LLConstant::getNullValue(aalltype), tmp);
const size_t n = keys->dim;
for (size_t i=0; i<n; ++i)
{
Expression* ekey = (Expression*)keys->data[i];
Expression* eval = (Expression*)values->data[i];
Logger::println("(%u) aa[%s] = %s", i, ekey->toChars(), eval->toChars());
// index
DValue* key = ekey->toElem(p);
DValue* mem = DtoAAIndex(vtype, aa, key);
// store
DValue* val = eval->toElem(p);
DtoAssign(mem, val);
}
return aa;
}
//////////////////////////////////////////////////////////////////////////////////////////
#define STUB(x) DValue *x::toElem(IRState * p) {error("Exp type "#x" not implemented: %s", toChars()); fatal(); return 0; }
//STUB(IdentityExp);
//STUB(CondExp);
//STUB(EqualExp);
//STUB(InExp);
//STUB(CmpExp);
//STUB(AndAndExp);
//STUB(OrOrExp);
//STUB(AndExp);
//STUB(AndAssignExp);
//STUB(OrExp);
//STUB(OrAssignExp);
//STUB(XorExp);
//STUB(XorAssignExp);
//STUB(ShrExp);
//STUB(ShrAssignExp);
//STUB(ShlExp);
//STUB(ShlAssignExp);
//STUB(UshrExp);
//STUB(UshrAssignExp);
//STUB(DivExp);
//STUB(DivAssignExp);
//STUB(MulExp);
//STUB(MulAssignExp);
//STUB(ModExp);
//STUB(ModAssignExp);
//STUB(CatExp);
//STUB(CatAssignExp);
//STUB(AddExp);
//STUB(AddAssignExp);
STUB(Expression);
//STUB(MinExp);
//STUB(MinAssignExp);
//STUB(PostExp);
//STUB(NullExp);
//STUB(ThisExp);
//STUB(CallExp);
STUB(DotTypeExp);
STUB(TypeDotIdExp);
//STUB(DotVarExp);
//STUB(AssertExp);
//STUB(FuncExp);
//STUB(DelegateExp);
//STUB(VarExp);
//STUB(DeclarationExp);
//STUB(NewExp);
//STUB(SymOffExp);
STUB(ScopeExp);
//STUB(AssignExp);
STUB(TypeExp);
//STUB(RealExp);
//STUB(ComplexExp);
//STUB(StringExp);
//STUB(IntegerExp);
STUB(BoolExp);
//STUB(NotExp);
//STUB(ComExp);
//STUB(NegExp);
//STUB(PtrExp);
//STUB(AddrExp);
//STUB(SliceExp);
//STUB(CastExp);
//STUB(DeleteExp);
//STUB(IndexExp);
//STUB(CommaExp);
//STUB(ArrayLengthExp);
//STUB(HaltExp);
//STUB(RemoveExp);
//STUB(ArrayLiteralExp);
//STUB(AssocArrayLiteralExp);
//STUB(StructLiteralExp);
STUB(TupleExp);
#define CONSTSTUB(x) LLConstant* x::toConstElem(IRState * p) {error("const Exp type "#x" not implemented: '%s' type: '%s'", toChars(), type->toChars()); fatal(); return NULL; }
CONSTSTUB(Expression);
//CONSTSTUB(IntegerExp);
//CONSTSTUB(RealExp);
//CONSTSTUB(NullExp);
//CONSTSTUB(ComplexExp);
//CONSTSTUB(StringExp);
//CONSTSTUB(VarExp);
//CONSTSTUB(ArrayLiteralExp);
CONSTSTUB(AssocArrayLiteralExp);
//CONSTSTUB(StructLiteralExp);
unsigned Type::totym() { return 0; }
type * Type::toCtype()
{
assert(0);
return 0;
}
type * Type::toCParamtype()
{
assert(0);
return 0;
}
Symbol * Type::toSymbol()
{
assert(0);
return 0;
}
type *
TypeTypedef::toCtype()
{
assert(0);
return 0;
}
type *
TypeTypedef::toCParamtype()
{
assert(0);
return 0;
}
void
TypedefDeclaration::toDebug()
{
assert(0);
}
type *
TypeEnum::toCtype()
{
assert(0);
return 0;
}
type *
TypeStruct::toCtype()
{
assert(0);
return 0;
}
void
StructDeclaration::toDebug()
{
assert(0);
}
Symbol * TypeClass::toSymbol()
{
assert(0);
return 0;
}
unsigned TypeFunction::totym()
{
assert(0);
return 0;
}
type * TypeFunction::toCtype()
{
assert(0);
return 0;
}
type * TypeSArray::toCtype()
{
assert(0);
return 0;
}
type *TypeSArray::toCParamtype()
{
assert(0);
return 0;
}
type * TypeDArray::toCtype()
{
assert(0);
return 0;
}
type * TypeAArray::toCtype()
{
assert(0);
return 0;
}
type * TypePointer::toCtype()
{
assert(0);
return 0;
}
type * TypeDelegate::toCtype()
{
assert(0);
return 0;
}
type * TypeClass::toCtype()
{
assert(0);
return 0;
}
void ClassDeclaration::toDebug()
{
assert(0);
}
//////////////////////////////////////////////////////////////////////////////
void
EnumDeclaration::toDebug()
{
assert(0);
}
int Dsymbol::cvMember(unsigned char*)
{
assert(0);
return 0;
}
int EnumDeclaration::cvMember(unsigned char*)
{
assert(0);
return 0;
}
int FuncDeclaration::cvMember(unsigned char*)
{
assert(0);
return 0;
}
int VarDeclaration::cvMember(unsigned char*)
{
assert(0);
return 0;
}
int TypedefDeclaration::cvMember(unsigned char*)
{
assert(0);
return 0;
}
void obj_includelib(char*){}
void
backend_init()
{
// now lazily loaded
//LLVM_D_InitRuntime();
}
void
backend_term()
{
LLVM_D_FreeRuntime();
}