Files
ldc/dmd2/mtype.c
David Nadlinger b99b78558b Hack to make nested struct .init results an rvalue.
The code still needs closer scrunity, as the 'nested' test
from the DMD testsuite doesn't fully pass yet.
2013-01-11 21:34:45 +01:00

9913 lines
257 KiB
C

// Compiler implementation of the D programming language
// Copyright (c) 1999-2012 by Digital Mars
// All Rights Reserved
// written by Walter Bright
// http://www.digitalmars.com
// http://www.dsource.org/projects/dmd/browser/trunk/src/mtype.c
// License for redistribution is by either the Artistic License
// in artistic.txt, or the GNU General Public License in gnu.txt.
// See the included readme.txt for details.
#define __C99FEATURES__ 1 // Needed on Solaris for NaN and more
#define __USE_ISOC99 1 // so signbit() gets defined
#if defined (__sun)
#include <alloca.h>
#endif
#ifdef __DMC__
#include <math.h>
#else
#include <cmath>
#endif
#include <stdio.h>
#include <assert.h>
#include <float.h>
#if _MSC_VER
#include <malloc.h>
#include <complex>
#include <limits>
#elif __DMC__
#include <complex.h>
#elif __MINGW32__
#include <malloc.h>
#endif
#include "rmem.h"
#include "port.h"
#include "dsymbol.h"
#include "mtype.h"
#include "scope.h"
#include "init.h"
#include "expression.h"
#include "statement.h"
#include "attrib.h"
#include "declaration.h"
#include "template.h"
#include "id.h"
#include "enum.h"
#include "import.h"
#include "aggregate.h"
#include "hdrgen.h"
#if IN_LLVM
//#include "gen/tollvm.h"
Ir* Type::sir = NULL;
unsigned GetTypeAlignment(Ir* ir, Type* t);
unsigned GetPointerSize(Ir* ir);
unsigned GetTypeStoreSize(Ir* ir, Type* t);
unsigned GetTypeAllocSize(Ir* ir, Type* t);
#endif
FuncDeclaration *hasThis(Scope *sc);
void ObjectNotFound(Identifier *id);
#define LOGDOTEXP 0 // log ::dotExp()
#define LOGDEFAULTINIT 0 // log ::defaultInit()
// Allow implicit conversion of T[] to T*
#define IMPLICIT_ARRAY_TO_PTR global.params.useDeprecated
/* These have default values for 32 bit code, they get
* adjusted for 64 bit code.
*/
int PTRSIZE = 4;
/* REALSIZE = size a real consumes in memory
* REALPAD = 'padding' added to the CPU real size to bring it up to REALSIZE
* REALALIGNSIZE = alignment for reals
*/
#if TARGET_OSX
int REALSIZE = 16;
int REALPAD = 6;
int REALALIGNSIZE = 16;
#elif TARGET_LINUX || TARGET_FREEBSD || TARGET_OPENBSD || TARGET_SOLARIS
int REALSIZE = 12; // LDC_FIXME: We differ from DMD here, yet target defines are never set?!
int REALPAD = 2;
int REALALIGNSIZE = 4;
#elif defined(IN_GCC)
int REALSIZE = 0;
int REALPAD = 0;
int REALALIGNSIZE = 0;
#else
int REALSIZE = 10;
int REALPAD = 0;
int REALALIGNSIZE = 2;
#endif
int Tsize_t = Tuns32;
int Tptrdiff_t = Tint32;
#if _WIN32 && !(defined __MINGW32__ || defined _MSC_VER)
static double zero = 0;
double Port::nan = NAN;
double Port::infinity = 1/zero;
#endif
/***************************** Type *****************************/
ClassDeclaration *Type::typeinfo;
ClassDeclaration *Type::typeinfoclass;
ClassDeclaration *Type::typeinfointerface;
ClassDeclaration *Type::typeinfostruct;
ClassDeclaration *Type::typeinfotypedef;
ClassDeclaration *Type::typeinfopointer;
ClassDeclaration *Type::typeinfoarray;
ClassDeclaration *Type::typeinfostaticarray;
ClassDeclaration *Type::typeinfoassociativearray;
ClassDeclaration *Type::typeinfovector;
ClassDeclaration *Type::typeinfoenum;
ClassDeclaration *Type::typeinfofunction;
ClassDeclaration *Type::typeinfodelegate;
ClassDeclaration *Type::typeinfotypelist;
ClassDeclaration *Type::typeinfoconst;
ClassDeclaration *Type::typeinfoinvariant;
ClassDeclaration *Type::typeinfoshared;
ClassDeclaration *Type::typeinfowild;
TemplateDeclaration *Type::associativearray;
TemplateDeclaration *Type::rtinfo;
Type *Type::tvoidptr;
Type *Type::tstring;
Type *Type::basic[TMAX];
unsigned char Type::mangleChar[TMAX];
unsigned short Type::sizeTy[TMAX];
StringTable Type::stringtable;
#if IN_LLVM
StringTable Type::deco_stringtable;
#endif
Type::Type(TY ty)
{
this->ty = ty;
this->mod = 0;
this->deco = NULL;
#if DMDV2
this->cto = NULL;
this->ito = NULL;
this->sto = NULL;
this->scto = NULL;
this->wto = NULL;
this->swto = NULL;
#endif
this->pto = NULL;
this->rto = NULL;
this->arrayof = NULL;
this->vtinfo = NULL;
#if IN_DMD
this->ctype = NULL;
#endif
#if IN_LLVM
this->irtype = NULL;
#endif
}
Type *Type::syntaxCopy()
{
print();
fprintf(stdmsg, "ty = %d\n", ty);
assert(0);
return this;
}
int Type::equals(Object *o)
{ Type *t;
t = (Type *)o;
//printf("Type::equals(%s, %s)\n", toChars(), t->toChars());
if (this == o ||
((t && deco == t->deco) && // deco strings are unique
deco != NULL)) // and semantic() has been run
{
//printf("deco = '%s', t->deco = '%s'\n", deco, t->deco);
return 1;
}
//if (deco && t && t->deco) printf("deco = '%s', t->deco = '%s'\n", deco, t->deco);
return 0;
}
char Type::needThisPrefix()
{
return 'M'; // name mangling prefix for functions needing 'this'
}
#if IN_LLVM
void Type::init(Ir* _sir)
#else
void Type::init()
#endif
{
stringtable.init(1543);
#if IN_LLVM
deco_stringtable.init();
#endif
Lexer::initKeywords();
for (size_t i = 0; i < TMAX; i++)
sizeTy[i] = sizeof(TypeBasic);
sizeTy[Tsarray] = sizeof(TypeSArray);
sizeTy[Tarray] = sizeof(TypeDArray);
sizeTy[Taarray] = sizeof(TypeAArray);
sizeTy[Tpointer] = sizeof(TypePointer);
sizeTy[Treference] = sizeof(TypeReference);
sizeTy[Tfunction] = sizeof(TypeFunction);
sizeTy[Tdelegate] = sizeof(TypeDelegate);
sizeTy[Tident] = sizeof(TypeIdentifier);
sizeTy[Tinstance] = sizeof(TypeInstance);
sizeTy[Ttypeof] = sizeof(TypeTypeof);
sizeTy[Tenum] = sizeof(TypeEnum);
sizeTy[Ttypedef] = sizeof(TypeTypedef);
sizeTy[Tstruct] = sizeof(TypeStruct);
sizeTy[Tclass] = sizeof(TypeClass);
sizeTy[Ttuple] = sizeof(TypeTuple);
sizeTy[Tslice] = sizeof(TypeSlice);
sizeTy[Treturn] = sizeof(TypeReturn);
sizeTy[Terror] = sizeof(TypeError);
sizeTy[Tnull] = sizeof(TypeNull);
mangleChar[Tarray] = 'A';
mangleChar[Tsarray] = 'G';
mangleChar[Taarray] = 'H';
mangleChar[Tpointer] = 'P';
mangleChar[Treference] = 'R';
mangleChar[Tfunction] = 'F';
mangleChar[Tident] = 'I';
mangleChar[Tclass] = 'C';
mangleChar[Tstruct] = 'S';
mangleChar[Tenum] = 'E';
mangleChar[Ttypedef] = 'T';
mangleChar[Tdelegate] = 'D';
mangleChar[Tnone] = 'n';
mangleChar[Tvoid] = 'v';
mangleChar[Tint8] = 'g';
mangleChar[Tuns8] = 'h';
mangleChar[Tint16] = 's';
mangleChar[Tuns16] = 't';
mangleChar[Tint32] = 'i';
mangleChar[Tuns32] = 'k';
mangleChar[Tint64] = 'l';
mangleChar[Tuns64] = 'm';
mangleChar[Tfloat32] = 'f';
mangleChar[Tfloat64] = 'd';
mangleChar[Tfloat80] = 'e';
mangleChar[Timaginary32] = 'o';
mangleChar[Timaginary64] = 'p';
mangleChar[Timaginary80] = 'j';
mangleChar[Tcomplex32] = 'q';
mangleChar[Tcomplex64] = 'r';
mangleChar[Tcomplex80] = 'c';
mangleChar[Tbool] = 'b';
mangleChar[Tascii] = 'a';
mangleChar[Twchar] = 'u';
mangleChar[Tdchar] = 'w';
// '@' shouldn't appear anywhere in the deco'd names
mangleChar[Tinstance] = '@';
mangleChar[Terror] = '@';
mangleChar[Ttypeof] = '@';
mangleChar[Ttuple] = 'B';
mangleChar[Tslice] = '@';
mangleChar[Treturn] = '@';
mangleChar[Tvector] = '@';
mangleChar[Tint128] = '@';
mangleChar[Tuns128] = '@';
mangleChar[Tnull] = 'n'; // same as TypeNone
for (size_t i = 0; i < TMAX; i++)
{ if (!mangleChar[i])
fprintf(stdmsg, "ty = %llu\n", (ulonglong)i);
assert(mangleChar[i]);
}
// Set basic types
static TY basetab[] =
{ Tvoid, Tint8, Tuns8, Tint16, Tuns16, Tint32, Tuns32, Tint64, Tuns64,
Tint128, Tuns128,
Tfloat32, Tfloat64, Tfloat80,
Timaginary32, Timaginary64, Timaginary80,
Tcomplex32, Tcomplex64, Tcomplex80,
Tbool,
Tascii, Twchar, Tdchar };
for (size_t i = 0; i < sizeof(basetab) / sizeof(basetab[0]); i++)
{ Type *t = new TypeBasic(basetab[i]);
t = t->merge();
basic[basetab[i]] = t;
}
basic[Terror] = new TypeError();
tnull = new TypeNull();
tnull->deco = tnull->merge()->deco;
tvoidptr = tvoid->pointerTo();
tstring = tchar->invariantOf()->arrayOf();
#if IN_DMD
if (global.params.is64bit)
{
PTRSIZE = 8;
if (global.params.isLinux || global.params.isFreeBSD || global.params.isSolaris)
{
REALSIZE = 16;
REALPAD = 6;
REALALIGNSIZE = 16;
}
Tsize_t = Tuns64;
Tptrdiff_t = Tint64;
}
else
{
PTRSIZE = 4;
#if TARGET_OSX
REALSIZE = 16;
REALPAD = 6;
#elif TARGET_LINUX || TARGET_FREEBSD || TARGET_OPENBSD || TARGET_SOLARIS
REALSIZE = 12;
REALPAD = 2;
#elif TARGET_WINDOS
REALSIZE = 10;
REALPAD = 0;
#elif defined(IN_GCC)
#else
assert(0);
#endif
Tsize_t = Tuns32;
Tptrdiff_t = Tint32;
}
#endif
#if IN_LLVM
sir = _sir;
if (global.params.is64bit)
{
Tsize_t = Tuns64;
Tptrdiff_t = Tint64;
}
else
{
Tsize_t = Tuns32;
Tptrdiff_t = Tint32;
}
PTRSIZE = GetPointerSize(sir);
REALSIZE = GetTypeAllocSize(sir, Type::basic[Tfloat80]);
REALPAD = REALSIZE - GetTypeStoreSize(sir, Type::basic[Tfloat80]);
REALALIGNSIZE = GetTypeAlignment(sir, Type::basic[Tfloat80]);
#endif
}
d_uns64 Type::size()
{
return size(0);
}
d_uns64 Type::size(Loc loc)
{
error(loc, "no size for type %s", toChars());
return 1;
}
unsigned Type::alignsize()
{
return size(0);
}
Type *Type::semantic(Loc loc, Scope *sc)
{
if (ty == Tint128 || ty == Tuns128)
{
error(loc, "cent and ucent types not implemented");
return terror;
}
return merge();
}
Type *Type::trySemantic(Loc loc, Scope *sc)
{
//printf("+trySemantic(%s) %d\n", toChars(), global.errors);
unsigned errors = global.startGagging();
Type *t = semantic(loc, sc);
if (global.endGagging(errors)) // if any errors happened
{
t = NULL;
}
//printf("-trySemantic(%s) %d\n", toChars(), global.errors);
return t;
}
/********************************
* Convert to 'const'.
*/
Type *Type::constOf()
{
//printf("Type::constOf() %p %s\n", this, toChars());
if (mod == MODconst)
return this;
if (cto)
{ assert(cto->mod == MODconst);
return cto;
}
Type *t = makeConst();
t = t->merge();
t->fixTo(this);
//printf("-Type::constOf() %p %s\n", t, t->toChars());
return t;
}
/********************************
* Convert to 'immutable'.
*/
Type *Type::invariantOf()
{
//printf("Type::invariantOf() %p %s\n", this, toChars());
if (isImmutable())
{
return this;
}
if (ito)
{
assert(ito->isImmutable());
return ito;
}
Type *t = makeInvariant();
t = t->merge();
t->fixTo(this);
//printf("\t%p\n", t);
return t;
}
/********************************
* Make type mutable.
*/
Type *Type::mutableOf()
{
//printf("Type::mutableOf() %p, %s\n", this, toChars());
Type *t = this;
if (isConst())
{ if (isShared())
t = sto; // shared const => shared
else
t = cto; // const => naked
assert(!t || t->isMutable());
}
else if (isImmutable())
{ t = ito; // immutable => naked
assert(!t || (t->isMutable() && !t->isShared()));
}
else if (isWild())
{
if (isShared())
t = sto; // shared wild => shared
else
t = wto; // wild => naked
assert(!t || t->isMutable());
}
if (!t)
{
t = makeMutable();
t = t->merge();
t->fixTo(this);
}
else
t = t->merge();
assert(t->isMutable());
return t;
}
Type *Type::sharedOf()
{
//printf("Type::sharedOf() %p, %s\n", this, toChars());
if (mod == MODshared)
{
return this;
}
if (sto)
{
assert(sto->isShared());
return sto;
}
Type *t = makeShared();
t = t->merge();
t->fixTo(this);
//printf("\t%p\n", t);
return t;
}
Type *Type::sharedConstOf()
{
//printf("Type::sharedConstOf() %p, %s\n", this, toChars());
if (mod == (MODshared | MODconst))
{
return this;
}
if (scto)
{
assert(scto->mod == (MODshared | MODconst));
return scto;
}
Type *t = makeSharedConst();
t = t->merge();
t->fixTo(this);
//printf("\t%p\n", t);
return t;
}
/********************************
* Make type unshared.
* 0 => 0
* const => const
* immutable => immutable
* shared => 0
* shared const => const
* wild => wild
* shared wild => wild
*/
Type *Type::unSharedOf()
{
//printf("Type::unSharedOf() %p, %s\n", this, toChars());
Type *t = this;
if (isShared())
{
if (isConst())
t = cto; // shared const => const
else if (isWild())
t = wto; // shared wild => wild
else
t = sto;
assert(!t || !t->isShared());
}
if (!t)
{
unsigned sz = sizeTy[ty];
t = (Type *)mem.malloc(sz);
memcpy(t, this, sz);
t->mod = mod & ~MODshared;
t->deco = NULL;
t->arrayof = NULL;
t->pto = NULL;
t->rto = NULL;
t->cto = NULL;
t->ito = NULL;
t->sto = NULL;
t->scto = NULL;
t->wto = NULL;
t->swto = NULL;
t->vtinfo = NULL;
t = t->merge();
t->fixTo(this);
}
else
t = t->merge();
assert(!t->isShared());
return t;
}
/********************************
* Convert to 'wild'.
*/
Type *Type::wildOf()
{
//printf("Type::wildOf() %p %s\n", this, toChars());
if (mod == MODwild)
{
return this;
}
if (wto)
{
assert(wto->isWild());
return wto;
}
Type *t = makeWild();
t = t->merge();
t->fixTo(this);
//printf("\t%p %s\n", t, t->toChars());
return t;
}
Type *Type::sharedWildOf()
{
//printf("Type::sharedWildOf() %p, %s\n", this, toChars());
if (mod == (MODshared | MODwild))
{
return this;
}
if (swto)
{
assert(swto->mod == (MODshared | MODwild));
return swto;
}
Type *t = makeSharedWild();
t = t->merge();
t->fixTo(this);
//printf("\t%p\n", t);
return t;
}
/**********************************
* For our new type 'this', which is type-constructed from t,
* fill in the cto, ito, sto, scto, wto shortcuts.
*/
void Type::fixTo(Type *t)
{
ito = t->ito;
#if 0
/* Cannot do these because these are not fully transitive:
* there can be a shared ptr to immutable, for example.
* Immutable subtypes are always immutable, though.
*/
cto = t->cto;
sto = t->sto;
scto = t->scto;
#endif
assert(mod != t->mod);
#define X(m, n) (((m) << 4) | (n))
switch (X(mod, t->mod))
{
case X(0, MODconst):
cto = t;
break;
case X(0, MODimmutable):
ito = t;
break;
case X(0, MODshared):
sto = t;
break;
case X(0, MODshared | MODconst):
scto = t;
break;
case X(0, MODwild):
wto = t;
break;
case X(0, MODshared | MODwild):
swto = t;
break;
case X(MODconst, 0):
cto = NULL;
goto L2;
case X(MODconst, MODimmutable):
ito = t;
goto L2;
case X(MODconst, MODshared):
sto = t;
goto L2;
case X(MODconst, MODshared | MODconst):
scto = t;
goto L2;
case X(MODconst, MODwild):
wto = t;
goto L2;
case X(MODconst, MODshared | MODwild):
swto = t;
L2:
t->cto = this;
break;
case X(MODimmutable, 0):
ito = NULL;
goto L3;
case X(MODimmutable, MODconst):
cto = t;
goto L3;
case X(MODimmutable, MODshared):
sto = t;
goto L3;
case X(MODimmutable, MODshared | MODconst):
scto = t;
goto L3;
case X(MODimmutable, MODwild):
wto = t;
goto L3;
case X(MODimmutable, MODshared | MODwild):
swto = t;
L3:
t->ito = this;
if (t->cto) t->cto->ito = this;
if (t->sto) t->sto->ito = this;
if (t->scto) t->scto->ito = this;
if (t->wto) t->wto->ito = this;
if (t->swto) t->swto->ito = this;
break;
case X(MODshared, 0):
sto = NULL;
goto L4;
case X(MODshared, MODconst):
cto = t;
goto L4;
case X(MODshared, MODimmutable):
ito = t;
goto L4;
case X(MODshared, MODshared | MODconst):
scto = t;
goto L4;
case X(MODshared, MODwild):
wto = t;
goto L4;
case X(MODshared, MODshared | MODwild):
swto = t;
L4:
t->sto = this;
break;
case X(MODshared | MODconst, 0):
scto = NULL;
goto L5;
case X(MODshared | MODconst, MODconst):
cto = t;
goto L5;
case X(MODshared | MODconst, MODimmutable):
ito = t;
goto L5;
case X(MODshared | MODconst, MODwild):
wto = t;
goto L5;
case X(MODshared | MODconst, MODshared):
sto = t;
goto L5;
case X(MODshared | MODconst, MODshared | MODwild):
swto = t;
L5:
t->scto = this;
break;
case X(MODwild, 0):
wto = NULL;
goto L6;
case X(MODwild, MODconst):
cto = t;
goto L6;
case X(MODwild, MODimmutable):
ito = t;
goto L6;
case X(MODwild, MODshared):
sto = t;
goto L6;
case X(MODwild, MODshared | MODconst):
scto = t;
goto L6;
case X(MODwild, MODshared | MODwild):
swto = t;
L6:
t->wto = this;
break;
case X(MODshared | MODwild, 0):
swto = NULL;
goto L7;
case X(MODshared | MODwild, MODconst):
cto = t;
goto L7;
case X(MODshared | MODwild, MODimmutable):
ito = t;
goto L7;
case X(MODshared | MODwild, MODshared):
sto = t;
goto L7;
case X(MODshared | MODwild, MODshared | MODconst):
scto = t;
goto L7;
case X(MODshared | MODwild, MODwild):
wto = t;
L7:
t->swto = this;
break;
default:
assert(0);
}
#undef X
check();
t->check();
//printf("fixTo: %s, %s\n", toChars(), t->toChars());
}
/***************************
* Look for bugs in constructing types.
*/
void Type::check()
{
switch (mod)
{
case 0:
if (cto) assert(cto->mod == MODconst);
if (ito) assert(ito->mod == MODimmutable);
if (sto) assert(sto->mod == MODshared);
if (scto) assert(scto->mod == (MODshared | MODconst));
if (wto) assert(wto->mod == MODwild);
if (swto) assert(swto->mod == (MODshared | MODwild));
break;
case MODconst:
if (cto) assert(cto->mod == 0);
if (ito) assert(ito->mod == MODimmutable);
if (sto) assert(sto->mod == MODshared);
if (scto) assert(scto->mod == (MODshared | MODconst));
if (wto) assert(wto->mod == MODwild);
if (swto) assert(swto->mod == (MODshared | MODwild));
break;
case MODimmutable:
if (cto) assert(cto->mod == MODconst);
if (ito) assert(ito->mod == 0);
if (sto) assert(sto->mod == MODshared);
if (scto) assert(scto->mod == (MODshared | MODconst));
if (wto) assert(wto->mod == MODwild);
if (swto) assert(swto->mod == (MODshared | MODwild));
break;
case MODshared:
if (cto) assert(cto->mod == MODconst);
if (ito) assert(ito->mod == MODimmutable);
if (sto) assert(sto->mod == 0);
if (scto) assert(scto->mod == (MODshared | MODconst));
if (wto) assert(wto->mod == MODwild);
if (swto) assert(swto->mod == (MODshared | MODwild));
break;
case MODshared | MODconst:
if (cto) assert(cto->mod == MODconst);
if (ito) assert(ito->mod == MODimmutable);
if (sto) assert(sto->mod == MODshared);
if (scto) assert(scto->mod == 0);
if (wto) assert(wto->mod == MODwild);
if (swto) assert(swto->mod == (MODshared | MODwild));
break;
case MODwild:
if (cto) assert(cto->mod == MODconst);
if (ito) assert(ito->mod == MODimmutable);
if (sto) assert(sto->mod == MODshared);
if (scto) assert(scto->mod == (MODshared | MODconst));
if (wto) assert(wto->mod == 0);
if (swto) assert(swto->mod == (MODshared | MODwild));
break;
case MODshared | MODwild:
if (cto) assert(cto->mod == MODconst);
if (ito) assert(ito->mod == MODimmutable);
if (sto) assert(sto->mod == MODshared);
if (scto) assert(scto->mod == (MODshared | MODconst));
if (wto) assert(wto->mod == MODwild);
if (swto) assert(swto->mod == 0);
break;
default:
assert(0);
}
Type *tn = nextOf();
if (tn && ty != Tfunction && tn->ty != Tfunction)
{ // Verify transitivity
switch (mod)
{
case 0:
break;
case MODconst:
assert(tn->mod & MODimmutable || tn->mod & MODconst);
break;
case MODimmutable:
assert(tn->mod == MODimmutable);
break;
case MODshared:
assert(tn->mod & MODimmutable || tn->mod & MODshared);
break;
case MODshared | MODconst:
assert(tn->mod & MODimmutable || tn->mod & (MODshared | MODconst));
break;
case MODwild:
assert(tn->mod);
break;
case MODshared | MODwild:
assert(tn->mod == MODimmutable || tn->mod == (MODshared | MODconst) || tn->mod == (MODshared | MODwild));
break;
default:
assert(0);
}
tn->check();
}
}
Type *Type::makeConst()
{
//printf("Type::makeConst() %p, %s\n", this, toChars());
if (cto)
return cto;
unsigned sz = sizeTy[ty];
Type *t = (Type *)mem.malloc(sz);
memcpy(t, this, sz);
t->mod = MODconst;
t->deco = NULL;
t->arrayof = NULL;
t->pto = NULL;
t->rto = NULL;
t->cto = NULL;
t->ito = NULL;
t->sto = NULL;
t->scto = NULL;
t->wto = NULL;
t->swto = NULL;
t->vtinfo = NULL;
#if IN_DMD
t->ctype = NULL;
#endif
//printf("-Type::makeConst() %p, %s\n", t, toChars());
return t;
}
Type *Type::makeInvariant()
{
if (ito)
return ito;
unsigned sz = sizeTy[ty];
Type *t = (Type *)mem.malloc(sz);
memcpy(t, this, sz);
t->mod = MODimmutable;
t->deco = NULL;
t->arrayof = NULL;
t->pto = NULL;
t->rto = NULL;
t->cto = NULL;
t->ito = NULL;
t->sto = NULL;
t->scto = NULL;
t->wto = NULL;
t->swto = NULL;
t->vtinfo = NULL;
#if IN_DMD
t->ctype = NULL;
#endif
return t;
}
Type *Type::makeShared()
{
if (sto)
return sto;
unsigned sz = sizeTy[ty];
Type *t = (Type *)mem.malloc(sz);
memcpy(t, this, sz);
t->mod = MODshared;
t->deco = NULL;
t->arrayof = NULL;
t->pto = NULL;
t->rto = NULL;
t->cto = NULL;
t->ito = NULL;
t->sto = NULL;
t->scto = NULL;
t->wto = NULL;
t->swto = NULL;
t->vtinfo = NULL;
#if IN_DMD
t->ctype = NULL;
#endif
return t;
}
Type *Type::makeSharedConst()
{
if (scto)
return scto;
unsigned sz = sizeTy[ty];
Type *t = (Type *)mem.malloc(sz);
memcpy(t, this, sz);
t->mod = MODshared | MODconst;
t->deco = NULL;
t->arrayof = NULL;
t->pto = NULL;
t->rto = NULL;
t->cto = NULL;
t->ito = NULL;
t->sto = NULL;
t->scto = NULL;
t->wto = NULL;
t->swto = NULL;
t->vtinfo = NULL;
#if IN_DMD
t->ctype = NULL;
#endif
return t;
}
Type *Type::makeWild()
{
if (wto)
return wto;
unsigned sz = sizeTy[ty];
Type *t = (Type *)mem.malloc(sz);
memcpy(t, this, sz);
t->mod = MODwild;
t->deco = NULL;
t->arrayof = NULL;
t->pto = NULL;
t->rto = NULL;
t->cto = NULL;
t->ito = NULL;
t->sto = NULL;
t->scto = NULL;
t->wto = NULL;
t->swto = NULL;
t->vtinfo = NULL;
#if IN_DMD
t->ctype = NULL;
#endif
return t;
}
Type *Type::makeSharedWild()
{
if (swto)
return swto;
unsigned sz = sizeTy[ty];
Type *t = (Type *)mem.malloc(sz);
memcpy(t, this, sz);
t->mod = MODshared | MODwild;
t->deco = NULL;
t->arrayof = NULL;
t->pto = NULL;
t->rto = NULL;
t->cto = NULL;
t->ito = NULL;
t->sto = NULL;
t->scto = NULL;
t->wto = NULL;
t->swto = NULL;
t->vtinfo = NULL;
#if IN_DMD
t->ctype = NULL;
#endif
return t;
}
Type *Type::makeMutable()
{
unsigned sz = sizeTy[ty];
Type *t = (Type *)mem.malloc(sz);
memcpy(t, this, sz);
t->mod = mod & MODshared;
t->deco = NULL;
t->arrayof = NULL;
t->pto = NULL;
t->rto = NULL;
t->cto = NULL;
t->ito = NULL;
t->sto = NULL;
t->scto = NULL;
t->wto = NULL;
t->swto = NULL;
t->vtinfo = NULL;
#if IN_DMD
t->ctype = NULL;
#endif
return t;
}
/*************************************
* Apply STCxxxx bits to existing type.
* Use *before* semantic analysis is run.
*/
Type *Type::addSTC(StorageClass stc)
{ Type *t = this;
if (stc & STCconst)
{ if (t->isShared())
t = t->makeSharedConst();
else
t = t->makeConst();
}
if (stc & STCimmutable)
t = t->makeInvariant();
if (stc & STCshared)
{ if (t->isConst())
t = t->makeSharedConst();
else
t = t->makeShared();
}
if (stc & STCwild)
{ if (t->isShared())
t = t->makeSharedWild();
else
t = t->makeWild();
}
return t;
}
/************************************
* Apply MODxxxx bits to existing type.
*/
Type *Type::castMod(unsigned mod)
{ Type *t;
switch (mod)
{
case 0:
t = unSharedOf()->mutableOf();
break;
case MODconst:
t = unSharedOf()->constOf();
break;
case MODimmutable:
t = invariantOf();
break;
case MODshared:
t = mutableOf()->sharedOf();
break;
case MODshared | MODconst:
t = sharedConstOf();
break;
case MODwild:
t = unSharedOf()->wildOf();
break;
case MODshared | MODwild:
t = sharedWildOf();
break;
default:
assert(0);
}
return t;
}
/************************************
* Add MODxxxx bits to existing type.
* We're adding, not replacing, so adding const to
* a shared type => "shared const"
*/
Type *Type::addMod(unsigned mod)
{ Type *t = this;
/* Add anything to immutable, and it remains immutable
*/
if (!t->isImmutable())
{
//printf("addMod(%x) %s\n", mod, toChars());
switch (mod)
{
case 0:
break;
case MODconst:
if (isShared())
t = sharedConstOf();
else
t = constOf();
break;
case MODimmutable:
t = invariantOf();
break;
case MODshared:
if (isConst())
t = sharedConstOf();
else if (isWild())
t = sharedWildOf();
else
t = sharedOf();
break;
case MODshared | MODconst:
t = sharedConstOf();
break;
case MODwild:
if (isConst())
;
else if (isShared())
t = sharedWildOf();
else
t = wildOf();
break;
case MODshared | MODwild:
if (isConst())
t = sharedConstOf();
else
t = sharedWildOf();
break;
default:
assert(0);
}
}
return t;
}
/************************************
* Add storage class modifiers to type.
*/
Type *Type::addStorageClass(StorageClass stc)
{
/* Just translate to MOD bits and let addMod() do the work
*/
unsigned mod = 0;
if (stc & STCimmutable)
mod = MODimmutable;
else
{ if (stc & (STCconst | STCin))
mod = MODconst;
else if (stc & STCwild) // const takes precedence over wild
mod |= MODwild;
if (stc & STCshared)
mod |= MODshared;
}
return addMod(mod);
}
Type *Type::pointerTo()
{
if (ty == Terror)
return this;
if (!pto)
{ Type *t;
t = new TypePointer(this);
pto = t->merge();
}
return pto;
}
Type *Type::referenceTo()
{
if (ty == Terror)
return this;
if (!rto)
{ Type *t;
t = new TypeReference(this);
rto = t->merge();
}
return rto;
}
Type *Type::arrayOf()
{
if (ty == Terror)
return this;
if (!arrayof)
{ Type *t;
t = new TypeDArray(this);
arrayof = t->merge();
}
return arrayof;
}
Type *Type::aliasthisOf()
{
AggregateDeclaration *ad = NULL;
if (ty == Tclass)
{
ad = ((TypeClass *)this)->sym;
goto L1;
}
else if (ty == Tstruct)
{
ad = ((TypeStruct *)this)->sym;
L1:
if (!ad->aliasthis)
return NULL;
Declaration *d = ad->aliasthis->isDeclaration();
if (d)
{ assert(d->type);
Type *t = d->type;
if (d->isVarDeclaration() && d->needThis())
{
t = t->addMod(this->mod);
}
else if (d->isFuncDeclaration())
{
FuncDeclaration *fd = (FuncDeclaration *)d;
Expression *ethis = this->defaultInit(0);
fd = fd->overloadResolve(0, ethis, NULL, 1);
if (fd)
{ TypeFunction *tf = (TypeFunction *)fd->type;
if (!tf->next && fd->inferRetType)
{
TemplateInstance *spec = fd->isSpeculative();
int olderrs = global.errors;
// If it isn't speculative, we need to show errors
unsigned oldgag = global.gag;
if (global.gag && !spec)
global.gag = 0;
fd->semantic3(fd->scope);
global.gag = oldgag;
// Update the template instantiation with the number
// of errors which occured.
if (spec && global.errors != olderrs)
spec->errors = global.errors - olderrs;
tf = (TypeFunction *)fd->type;
}
t = tf->next;
if (tf->isWild())
t = t->substWildTo(mod == 0 ? MODmutable : mod);
}
}
return t;
}
EnumDeclaration *ed = ad->aliasthis->isEnumDeclaration();
if (ed)
{
Type *t = ed->type;
return t;
}
TemplateDeclaration *td = ad->aliasthis->isTemplateDeclaration();
if (td)
{ assert(td->scope);
Expression *ethis = defaultInit(0);
FuncDeclaration *fd = td->deduceFunctionTemplate(td->scope, 0, NULL, ethis, NULL, 1);
if (fd)
{
//if (!fd->type->nextOf() && fd->inferRetType)
{
TemplateInstance *spec = fd->isSpeculative();
int olderrs = global.errors;
fd->semantic3(fd->scope);
// Update the template instantiation with the number
// of errors which occured.
if (spec && global.errors != olderrs)
spec->errors = global.errors - olderrs;
}
if (!fd->errors)
{
Type *t = fd->type->nextOf();
t = t->substWildTo(mod == 0 ? MODmutable : mod);
return t;
}
}
return Type::terror;
}
//printf("%s\n", ad->aliasthis->kind());
}
return NULL;
}
Dsymbol *Type::toDsymbol(Scope *sc)
{
return NULL;
}
/*******************************
* If this is a shell around another type,
* get that other type.
*/
Type *Type::toBasetype()
{
return this;
}
/***************************
* Return !=0 if modfrom can be implicitly converted to modto
*/
int MODimplicitConv(unsigned char modfrom, unsigned char modto)
{
if (modfrom == modto)
return 1;
//printf("MODimplicitConv(from = %x, to = %x)\n", modfrom, modto);
#define X(m, n) (((m) << 4) | (n))
switch (X(modfrom, modto))
{
case X(0, MODconst):
case X(MODimmutable, MODconst):
case X(MODwild, MODconst):
case X(MODimmutable, MODconst | MODshared):
case X(MODshared, MODconst | MODshared):
case X(MODwild | MODshared, MODconst | MODshared):
return 1;
default:
return 0;
}
#undef X
}
/***************************
* Return !=0 if a method of type '() modfrom' can call a method of type '() modto'.
*/
int MODmethodConv(unsigned char modfrom, unsigned char modto)
{
if (MODimplicitConv(modfrom, modto))
return 1;
#define X(m, n) (((m) << 4) | (n))
switch (X(modfrom, modto))
{
case X(0, MODwild):
case X(MODimmutable, MODwild):
case X(MODconst, MODwild):
case X(MODshared, MODshared|MODwild):
case X(MODshared|MODimmutable, MODshared|MODwild):
case X(MODshared|MODconst, MODshared|MODwild):
return 1;
default:
return 0;
}
#undef X
}
/***************************
* Merge mod bits to form common mod.
*/
int MODmerge(unsigned char mod1, unsigned char mod2)
{
if (mod1 == mod2)
return mod1;
//printf("MODmerge(1 = %x, 2 = %x)\n", modfrom, modto);
#define X(m, n) (((m) << 4) | (n))
// cases are commutative
#define Y(m, n) X(m, n): case X(n, m)
switch (X(mod1, mod2))
{
#if 0
case X(0, 0):
case X(MODconst, MODconst):
case X(MODimmutable, MODimmutable):
case X(MODshared, MODshared):
case X(MODshared | MODconst, MODshared | MODconst):
case X(MODwild, MODwild):
case X(MODshared | MODwild, MODshared | MODwild):
#endif
case Y(0, MODconst):
case Y(0, MODimmutable):
case Y(MODconst, MODimmutable):
case Y(MODconst, MODwild):
case Y(0, MODwild):
case Y(MODimmutable, MODwild):
return MODconst;
case Y(0, MODshared):
return MODshared;
case Y(0, MODshared | MODconst):
case Y(MODconst, MODshared):
case Y(MODconst, MODshared | MODconst):
case Y(MODimmutable, MODshared):
case Y(MODimmutable, MODshared | MODconst):
case Y(MODshared, MODshared | MODconst):
case Y(0, MODshared | MODwild):
case Y(MODconst, MODshared | MODwild):
case Y(MODimmutable, MODshared | MODwild):
case Y(MODshared, MODwild):
case Y(MODshared, MODshared | MODwild):
case Y(MODshared | MODconst, MODwild):
case Y(MODshared | MODconst, MODshared | MODwild):
return MODshared | MODconst;
case Y(MODwild, MODshared | MODwild):
return MODshared | MODwild;
default:
assert(0);
}
#undef Y
#undef X
assert(0);
return 0;
}
/*********************************
* Mangling for mod.
*/
void MODtoDecoBuffer(OutBuffer *buf, unsigned char mod)
{
switch (mod)
{ case 0:
break;
case MODconst:
buf->writeByte('x');
break;
case MODimmutable:
buf->writeByte('y');
break;
case MODshared:
buf->writeByte('O');
break;
case MODshared | MODconst:
buf->writestring("Ox");
break;
case MODwild:
buf->writestring("Ng");
break;
case MODshared | MODwild:
buf->writestring("ONg");
break;
default:
assert(0);
}
}
/*********************************
* Name for mod.
*/
void MODtoBuffer(OutBuffer *buf, unsigned char mod)
{
switch (mod)
{ case 0:
break;
case MODimmutable:
buf->writestring(Token::tochars[TOKimmutable]);
break;
case MODshared:
buf->writestring(Token::tochars[TOKshared]);
break;
case MODshared | MODconst:
buf->writestring(Token::tochars[TOKshared]);
buf->writeByte(' ');
case MODconst:
buf->writestring(Token::tochars[TOKconst]);
break;
case MODshared | MODwild:
buf->writestring(Token::tochars[TOKshared]);
buf->writeByte(' ');
case MODwild:
buf->writestring(Token::tochars[TOKwild]);
break;
default:
assert(0);
}
}
/********************************
* Name mangling.
* Input:
* flag 0x100 do not do const/invariant
*/
void Type::toDecoBuffer(OutBuffer *buf, int flag, bool mangle) // Possible conflict from merge
{
if (flag != mod && flag != 0x100)
{
MODtoDecoBuffer(buf, mod);
}
buf->writeByte(mangleChar[ty]);
}
/********************************
* For pretty-printing a type.
*/
char *Type::toChars()
{ OutBuffer *buf;
HdrGenState hgs;
buf = new OutBuffer();
toCBuffer(buf, NULL, &hgs);
return buf->toChars();
}
void Type::toCBuffer(OutBuffer *buf, Identifier *ident, HdrGenState *hgs)
{
toCBuffer2(buf, hgs, 0);
if (ident)
{ buf->writeByte(' ');
buf->writestring(ident->toChars());
}
}
void Type::toCBuffer2(OutBuffer *buf, HdrGenState *hgs, int mod)
{
if (mod != this->mod)
{ toCBuffer3(buf, hgs, mod);
return;
}
buf->writestring(toChars());
}
void Type::toCBuffer3(OutBuffer *buf, HdrGenState *hgs, int mod)
{
if (mod != this->mod)
{
if (!(mod & MODshared) && (this->mod & MODshared))
{
MODtoBuffer(buf, this->mod & MODshared);
buf->writeByte('(');
}
int m1 = this->mod & ~MODshared;
int m2 = (mod ^ m1) & m1;
if (m2)
{
MODtoBuffer(buf, m2);
buf->writeByte('(');
toCBuffer2(buf, hgs, this->mod);
buf->writeByte(')');
}
else
toCBuffer2(buf, hgs, this->mod);
if (!(mod & MODshared) && (this->mod & MODshared))
{
buf->writeByte(')');
}
}
}
void Type::modToBuffer(OutBuffer *buf)
{
if (mod)
{
buf->writeByte(' ');
MODtoBuffer(buf, mod);
}
}
/************************************
*/
Type *Type::merge()
{
if (ty == Terror) return this;
if (ty == Ttypeof) return this;
if (ty == Tident) return this;
if (ty == Tinstance) return this;
if (ty == Taarray && !((TypeAArray *)this)->index->merge()->deco)
return this;
if (nextOf() && !nextOf()->merge()->deco)
return this;
//printf("merge(%s)\n", toChars());
Type *t = this;
assert(t);
if (!deco)
{
OutBuffer buf;
StringValue *sv;
//if (next)
//next = next->merge();
toDecoBuffer(&buf, 0, false);
sv = stringtable.update((char *)buf.data, buf.offset);
if (sv->ptrvalue)
{ t = (Type *) sv->ptrvalue;
#ifdef DEBUG
if (!t->deco)
printf("t = %s\n", t->toChars());
#endif
assert(t->deco);
//printf("old value, deco = '%s' %p\n", t->deco, t->deco);
}
else
{
sv->ptrvalue = this;
#if IN_LLVM
// we still need deco strings to be unique
// or Type::equals fails, which breaks a bunch of stuff,
// like covariant member function overloads.
// TODO: Check if and why this is still needed.
OutBuffer mangle;
toDecoBuffer(&mangle, 0, true);
StringValue* sv2 = deco_stringtable.update((char *)mangle.data, mangle.offset);
if (sv2->ptrvalue)
{ Type* t2 = (Type *) sv2->ptrvalue;
assert(t2->deco);
deco = t2->deco;
}
else
{
sv2->ptrvalue = this;
deco = (char *)sv2->toDchars();
}
#else
deco = (char *)sv->toDchars();
#endif
//printf("new value, deco = '%s' %p\n", t->deco, t->deco);
}
}
return t;
}
/*************************************
* This version does a merge even if the deco is already computed.
* Necessary for types that have a deco, but are not merged.
*/
Type *Type::merge2()
{
//printf("merge2(%s)\n", toChars());
Type *t = this;
assert(t);
if (!t->deco)
return t->merge();
StringValue *sv = deco_stringtable.lookup((char *)t->deco, strlen(t->deco));
if (sv && sv->ptrvalue)
{ t = (Type *) sv->ptrvalue;
assert(t->deco);
}
else
assert(0);
return t;
}
int Type::isintegral()
{
return FALSE;
}
int Type::isfloating()
{
return FALSE;
}
int Type::isreal()
{
return FALSE;
}
int Type::isimaginary()
{
return FALSE;
}
int Type::iscomplex()
{
return FALSE;
}
int Type::isscalar()
{
return FALSE;
}
int Type::isunsigned()
{
return FALSE;
}
ClassDeclaration *Type::isClassHandle()
{
return NULL;
}
int Type::isscope()
{
return FALSE;
}
int Type::isString()
{
return FALSE;
}
/**************************
* Given:
* T a, b;
* Can we assign:
* a = b;
* ?
*/
int Type::isAssignable(int blit)
{
return TRUE;
}
int Type::checkBoolean()
{
return isscalar();
}
/********************************
* TRUE if when type goes out of scope, it needs a destructor applied.
* Only applies to value types, not ref types.
*/
int Type::needsDestruction()
{
return FALSE;
}
/*********************************
*
*/
bool Type::needsNested()
{
return false;
}
/*********************************
* Check type to see if it is based on a deprecated symbol.
*/
void Type::checkDeprecated(Loc loc, Scope *sc)
{
Dsymbol *s = toDsymbol(sc);
if (s)
s->checkDeprecated(loc, sc);
}
Expression *Type::defaultInit(Loc loc)
{
#if LOGDEFAULTINIT
printf("Type::defaultInit() '%s'\n", toChars());
#endif
return NULL;
}
/***************************************
* Use when we prefer the default initializer to be a literal,
* rather than a global immutable variable.
*/
Expression *Type::defaultInitLiteral(Loc loc)
{
#if LOGDEFAULTINIT
printf("Type::defaultInitLiteral() '%s'\n", toChars());
#endif
return defaultInit(loc);
}
int Type::isZeroInit(Loc loc)
{
return 0; // assume not
}
int Type::isBaseOf(Type *t, int *poffset)
{
return 0; // assume not
}
/********************************
* Determine if 'this' can be implicitly converted
* to type 'to'.
* Returns:
* MATCHnomatch, MATCHconvert, MATCHconst, MATCHexact
*/
MATCH Type::implicitConvTo(Type *to)
{
//printf("Type::implicitConvTo(this=%p, to=%p)\n", this, to);
//printf("from: %s\n", toChars());
//printf("to : %s\n", to->toChars());
if (this == to)
return MATCHexact;
#if IN_LLVM
if (deco == to->deco)
return MATCHexact;
#endif
return MATCHnomatch;
}
/*******************************
* Determine if converting 'this' to 'to' is an identity operation,
* a conversion to const operation, or the types aren't the same.
* Returns:
* MATCHexact 'this' == 'to'
* MATCHconst 'to' is const
* MATCHnomatch conversion to mutable or invariant
*/
MATCH Type::constConv(Type *to)
{
//printf("Type::constConv(this = %s, to = %s)\n", toChars(), to->toChars());
if (equals(to))
return MATCHexact;
if (ty == to->ty && MODimplicitConv(mod, to->mod))
return MATCHconst;
return MATCHnomatch;
}
/***************************************
* Return MOD bits matching this type to wild parameter type (tprm).
*/
unsigned Type::wildConvTo(Type *tprm)
{
//printf("Type::wildConvTo this = '%s', tprm = '%s'\n", toChars(), tprm->toChars());
if (tprm->isWild() && implicitConvTo(tprm->substWildTo(MODconst)))
{
if (isWild())
return MODwild;
else if (isConst())
return MODconst;
else if (isImmutable())
return MODimmutable;
else if (isMutable())
return MODmutable;
else
assert(0);
}
return 0;
}
Type *Type::substWildTo(unsigned mod)
{
//printf("+Type::substWildTo this = %s, mod = x%x\n", toChars(), mod);
Type *t;
if (nextOf())
{
t = nextOf()->substWildTo(mod);
if (t == nextOf())
t = this;
else
{
if (ty == Tpointer)
t = t->pointerTo();
else if (ty == Tarray)
t = t->arrayOf();
else if (ty == Tsarray)
t = new TypeSArray(t, ((TypeSArray *)this)->dim->syntaxCopy());
else if (ty == Taarray)
{
t = new TypeAArray(t, ((TypeAArray *)this)->index->syntaxCopy());
((TypeAArray *)t)->sc = ((TypeAArray *)this)->sc; // duplicate scope
}
else
assert(0);
t = t->merge();
}
}
else
t = this;
if (isWild())
{
if (mod & MODconst)
t = isShared() ? t->sharedConstOf() : t->constOf();
else if (mod & MODimmutable)
t = t->invariantOf();
else if (mod & MODwild)
t = isShared() ? t->sharedWildOf() : t->wildOf();
else
t = isShared() ? t->sharedOf() : t->mutableOf();
}
//printf("-Type::substWildTo t = %s\n", t->toChars());
return t;
}
/**************************
* Return type with the top level of it being mutable.
*/
Type *Type::toHeadMutable()
{
if (!mod)
return this;
return mutableOf();
}
Expression *Type::getProperty(Loc loc, Identifier *ident)
{ Expression *e;
#if LOGDOTEXP
printf("Type::getProperty(type = '%s', ident = '%s')\n", toChars(), ident->toChars());
#endif
if (ident == Id::__sizeof)
{
e = new IntegerExp(loc, size(loc), Type::tsize_t);
}
else if (ident == Id::__xalignof)
{
e = new IntegerExp(loc, alignsize(), Type::tsize_t);
}
else if (ident == Id::typeinfo)
{
error(loc, ".typeinfo deprecated, use typeid(type)");
e = getTypeInfo(NULL);
}
else if (ident == Id::init)
{
Type *tb = toBasetype();
e = defaultInitLiteral(loc);
if (tb->ty == Tstruct && tb->needsNested())
{
StructLiteralExp *se = (StructLiteralExp *)e;
#if IN_LLVM
se->sinit = (StaticStructInitDeclaration*)
(((VarExp*)defaultInit(loc))->var);
#else
se->sinit = se->sd->toInitializer();
#endif
}
}
else if (ident == Id::mangleof)
{ const char *s;
if (!deco)
{ s = toChars();
error(loc, "forward reference of type %s.mangleof", s);
}
else
s = deco;
e = new StringExp(loc, (char *)s, strlen(s), 'c');
Scope sc;
e = e->semantic(&sc);
}
else if (ident == Id::stringof)
{ char *s = toChars();
e = new StringExp(loc, s, strlen(s), 'c');
Scope sc;
e = e->semantic(&sc);
}
else
{
Dsymbol *s = NULL;
if (ty == Tstruct || ty == Tclass || ty == Tenum || ty == Ttypedef)
s = toDsymbol(NULL);
if (s)
s = s->search_correct(ident);
if (this != Type::terror)
{
if (s)
error(loc, "no property '%s' for type '%s', did you mean '%s'?", ident->toChars(), toChars(), s->toChars());
else
error(loc, "no property '%s' for type '%s'", ident->toChars(), toChars());
}
e = new ErrorExp();
}
return e;
}
Expression *Type::dotExp(Scope *sc, Expression *e, Identifier *ident)
{ VarDeclaration *v = NULL;
#if LOGDOTEXP
printf("Type::dotExp(e = '%s', ident = '%s')\n", e->toChars(), ident->toChars());
#endif
if (e->op == TOKdotvar)
{
DotVarExp *dv = (DotVarExp *)e;
v = dv->var->isVarDeclaration();
}
else if (e->op == TOKvar)
{
VarExp *ve = (VarExp *)e;
v = ve->var->isVarDeclaration();
}
if (v)
{
if (ident == Id::offset)
{
error(e->loc, ".offset deprecated, use .offsetof");
goto Loffset;
}
else if (ident == Id::offsetof)
{
Loffset:
if (v->storage_class & STCfield)
{
e = new IntegerExp(e->loc, v->offset, Type::tsize_t);
return e;
}
}
else if (ident == Id::init)
{
#if IN_LLVM
// LDC_FIXME: Port the below (from 2.061).
if (toBasetype()->ty == Tstruct &&
((TypeStruct *)toBasetype())->sym->isNested())
{
e = defaultInit(e->loc);
}
else
e = defaultInitLiteral(e->loc);
#else
Type *tb = toBasetype();
e = defaultInitLiteral(e->loc);
if (tb->ty == Tstruct && tb->needsNested())
{
StructLiteralExp *se = (StructLiteralExp *)e;
se->sinit = se->sd->toInitializer();
}
#endif
goto Lreturn;
}
}
if (ident == Id::typeinfo)
{
error(e->loc, ".typeinfo deprecated, use typeid(type)");
e = getTypeInfo(sc);
}
else if (ident == Id::stringof)
{ /* Bugzilla 3796: this should demangle e->type->deco rather than
* pretty-printing the type.
*/
char *s = e->toChars();
e = new StringExp(e->loc, s, strlen(s), 'c');
}
else
e = getProperty(e->loc, ident);
Lreturn:
e = e->semantic(sc);
return e;
}
/************************************
* Return alignment to use for this type.
*/
structalign_t Type::alignment()
{
return STRUCTALIGN_DEFAULT;
}
/***************************************
* Figures out what to do with an undefined member reference
* for classes and structs.
*/
Expression *Type::noMember(Scope *sc, Expression *e, Identifier *ident)
{
assert(ty == Tstruct || ty == Tclass);
AggregateDeclaration *sym = toDsymbol(sc)->isAggregateDeclaration();
assert(sym);
if (ident != Id::__sizeof &&
ident != Id::__xalignof &&
ident != Id::init &&
ident != Id::mangleof &&
ident != Id::stringof &&
ident != Id::offsetof)
{
/* Look for overloaded opDot() to see if we should forward request
* to it.
*/
Dsymbol *fd = search_function(sym, Id::opDot);
if (fd)
{ /* Rewrite e.ident as:
* e.opDot().ident
*/
e = build_overload(e->loc, sc, e, NULL, fd);
e = new DotIdExp(e->loc, e, ident);
return e->semantic(sc);
}
/* Look for overloaded opDispatch to see if we should forward request
* to it.
*/
fd = search_function(sym, Id::opDispatch);
if (fd)
{
/* Rewrite e.ident as:
* e.opDispatch!("ident")
*/
TemplateDeclaration *td = fd->isTemplateDeclaration();
if (!td)
{
fd->error("must be a template opDispatch(string s), not a %s", fd->kind());
return new ErrorExp();
}
StringExp *se = new StringExp(e->loc, ident->toChars());
Objects *tiargs = new Objects();
tiargs->push(se);
DotTemplateInstanceExp *dti = new DotTemplateInstanceExp(e->loc, e, Id::opDispatch, tiargs);
dti->ti->tempdecl = td;
return dti->semantic(sc, 1);
}
/* See if we should forward to the alias this.
*/
if (sym->aliasthis)
{ /* Rewrite e.ident as:
* e.aliasthis.ident
*/
e = resolveAliasThis(sc, e);
DotIdExp *die = new DotIdExp(e->loc, e, ident);
return die->semantic(sc, 1);
}
}
return Type::dotExp(sc, e, ident);
}
void Type::error(Loc loc, const char *format, ...)
{
va_list ap;
va_start(ap, format);
::verror(loc, format, ap);
va_end( ap );
}
void Type::warning(Loc loc, const char *format, ...)
{
va_list ap;
va_start(ap, format);
::vwarning(loc, format, ap);
va_end( ap );
}
Identifier *Type::getTypeInfoIdent(int internal)
{
// _init_10TypeInfo_%s
OutBuffer buf;
Identifier *id;
char *name;
size_t len;
if (internal)
{ buf.writeByte(mangleChar[ty]);
if (ty == Tarray)
buf.writeByte(mangleChar[((TypeArray *)this)->next->ty]);
}
else
toDecoBuffer(&buf, 0, true);
len = buf.offset;
name = (char *)alloca(19 + sizeof(len) * 3 + len + 1);
buf.writeByte(0);
#if TARGET_OSX
// The LINKc will prepend the _
sprintf(name, "D%dTypeInfo_%s6__initZ", 9 + len, buf.data);
#else
sprintf(name, "_D%dTypeInfo_%s6__initZ", 9 + len, buf.data);
#endif
#if !IN_LLVM
if (global.params.isWindows && !global.params.is64bit)
name++; // C mangling will add it back in
#endif
//printf("name = %s\n", name);
id = Lexer::idPool(name);
return id;
}
TypeBasic *Type::isTypeBasic()
{
return NULL;
}
void Type::resolve(Loc loc, Scope *sc, Expression **pe, Type **pt, Dsymbol **ps)
{
//printf("Type::resolve() %s, %d\n", toChars(), ty);
Type *t = semantic(loc, sc);
*pt = t;
*pe = NULL;
*ps = NULL;
}
/*******************************
* tparams == NULL:
* If one of the subtypes of this type is a TypeIdentifier,
* i.e. it's an unresolved type, return that type.
* tparams != NULL:
* Only when the TypeIdentifier is one of template parameters,
* return that type.
*/
Type *Type::reliesOnTident(TemplateParameters *tparams)
{
return NULL;
}
/***************************************
* Return !=0 if the type or any of its subtypes is wild.
*/
int Type::hasWild()
{
return mod & MODwild;
}
/********************************
* We've mistakenly parsed this as a type.
* Redo it as an Expression.
* NULL if cannot.
*/
Expression *Type::toExpression()
{
return NULL;
}
/***************************************
* Return !=0 if type has pointers that need to
* be scanned by the GC during a collection cycle.
*/
int Type::hasPointers()
{
//printf("Type::hasPointers() %s, %d\n", toChars(), ty);
return FALSE;
}
/*************************************
* If this is a type of something, return that something.
*/
Type *Type::nextOf()
{
return NULL;
}
/****************************************
* Return the mask that an integral type will
* fit into.
*/
uinteger_t Type::sizemask()
{ uinteger_t m;
switch (toBasetype()->ty)
{
case Tbool: m = 1; break;
case Tchar:
case Tint8:
case Tuns8: m = 0xFF; break;
case Twchar:
case Tint16:
case Tuns16: m = 0xFFFFUL; break;
case Tdchar:
case Tint32:
case Tuns32: m = 0xFFFFFFFFUL; break;
case Tint64:
case Tuns64: m = 0xFFFFFFFFFFFFFFFFULL; break;
default:
assert(0);
}
return m;
}
/* ============================= TypeError =========================== */
TypeError::TypeError()
: Type(Terror)
{
}
Type *TypeError::syntaxCopy()
{
// No semantic analysis done, no need to copy
return this;
}
void TypeError::toCBuffer(OutBuffer *buf, Identifier *ident, HdrGenState *hgs)
{
buf->writestring("_error_");
}
d_uns64 TypeError::size(Loc loc) { return 1; }
Expression *TypeError::getProperty(Loc loc, Identifier *ident) { return new ErrorExp(); }
Expression *TypeError::dotExp(Scope *sc, Expression *e, Identifier *ident) { return new ErrorExp(); }
Expression *TypeError::defaultInit(Loc loc) { return new ErrorExp(); }
Expression *TypeError::defaultInitLiteral(Loc loc) { return new ErrorExp(); }
/* ============================= TypeNext =========================== */
TypeNext::TypeNext(TY ty, Type *next)
: Type(ty)
{
this->next = next;
}
void TypeNext::toDecoBuffer(OutBuffer *buf, int flag, bool mangle)
{
Type::toDecoBuffer(buf, flag, mangle);
assert(next != this);
//printf("this = %p, ty = %d, next = %p, ty = %d\n", this, this->ty, next, next->ty);
next->toDecoBuffer(buf, (flag & 0x100) ? 0 : mod, mangle);
}
void TypeNext::checkDeprecated(Loc loc, Scope *sc)
{
Type::checkDeprecated(loc, sc);
if (next) // next can be NULL if TypeFunction and auto return type
next->checkDeprecated(loc, sc);
}
Type *TypeNext::reliesOnTident(TemplateParameters *tparams)
{
return next->reliesOnTident(tparams);
}
int TypeNext::hasWild()
{
return mod & MODwild || (next && next->hasWild());
}
/*******************************
* For TypeFunction, nextOf() can return NULL if the function return
* type is meant to be inferred, and semantic() hasn't yet ben run
* on the function. After semantic(), it must no longer be NULL.
*/
Type *TypeNext::nextOf()
{
return next;
}
Type *TypeNext::makeConst()
{
//printf("TypeNext::makeConst() %p, %s\n", this, toChars());
if (cto)
{ assert(cto->mod == MODconst);
return cto;
}
TypeNext *t = (TypeNext *)Type::makeConst();
if (ty != Tfunction && next->ty != Tfunction &&
//(next->deco || next->ty == Tfunction) &&
!next->isImmutable() && !next->isConst())
{ if (next->isShared())
t->next = next->sharedConstOf();
else
t->next = next->constOf();
}
if (ty == Taarray)
{
((TypeAArray *)t)->impl = NULL; // lazily recompute it
}
//printf("TypeNext::makeConst() returns %p, %s\n", t, t->toChars());
return t;
}
Type *TypeNext::makeInvariant()
{
//printf("TypeNext::makeInvariant() %s\n", toChars());
if (ito)
{ assert(ito->isImmutable());
return ito;
}
TypeNext *t = (TypeNext *)Type::makeInvariant();
if (ty != Tfunction && next->ty != Tfunction &&
//(next->deco || next->ty == Tfunction) &&
!next->isImmutable())
{ t->next = next->invariantOf();
}
if (ty == Taarray)
{
((TypeAArray *)t)->impl = NULL; // lazily recompute it
}
return t;
}
Type *TypeNext::makeShared()
{
//printf("TypeNext::makeShared() %s\n", toChars());
if (sto)
{ assert(sto->mod == MODshared);
return sto;
}
TypeNext *t = (TypeNext *)Type::makeShared();
if (ty != Tfunction && next->ty != Tfunction &&
//(next->deco || next->ty == Tfunction) &&
!next->isImmutable() && !next->isShared())
{
if (next->isConst())
t->next = next->sharedConstOf();
else if (next->isWild())
t->next = next->sharedWildOf();
else
t->next = next->sharedOf();
}
if (ty == Taarray)
{
((TypeAArray *)t)->impl = NULL; // lazily recompute it
}
//printf("TypeNext::makeShared() returns %p, %s\n", t, t->toChars());
return t;
}
Type *TypeNext::makeSharedConst()
{
//printf("TypeNext::makeSharedConst() %s\n", toChars());
if (scto)
{ assert(scto->mod == (MODshared | MODconst));
return scto;
}
TypeNext *t = (TypeNext *)Type::makeSharedConst();
if (ty != Tfunction && next->ty != Tfunction &&
//(next->deco || next->ty == Tfunction) &&
!next->isImmutable() && !next->isSharedConst())
{
t->next = next->sharedConstOf();
}
if (ty == Taarray)
{
((TypeAArray *)t)->impl = NULL; // lazily recompute it
}
//printf("TypeNext::makeSharedConst() returns %p, %s\n", t, t->toChars());
return t;
}
Type *TypeNext::makeWild()
{
//printf("TypeNext::makeWild() %s\n", toChars());
if (wto)
{ assert(wto->mod == MODwild);
return wto;
}
TypeNext *t = (TypeNext *)Type::makeWild();
if (ty != Tfunction && next->ty != Tfunction &&
//(next->deco || next->ty == Tfunction) &&
!next->isImmutable() && !next->isConst() && !next->isWild())
{
if (next->isShared())
t->next = next->sharedWildOf();
else
t->next = next->wildOf();
}
if (ty == Taarray)
{
((TypeAArray *)t)->impl = NULL; // lazily recompute it
}
//printf("TypeNext::makeWild() returns %p, %s\n", t, t->toChars());
return t;
}
Type *TypeNext::makeSharedWild()
{
//printf("TypeNext::makeSharedWild() %s\n", toChars());
if (swto)
{ assert(swto->isSharedWild());
return swto;
}
TypeNext *t = (TypeNext *)Type::makeSharedWild();
if (ty != Tfunction && next->ty != Tfunction &&
//(next->deco || next->ty == Tfunction) &&
!next->isImmutable() && !next->isSharedConst())
{
if (next->isConst())
t->next = next->sharedConstOf();
else
t->next = next->sharedWildOf();
}
if (ty == Taarray)
{
((TypeAArray *)t)->impl = NULL; // lazily recompute it
}
//printf("TypeNext::makeSharedWild() returns %p, %s\n", t, t->toChars());
return t;
}
Type *TypeNext::makeMutable()
{
//printf("TypeNext::makeMutable() %p, %s\n", this, toChars());
TypeNext *t = (TypeNext *)Type::makeMutable();
if (ty == Tsarray)
{
t->next = next->mutableOf();
}
if (ty == Taarray)
{
((TypeAArray *)t)->impl = NULL; // lazily recompute it
}
//printf("TypeNext::makeMutable() returns %p, %s\n", t, t->toChars());
return t;
}
MATCH TypeNext::constConv(Type *to)
{
//printf("TypeNext::constConv from = %s, to = %s\n", toChars(), to->toChars());
if (equals(to))
return MATCHexact;
if (!(ty == to->ty && MODimplicitConv(mod, to->mod)))
return MATCHnomatch;
Type *tn = to->nextOf();
if (!(tn && next->ty == tn->ty))
return MATCHnomatch;
MATCH m;
if (to->isConst()) // whole tail const conversion
{ // Recursive shared level check
m = next->constConv(tn);
if (m == MATCHexact)
m = MATCHconst;
}
else
{ //printf("\tnext => %s, to->next => %s\n", next->toChars(), tn->toChars());
m = next->equals(tn) ? MATCHconst : MATCHnomatch;
}
return m;
}
unsigned TypeNext::wildConvTo(Type *tprm)
{
if (ty == Tfunction)
return 0;
unsigned mod = 0;
Type *tn = tprm->nextOf();
if (!tn)
return 0;
mod = next->wildConvTo(tn);
if (!mod)
mod = Type::wildConvTo(tprm);
return mod;
}
void TypeNext::transitive()
{
/* Invoke transitivity of type attributes
*/
next = next->addMod(mod);
}
/* ============================= TypeBasic =========================== */
TypeBasic::TypeBasic(TY ty)
: Type(ty)
{ const char *d;
unsigned flags;
#define TFLAGSintegral 1
#define TFLAGSfloating 2
#define TFLAGSunsigned 4
#define TFLAGSreal 8
#define TFLAGSimaginary 0x10
#define TFLAGScomplex 0x20
#define TFLAGSvector 0x40 // valid for a SIMD vector type
flags = 0;
switch (ty)
{
case Tvoid: d = Token::toChars(TOKvoid);
flags |= TFLAGSvector;
break;
case Tint8: d = Token::toChars(TOKint8);
flags |= TFLAGSintegral | TFLAGSvector;
break;
case Tuns8: d = Token::toChars(TOKuns8);
flags |= TFLAGSintegral | TFLAGSunsigned | TFLAGSvector;
break;
case Tint16: d = Token::toChars(TOKint16);
flags |= TFLAGSintegral | TFLAGSvector;
break;
case Tuns16: d = Token::toChars(TOKuns16);
flags |= TFLAGSintegral | TFLAGSunsigned | TFLAGSvector;
break;
case Tint32: d = Token::toChars(TOKint32);
flags |= TFLAGSintegral | TFLAGSvector;
break;
case Tuns32: d = Token::toChars(TOKuns32);
flags |= TFLAGSintegral | TFLAGSunsigned | TFLAGSvector;
break;
case Tfloat32: d = Token::toChars(TOKfloat32);
flags |= TFLAGSfloating | TFLAGSreal | TFLAGSvector;
break;
case Tint64: d = Token::toChars(TOKint64);
flags |= TFLAGSintegral | TFLAGSvector;
break;
case Tuns64: d = Token::toChars(TOKuns64);
flags |= TFLAGSintegral | TFLAGSunsigned | TFLAGSvector;
break;
case Tint128: d = Token::toChars(TOKint128);
flags |= TFLAGSintegral;
break;
case Tuns128: d = Token::toChars(TOKuns128);
flags |= TFLAGSintegral | TFLAGSunsigned;
break;
case Tfloat64: d = Token::toChars(TOKfloat64);
flags |= TFLAGSfloating | TFLAGSreal | TFLAGSvector;
break;
case Tfloat80: d = Token::toChars(TOKfloat80);
flags |= TFLAGSfloating | TFLAGSreal;
break;
case Timaginary32: d = Token::toChars(TOKimaginary32);
flags |= TFLAGSfloating | TFLAGSimaginary;
break;
case Timaginary64: d = Token::toChars(TOKimaginary64);
flags |= TFLAGSfloating | TFLAGSimaginary;
break;
case Timaginary80: d = Token::toChars(TOKimaginary80);
flags |= TFLAGSfloating | TFLAGSimaginary;
break;
case Tcomplex32: d = Token::toChars(TOKcomplex32);
flags |= TFLAGSfloating | TFLAGScomplex;
break;
case Tcomplex64: d = Token::toChars(TOKcomplex64);
flags |= TFLAGSfloating | TFLAGScomplex;
break;
case Tcomplex80: d = Token::toChars(TOKcomplex80);
flags |= TFLAGSfloating | TFLAGScomplex;
break;
case Tbool: d = "bool";
flags |= TFLAGSintegral | TFLAGSunsigned;
break;
case Tascii: d = Token::toChars(TOKchar);
flags |= TFLAGSintegral | TFLAGSunsigned;
break;
case Twchar: d = Token::toChars(TOKwchar);
flags |= TFLAGSintegral | TFLAGSunsigned;
break;
case Tdchar: d = Token::toChars(TOKdchar);
flags |= TFLAGSintegral | TFLAGSunsigned;
break;
default: assert(0);
}
this->dstring = d;
this->flags = flags;
merge();
}
Type *TypeBasic::syntaxCopy()
{
// No semantic analysis done on basic types, no need to copy
return this;
}
char *TypeBasic::toChars()
{
return Type::toChars();
}
void TypeBasic::toCBuffer2(OutBuffer *buf, HdrGenState *hgs, int mod)
{
//printf("TypeBasic::toCBuffer2(mod = %d, this->mod = %d)\n", mod, this->mod);
if (mod != this->mod)
{ toCBuffer3(buf, hgs, mod);
return;
}
buf->writestring(dstring);
}
d_uns64 TypeBasic::size(Loc loc)
{ unsigned size;
//printf("TypeBasic::size()\n");
switch (ty)
{
case Tint8:
case Tuns8: size = 1; break;
case Tint16:
case Tuns16: size = 2; break;
case Tint32:
case Tuns32:
case Tfloat32:
case Timaginary32:
size = 4; break;
case Tint64:
case Tuns64:
case Tfloat64:
case Timaginary64:
size = 8; break;
case Tfloat80:
case Timaginary80:
size = REALSIZE; break;
case Tcomplex32:
size = 8; break;
case Tcomplex64:
case Tint128:
case Tuns128:
size = 16; break;
case Tcomplex80:
size = REALSIZE * 2; break;
case Tvoid:
//size = Type::size(); // error message
size = 1;
break;
case Tbool: size = 1; break;
case Tascii: size = 1; break;
case Twchar: size = 2; break;
case Tdchar: size = 4; break;
default:
assert(0);
break;
}
//printf("TypeBasic::size() = %d\n", size);
return size;
}
unsigned TypeBasic::alignsize()
{
if (ty == Tvoid)
return 1;
return GetTypeAlignment(sir, this);
#if TARGET_LINUX || TARGET_OSX || TARGET_FREEBSD || TARGET_OPENBSD || TARGET_SOLARIS
case Tint64:
case Tuns64:
sz = global.params.is64bit ? 8 : 4;
break;
case Tfloat64:
case Timaginary64:
sz = global.params.is64bit ? 8 : 4;
break;
case Tcomplex32:
sz = 4;
break;
case Tcomplex64:
sz = global.params.is64bit ? 8 : 4;
break;
#endif
#if IN_DMD
default:
sz = size(0);
break;
}
return sz;
#endif
}
#if IN_LLVM
unsigned TypeBasic::alignment()
{
if (global.params.cpu == ARCHx86_64 && (ty == Tfloat80 || ty == Timaginary80))
return 16;
return Type::alignment();
}
#endif
Expression *TypeBasic::getProperty(Loc loc, Identifier *ident)
{
Expression *e;
d_int64 ivalue;
#ifdef IN_GCC
real_t fvalue;
#else
d_float80 fvalue;
#endif
//printf("TypeBasic::getProperty('%s')\n", ident->toChars());
if (ident == Id::max)
{
switch (ty)
{
case Tint8: ivalue = 0x7F; goto Livalue;
case Tuns8: ivalue = 0xFF; goto Livalue;
case Tint16: ivalue = 0x7FFFUL; goto Livalue;
case Tuns16: ivalue = 0xFFFFUL; goto Livalue;
case Tint32: ivalue = 0x7FFFFFFFUL; goto Livalue;
case Tuns32: ivalue = 0xFFFFFFFFUL; goto Livalue;
case Tint64: ivalue = 0x7FFFFFFFFFFFFFFFLL; goto Livalue;
case Tuns64: ivalue = 0xFFFFFFFFFFFFFFFFULL; goto Livalue;
case Tbool: ivalue = 1; goto Livalue;
case Tchar: ivalue = 0xFF; goto Livalue;
case Twchar: ivalue = 0xFFFFUL; goto Livalue;
case Tdchar: ivalue = 0x10FFFFUL; goto Livalue;
case Tcomplex32:
case Timaginary32:
case Tfloat32: fvalue = FLT_MAX; goto Lfvalue;
case Tcomplex64:
case Timaginary64:
case Tfloat64: fvalue = DBL_MAX; goto Lfvalue;
case Tcomplex80:
case Timaginary80:
case Tfloat80: fvalue = Port::ldbl_max; goto Lfvalue;
}
}
else if (ident == Id::min)
{
switch (ty)
{
case Tint8: ivalue = -128; goto Livalue;
case Tuns8: ivalue = 0; goto Livalue;
case Tint16: ivalue = -32768; goto Livalue;
case Tuns16: ivalue = 0; goto Livalue;
case Tint32: ivalue = -2147483647L - 1; goto Livalue;
case Tuns32: ivalue = 0; goto Livalue;
case Tint64: ivalue = (-9223372036854775807LL-1LL); goto Livalue;
case Tuns64: ivalue = 0; goto Livalue;
case Tbool: ivalue = 0; goto Livalue;
case Tchar: ivalue = 0; goto Livalue;
case Twchar: ivalue = 0; goto Livalue;
case Tdchar: ivalue = 0; goto Livalue;
case Tcomplex32:
case Timaginary32:
case Tfloat32:
case Tcomplex64:
case Timaginary64:
case Tfloat64:
case Tcomplex80:
case Timaginary80:
case Tfloat80:
warning(loc, "min property is deprecated, use min_normal instead");
goto Lmin_normal;
}
}
else if (ident == Id::min_normal)
{
Lmin_normal:
switch (ty)
{
case Tcomplex32:
case Timaginary32:
case Tfloat32: fvalue = FLT_MIN; goto Lfvalue;
case Tcomplex64:
case Timaginary64:
case Tfloat64: fvalue = DBL_MIN; goto Lfvalue;
case Tcomplex80:
case Timaginary80:
case Tfloat80: fvalue = LDBL_MIN; goto Lfvalue;
}
}
else if (ident == Id::nan)
{
switch (ty)
{
case Tcomplex32:
case Tcomplex64:
case Tcomplex80:
case Timaginary32:
case Timaginary64:
case Timaginary80:
case Tfloat32:
case Tfloat64:
case Tfloat80:
{
fvalue = Port::nan;
goto Lfvalue;
}
}
}
else if (ident == Id::infinity)
{
switch (ty)
{
case Tcomplex32:
case Tcomplex64:
case Tcomplex80:
case Timaginary32:
case Timaginary64:
case Timaginary80:
case Tfloat32:
case Tfloat64:
case Tfloat80:
fvalue = Port::infinity;
goto Lfvalue;
}
}
else if (ident == Id::dig)
{
switch (ty)
{
case Tcomplex32:
case Timaginary32:
case Tfloat32: ivalue = FLT_DIG; goto Lint;
case Tcomplex64:
case Timaginary64:
case Tfloat64: ivalue = DBL_DIG; goto Lint;
case Tcomplex80:
case Timaginary80:
case Tfloat80: ivalue = LDBL_DIG; goto Lint;
}
}
else if (ident == Id::epsilon)
{
switch (ty)
{
case Tcomplex32:
case Timaginary32:
case Tfloat32: fvalue = FLT_EPSILON; goto Lfvalue;
case Tcomplex64:
case Timaginary64:
case Tfloat64: fvalue = DBL_EPSILON; goto Lfvalue;
case Tcomplex80:
case Timaginary80:
case Tfloat80: fvalue = LDBL_EPSILON; goto Lfvalue;
}
}
else if (ident == Id::mant_dig)
{
switch (ty)
{
case Tcomplex32:
case Timaginary32:
case Tfloat32: ivalue = FLT_MANT_DIG; goto Lint;
case Tcomplex64:
case Timaginary64:
case Tfloat64: ivalue = DBL_MANT_DIG; goto Lint;
case Tcomplex80:
case Timaginary80:
case Tfloat80: ivalue = LDBL_MANT_DIG; goto Lint;
}
}
else if (ident == Id::max_10_exp)
{
switch (ty)
{
case Tcomplex32:
case Timaginary32:
case Tfloat32: ivalue = FLT_MAX_10_EXP; goto Lint;
case Tcomplex64:
case Timaginary64:
case Tfloat64: ivalue = DBL_MAX_10_EXP; goto Lint;
case Tcomplex80:
case Timaginary80:
case Tfloat80: ivalue = LDBL_MAX_10_EXP; goto Lint;
}
}
else if (ident == Id::max_exp)
{
switch (ty)
{
case Tcomplex32:
case Timaginary32:
case Tfloat32: ivalue = FLT_MAX_EXP; goto Lint;
case Tcomplex64:
case Timaginary64:
case Tfloat64: ivalue = DBL_MAX_EXP; goto Lint;
case Tcomplex80:
case Timaginary80:
case Tfloat80: ivalue = LDBL_MAX_EXP; goto Lint;
}
}
else if (ident == Id::min_10_exp)
{
switch (ty)
{
case Tcomplex32:
case Timaginary32:
case Tfloat32: ivalue = FLT_MIN_10_EXP; goto Lint;
case Tcomplex64:
case Timaginary64:
case Tfloat64: ivalue = DBL_MIN_10_EXP; goto Lint;
case Tcomplex80:
case Timaginary80:
case Tfloat80: ivalue = LDBL_MIN_10_EXP; goto Lint;
}
}
else if (ident == Id::min_exp)
{
switch (ty)
{
case Tcomplex32:
case Timaginary32:
case Tfloat32: ivalue = FLT_MIN_EXP; goto Lint;
case Tcomplex64:
case Timaginary64:
case Tfloat64: ivalue = DBL_MIN_EXP; goto Lint;
case Tcomplex80:
case Timaginary80:
case Tfloat80: ivalue = LDBL_MIN_EXP; goto Lint;
}
}
return Type::getProperty(loc, ident);
Livalue:
e = new IntegerExp(loc, ivalue, this);
return e;
Lfvalue:
if (isreal() || isimaginary())
e = new RealExp(loc, fvalue, this);
else
{
complex_t cvalue;
#if __DMC__
//((real_t *)&cvalue)[0] = fvalue;
//((real_t *)&cvalue)[1] = fvalue;
cvalue = fvalue + fvalue * I;
#else
cvalue.re = fvalue;
cvalue.im = fvalue;
#endif
//for (int i = 0; i < 20; i++)
// printf("%02x ", ((unsigned char *)&cvalue)[i]);
//printf("\n");
e = new ComplexExp(loc, cvalue, this);
}
return e;
Lint:
e = new IntegerExp(loc, ivalue, Type::tint32);
return e;
}
Expression *TypeBasic::dotExp(Scope *sc, Expression *e, Identifier *ident)
{
#if LOGDOTEXP
printf("TypeBasic::dotExp(e = '%s', ident = '%s')\n", e->toChars(), ident->toChars());
#endif
Type *t;
if (ident == Id::re)
{
switch (ty)
{
case Tcomplex32: t = tfloat32; goto L1;
case Tcomplex64: t = tfloat64; goto L1;
case Tcomplex80: t = tfloat80; goto L1;
L1:
e = e->castTo(sc, t);
break;
case Tfloat32:
case Tfloat64:
case Tfloat80:
break;
case Timaginary32: t = tfloat32; goto L2;
case Timaginary64: t = tfloat64; goto L2;
case Timaginary80: t = tfloat80; goto L2;
L2:
e = new RealExp(e->loc, ldouble(0.0), t);
break;
default:
e = Type::getProperty(e->loc, ident);
break;
}
}
else if (ident == Id::im)
{ Type *t2;
switch (ty)
{
case Tcomplex32: t = timaginary32; t2 = tfloat32; goto L3;
case Tcomplex64: t = timaginary64; t2 = tfloat64; goto L3;
case Tcomplex80: t = timaginary80; t2 = tfloat80; goto L3;
L3:
e = e->castTo(sc, t);
e->type = t2;
break;
case Timaginary32: t = tfloat32; goto L4;
case Timaginary64: t = tfloat64; goto L4;
case Timaginary80: t = tfloat80; goto L4;
L4:
e = e->copy();
e->type = t;
break;
case Tfloat32:
case Tfloat64:
case Tfloat80:
e = new RealExp(e->loc, ldouble(0.0), this);
break;
default:
e = Type::getProperty(e->loc, ident);
break;
}
}
else
{
return Type::dotExp(sc, e, ident);
}
e = e->semantic(sc);
return e;
}
Expression *TypeBasic::defaultInit(Loc loc)
{ dinteger_t value = 0;
#if SNAN_DEFAULT_INIT
/*
* Use a payload which is different from the machine NaN,
* so that uninitialised variables can be
* detected even if exceptions are disabled.
*/
union
{ unsigned short us[8];
longdouble ld;
} snan = {{ 0, 0, 0, 0xA000, 0x7FFF }};
/*
* Although long doubles are 10 bytes long, some
* C ABIs pad them out to 12 or even 16 bytes, so
* leave enough space in the snan array.
*/
assert(REALSIZE <= sizeof(snan));
d_float80 fvalue = snan.ld;
#endif
#if LOGDEFAULTINIT
printf("TypeBasic::defaultInit() '%s'\n", toChars());
#endif
switch (ty)
{
case Tchar:
value = 0xFF;
break;
case Twchar:
case Tdchar:
value = 0xFFFF;
break;
case Timaginary32:
case Timaginary64:
case Timaginary80:
case Tfloat32:
case Tfloat64:
case Tfloat80:
#if SNAN_DEFAULT_INIT
return new RealExp(loc, fvalue, this);
#else
return getProperty(loc, Id::nan);
#endif
case Tcomplex32:
case Tcomplex64:
case Tcomplex80:
#if SNAN_DEFAULT_INIT
{ // Can't use fvalue + I*fvalue (the im part becomes a quiet NaN).
complex_t cvalue;
((real_t *)&cvalue)[0] = fvalue;
((real_t *)&cvalue)[1] = fvalue;
return new ComplexExp(loc, cvalue, this);
}
#else
return getProperty(loc, Id::nan);
#endif
case Tvoid:
error(loc, "void does not have a default initializer");
return new ErrorExp();
}
return new IntegerExp(loc, value, this);
}
int TypeBasic::isZeroInit(Loc loc)
{
switch (ty)
{
case Tchar:
case Twchar:
case Tdchar:
case Timaginary32:
case Timaginary64:
case Timaginary80:
case Tfloat32:
case Tfloat64:
case Tfloat80:
case Tcomplex32:
case Tcomplex64:
case Tcomplex80:
return 0; // no
}
return 1; // yes
}
int TypeBasic::isintegral()
{
//printf("TypeBasic::isintegral('%s') x%x\n", toChars(), flags);
return flags & TFLAGSintegral;
}
int TypeBasic::isfloating()
{
return flags & TFLAGSfloating;
}
int TypeBasic::isreal()
{
return flags & TFLAGSreal;
}
int TypeBasic::isimaginary()
{
return flags & TFLAGSimaginary;
}
int TypeBasic::iscomplex()
{
return flags & TFLAGScomplex;
}
int TypeBasic::isunsigned()
{
return flags & TFLAGSunsigned;
}
int TypeBasic::isscalar()
{
return flags & (TFLAGSintegral | TFLAGSfloating);
}
MATCH TypeBasic::implicitConvTo(Type *to)
{
//printf("TypeBasic::implicitConvTo(%s) from %s\n", to->toChars(), toChars());
if (this == to)
return MATCHexact;
#if DMDV2
if (ty == to->ty)
{
if (mod == to->mod)
return MATCHexact;
else if (MODimplicitConv(mod, to->mod))
return MATCHconst;
else if (!((mod ^ to->mod) & MODshared)) // for wild matching
return MATCHconst;
else
return MATCHconvert;
}
#endif
if (ty == Tvoid || to->ty == Tvoid)
return MATCHnomatch;
if (to->ty == Tbool)
return MATCHnomatch;
TypeBasic *tob;
if (to->ty == Tvector && to->deco)
{
TypeVector *tv = (TypeVector *)to;
tob = tv->elementType();
}
else
tob = to->isTypeBasic();
if (!tob)
return MATCHnomatch;
if (flags & TFLAGSintegral)
{
// Disallow implicit conversion of integers to imaginary or complex
if (tob->flags & (TFLAGSimaginary | TFLAGScomplex))
return MATCHnomatch;
#if DMDV2
// If converting from integral to integral
if (tob->flags & TFLAGSintegral)
{ d_uns64 sz = size(0);
d_uns64 tosz = tob->size(0);
/* Can't convert to smaller size
*/
if (sz > tosz)
return MATCHnomatch;
/* Can't change sign if same size
*/
/*if (sz == tosz && (flags ^ tob->flags) & TFLAGSunsigned)
return MATCHnomatch;*/
}
#endif
}
else if (flags & TFLAGSfloating)
{
// Disallow implicit conversion of floating point to integer
if (tob->flags & TFLAGSintegral)
return MATCHnomatch;
assert(tob->flags & TFLAGSfloating || to->ty == Tvector);
// Disallow implicit conversion from complex to non-complex
if (flags & TFLAGScomplex && !(tob->flags & TFLAGScomplex))
return MATCHnomatch;
// Disallow implicit conversion of real or imaginary to complex
if (flags & (TFLAGSreal | TFLAGSimaginary) &&
tob->flags & TFLAGScomplex)
return MATCHnomatch;
// Disallow implicit conversion to-from real and imaginary
if ((flags & (TFLAGSreal | TFLAGSimaginary)) !=
(tob->flags & (TFLAGSreal | TFLAGSimaginary)))
return MATCHnomatch;
}
return MATCHconvert;
}
TypeBasic *TypeBasic::isTypeBasic()
{
return (TypeBasic *)this;
}
/* ============================= TypeVector =========================== */
/* The basetype must be one of:
* byte[16],ubyte[16],short[8],ushort[8],int[4],uint[4],long[2],ulong[2],float[4],double[2]
* For AVX:
* byte[32],ubyte[32],short[16],ushort[16],int[8],uint[8],long[4],ulong[4],float[8],double[4]
*/
TypeVector::TypeVector(Loc loc, Type *basetype)
: Type(Tvector)
{
this->basetype = basetype;
}
Type *TypeVector::syntaxCopy()
{
return new TypeVector(0, basetype->syntaxCopy());
}
Type *TypeVector::semantic(Loc loc, Scope *sc)
{
int errors = global.errors;
basetype = basetype->semantic(loc, sc);
if (errors != global.errors)
return terror;
basetype = basetype->toBasetype()->mutableOf();
if (basetype->ty != Tsarray)
{ error(loc, "T in __vector(T) must be a static array, not %s", basetype->toChars());
return terror;
}
TypeSArray *t = (TypeSArray *)basetype;
if (sc && sc->parameterSpecialization && t->dim->op == TOKvar &&
((VarExp *)t->dim)->var->storage_class & STCtemplateparameter)
{
/* It could be a template parameter N which has no value yet:
* template Foo(T : __vector(T[N]), size_t N);
*/
return this;
}
d_uns64 sz = t->size(loc);
if (sz != 16 && sz != 32)
{ error(loc, "base type of __vector must be a 16 or 32 byte static array, not %s", t->toChars());
return terror;
}
TypeBasic *tb = t->nextOf()->isTypeBasic();
if (!tb || !(tb->flags & TFLAGSvector))
{ error(loc, "base type of __vector must be a static array of an arithmetic type, not %s", t->toChars());
return terror;
}
return merge();
}
TypeBasic *TypeVector::elementType()
{
assert(basetype->ty == Tsarray);
TypeSArray *t = (TypeSArray *)basetype;
TypeBasic *tb = t->nextOf()->isTypeBasic();
assert(tb);
return tb;
}
int TypeVector::checkBoolean()
{
return FALSE;
}
char *TypeVector::toChars()
{
return Type::toChars();
}
void TypeVector::toCBuffer2(OutBuffer *buf, HdrGenState *hgs, int mod)
{
//printf("TypeVector::toCBuffer2(mod = %d, this->mod = %d)\n", mod, this->mod);
if (mod != this->mod)
{ toCBuffer3(buf, hgs, mod);
return;
}
buf->writestring("__vector(");
basetype->toCBuffer2(buf, hgs, this->mod);
buf->writestring(")");
}
void TypeVector::toDecoBuffer(OutBuffer *buf, int flag, bool mangle)
{
if (flag != mod && flag != 0x100)
{
MODtoDecoBuffer(buf, mod);
}
buf->writestring("Nh");
basetype->toDecoBuffer(buf, (flag & 0x100) ? 0 : mod, mangle);
}
d_uns64 TypeVector::size(Loc loc)
{
return basetype->size();
}
unsigned TypeVector::alignsize()
{
return (unsigned)basetype->size();
}
Expression *TypeVector::getProperty(Loc loc, Identifier *ident)
{
return basetype->getProperty(loc, ident);
}
Expression *TypeVector::dotExp(Scope *sc, Expression *e, Identifier *ident)
{
#if LOGDOTEXP
printf("TypeVector::dotExp(e = '%s', ident = '%s')\n", e->toChars(), ident->toChars());
#endif
if (ident == Id::array)
{
e = e->castTo(sc, basetype);
return e;
}
return basetype->dotExp(sc, e->castTo(sc, basetype), ident);
}
Expression *TypeVector::defaultInit(Loc loc)
{
return basetype->defaultInit(loc);
}
int TypeVector::isZeroInit(Loc loc)
{
return basetype->isZeroInit(loc);
}
int TypeVector::isintegral()
{
//printf("TypeVector::isintegral('%s') x%x\n", toChars(), flags);
return basetype->nextOf()->isintegral();
}
int TypeVector::isfloating()
{
return basetype->nextOf()->isfloating();
}
int TypeVector::isunsigned()
{
return basetype->nextOf()->isunsigned();
}
int TypeVector::isscalar()
{
return basetype->nextOf()->isscalar();
}
MATCH TypeVector::implicitConvTo(Type *to)
{
//printf("TypeVector::implicitConvTo(%s) from %s\n", to->toChars(), toChars());
if (this == to)
return MATCHexact;
if (ty == to->ty)
return MATCHconvert;
return MATCHnomatch;
}
/***************************** TypeArray *****************************/
TypeArray::TypeArray(TY ty, Type *next)
: TypeNext(ty, next)
{
}
Expression *TypeArray::dotExp(Scope *sc, Expression *e, Identifier *ident)
{
Type *n = this->next->toBasetype(); // uncover any typedef's
#if LOGDOTEXP
printf("TypeArray::dotExp(e = '%s', ident = '%s')\n", e->toChars(), ident->toChars());
#endif
if (!n->isMutable())
if (ident == Id::sort || ident == Id::reverse)
error(e->loc, "can only %s a mutable array", ident->toChars());
if (ident == Id::reverse && (n->ty == Tchar || n->ty == Twchar))
{
Expression *ec;
Expressions *arguments;
//LDC: Build arguments.
static FuncDeclaration *adReverseChar_fd = NULL;
if(!adReverseChar_fd) {
Parameters* args = new Parameters;
Type* arrty = Type::tchar->arrayOf();
args->push(new Parameter(STCin, arrty, NULL, NULL));
adReverseChar_fd = FuncDeclaration::genCfunc(args, arrty, "_adReverseChar");
}
static FuncDeclaration *adReverseWchar_fd = NULL;
if(!adReverseWchar_fd) {
Parameters* args = new Parameters;
Type* arrty = Type::twchar->arrayOf();
args->push(new Parameter(STCin, arrty, NULL, NULL));
adReverseWchar_fd = FuncDeclaration::genCfunc(args, arrty, "_adReverseWchar");
}
if(n->ty == Twchar)
ec = new VarExp(0, adReverseWchar_fd);
else
ec = new VarExp(0, adReverseChar_fd);
e = e->castTo(sc, n->arrayOf()); // convert to dynamic array
arguments = new Expressions();
arguments->push(e);
e = new CallExp(e->loc, ec, arguments);
e->type = next->arrayOf();
}
else if (ident == Id::sort && (n->ty == Tchar || n->ty == Twchar))
{
Expression *ec;
Expressions *arguments;
//LDC: Build arguments.
static FuncDeclaration *adSortChar_fd = NULL;
if(!adSortChar_fd) {
Parameters* args = new Parameters;
Type* arrty = Type::tchar->arrayOf();
args->push(new Parameter(STCin, arrty, NULL, NULL));
adSortChar_fd = FuncDeclaration::genCfunc(args, arrty, "_adSortChar");
}
static FuncDeclaration *adSortWchar_fd = NULL;
if(!adSortWchar_fd) {
Parameters* args = new Parameters;
Type* arrty = Type::twchar->arrayOf();
args->push(new Parameter(STCin, arrty, NULL, NULL));
adSortWchar_fd = FuncDeclaration::genCfunc(args, arrty, "_adSortWchar");
}
if(n->ty == Twchar)
ec = new VarExp(0, adSortWchar_fd);
else
ec = new VarExp(0, adSortChar_fd);
e = e->castTo(sc, n->arrayOf()); // convert to dynamic array
arguments = new Expressions();
arguments->push(e);
e = new CallExp(e->loc, ec, arguments);
e->type = next->arrayOf();
}
else if (ident == Id::reverse || ident == Id::dup || ident == Id::idup)
{
Expression *ec;
Expressions *arguments;
int size = next->size(e->loc);
int dup;
Expression *olde = e;
assert(size);
dup = (ident == Id::dup || ident == Id::idup);
//LDC: Build arguments.
static FuncDeclaration *adDup_fd = NULL;
if(!adDup_fd) {
Parameters* args = new Parameters;
args->push(new Parameter(STCin, Type::typeinfo->type, NULL, NULL));
args->push(new Parameter(STCin, Type::tvoid->arrayOf(), NULL, NULL));
adDup_fd = FuncDeclaration::genCfunc(args, Type::tvoid->arrayOf(), Id::adDup);
}
static FuncDeclaration *adReverse_fd = NULL;
if(!adReverse_fd) {
Parameters* args = new Parameters;
args->push(new Parameter(STCin, Type::tvoid->arrayOf(), NULL, NULL));
args->push(new Parameter(STCin, Type::tsize_t, NULL, NULL));
adReverse_fd = FuncDeclaration::genCfunc(args, Type::tvoid->arrayOf(), Id::adReverse);
}
if(dup)
ec = new VarExp(0, adDup_fd);
else
ec = new VarExp(0, adReverse_fd);
e = e->castTo(sc, n->arrayOf()); // convert to dynamic array
arguments = new Expressions();
if (dup)
arguments->push(getTypeInfo(sc));
// LDC repaint array type to void[]
if (n->ty != Tvoid) {
CastExp *exp = new CastExp(e->loc, e, e->type);
exp->type = Type::tvoid->arrayOf();
exp->disableOptimization = true;
e = exp;
}
arguments->push(e);
if (!dup)
arguments->push(new IntegerExp(0, size, Type::tsize_t));
e = new CallExp(e->loc, ec, arguments);
if (ident == Id::idup)
{ Type *einv = next->invariantOf();
if (next->implicitConvTo(einv) < MATCHconst)
error(e->loc, "cannot implicitly convert element type %s to immutable in %s.idup",
next->toChars(), olde->toChars());
e->type = einv->arrayOf();
}
else if (ident == Id::dup)
{
Type *emut = next->mutableOf();
if (next->implicitConvTo(emut) < MATCHconst)
error(e->loc, "cannot implicitly convert element type %s to mutable in %s.dup",
next->toChars(), olde->toChars());
e->type = emut->arrayOf();
}
else
e->type = next->mutableOf()->arrayOf();
}
else if (ident == Id::sort)
{
Expression *ec;
Expressions *arguments;
//LDC: Build arguments.
static FuncDeclaration *adSort_fd = NULL;
if(!adSort_fd) {
Parameters* args = new Parameters;
args->push(new Parameter(STCin, Type::tvoid->arrayOf(), NULL, NULL));
args->push(new Parameter(STCin, Type::typeinfo->type, NULL, NULL));
adSort_fd = FuncDeclaration::genCfunc(args, Type::tvoid->arrayOf(), "_adSort");
}
ec = new VarExp(0, adSort_fd);
e = e->castTo(sc, n->arrayOf()); // convert to dynamic array
arguments = new Expressions();
// LDC repaint array type to void[]
if (n->ty != Tvoid) {
CastExp *exp = new CastExp(e->loc, e, e->type);
exp->type = Type::tvoid->arrayOf();
exp->disableOptimization = true;
e = exp;
}
arguments->push(e);
// LDC, we don't support the getInternalTypeInfo
// optimization arbitrarily, not yet at least...
arguments->push(n->getTypeInfo(sc));
e = new CallExp(e->loc, ec, arguments);
e->type = next->arrayOf();
}
else
{
e = Type::dotExp(sc, e, ident);
}
e = e->semantic(sc);
return e;
}
/***************************** TypeSArray *****************************/
TypeSArray::TypeSArray(Type *t, Expression *dim)
: TypeArray(Tsarray, t)
{
//printf("TypeSArray(%s)\n", dim->toChars());
this->dim = dim;
}
Type *TypeSArray::syntaxCopy()
{
Type *t = next->syntaxCopy();
Expression *e = dim->syntaxCopy();
t = new TypeSArray(t, e);
t->mod = mod;
return t;
}
d_uns64 TypeSArray::size(Loc loc)
{ dinteger_t sz;
if (!dim)
return Type::size(loc);
sz = dim->toInteger();
{ dinteger_t n, n2;
n = next->size();
n2 = n * sz;
if (n && (n2 / n) != sz)
goto Loverflow;
sz = n2;
}
return sz;
Loverflow:
error(loc, "index %lld overflow for static array", sz);
return 1;
}
unsigned TypeSArray::alignsize()
{
return next->alignsize();
}
/**************************
* This evaluates exp while setting length to be the number
* of elements in the tuple t.
*/
Expression *semanticLength(Scope *sc, Type *t, Expression *exp)
{
if (t->ty == Ttuple)
{ ScopeDsymbol *sym = new ArrayScopeSymbol(sc, (TypeTuple *)t);
sym->parent = sc->scopesym;
sc = sc->push(sym);
exp = exp->semantic(sc);
sc->pop();
}
else
exp = exp->semantic(sc);
return exp;
}
Expression *semanticLength(Scope *sc, TupleDeclaration *s, Expression *exp)
{
ScopeDsymbol *sym = new ArrayScopeSymbol(sc, s);
sym->parent = sc->scopesym;
sc = sc->push(sym);
exp = exp->semantic(sc);
sc->pop();
return exp;
}
void TypeSArray::resolve(Loc loc, Scope *sc, Expression **pe, Type **pt, Dsymbol **ps)
{
//printf("TypeSArray::resolve() %s\n", toChars());
next->resolve(loc, sc, pe, pt, ps);
//printf("s = %p, e = %p, t = %p\n", *ps, *pe, *pt);
if (*pe)
{ // It's really an index expression
Expressions *exps = new Expressions();
exps->setDim(1);
(*exps)[0] = dim;
Expression *e = new ArrayExp(loc, *pe, exps);
*pe = e;
}
else if (*ps)
{ Dsymbol *s = *ps;
TupleDeclaration *td = s->isTupleDeclaration();
if (td)
{
ScopeDsymbol *sym = new ArrayScopeSymbol(sc, td);
sym->parent = sc->scopesym;
sc = sc->push(sym);
dim = dim->semantic(sc);
dim = dim->ctfeInterpret();
uinteger_t d = dim->toUInteger();
sc = sc->pop();
if (d >= td->objects->dim)
{ error(loc, "tuple index %llu exceeds length %u", d, td->objects->dim);
goto Ldefault;
}
Object *o = (*td->objects)[(size_t)d];
if (o->dyncast() == DYNCAST_DSYMBOL)
{
*ps = (Dsymbol *)o;
return;
}
if (o->dyncast() == DYNCAST_EXPRESSION)
{
Expression *e = (Expression *)o;
if (e->op == TOKdsymbol)
{
*ps = ((DsymbolExp *)e)->s;
*pe = NULL;
}
else
{
*ps = NULL;
*pe = e;
}
return;
}
if (o->dyncast() == DYNCAST_TYPE)
{
*ps = NULL;
*pt = ((Type *)o)->addMod(this->mod);
return;
}
/* Create a new TupleDeclaration which
* is a slice [d..d+1] out of the old one.
* Do it this way because TemplateInstance::semanticTiargs()
* can handle unresolved Objects this way.
*/
Objects *objects = new Objects;
objects->setDim(1);
(*objects)[0] = o;
TupleDeclaration *tds = new TupleDeclaration(loc, td->ident, objects);
*ps = tds;
}
else
goto Ldefault;
}
else
{
Ldefault:
Type::resolve(loc, sc, pe, pt, ps);
}
}
Type *TypeSArray::semantic(Loc loc, Scope *sc)
{
//printf("TypeSArray::semantic() %s\n", toChars());
Type *t;
Expression *e;
Dsymbol *s;
next->resolve(loc, sc, &e, &t, &s);
if (dim && s && s->isTupleDeclaration())
{ TupleDeclaration *sd = s->isTupleDeclaration();
dim = semanticLength(sc, sd, dim);
dim = dim->ctfeInterpret();
uinteger_t d = dim->toUInteger();
if (d >= sd->objects->dim)
{ error(loc, "tuple index %llu exceeds %u", d, sd->objects->dim);
return Type::terror;
}
Object *o = (*sd->objects)[(size_t)d];
if (o->dyncast() != DYNCAST_TYPE)
{ error(loc, "%s is not a type", toChars());
return Type::terror;
}
t = ((Type *)o)->addMod(this->mod);
return t;
}
Type *tn = next->semantic(loc,sc);
if (tn->ty == Terror)
return terror;
Type *tbn = tn->toBasetype();
if (dim)
{ dinteger_t n, n2;
int errors = global.errors;
dim = semanticLength(sc, tbn, dim);
if (errors != global.errors)
goto Lerror;
dim = dim->optimize(WANTvalue);
if (sc && sc->parameterSpecialization && dim->op == TOKvar &&
((VarExp *)dim)->var->storage_class & STCtemplateparameter)
{
/* It could be a template parameter N which has no value yet:
* template Foo(T : T[N], size_t N);
*/
return this;
}
dim = dim->ctfeInterpret();
errors = global.errors;
dinteger_t d1 = dim->toInteger();
if (errors != global.errors)
goto Lerror;
dim = dim->implicitCastTo(sc, tsize_t);
dim = dim->optimize(WANTvalue);
errors = global.errors;
dinteger_t d2 = dim->toInteger();
if (errors != global.errors)
goto Lerror;
if (dim->op == TOKerror)
goto Lerror;
if (d1 != d2)
goto Loverflow;
if (tbn->isintegral() ||
tbn->isfloating() ||
tbn->ty == Tpointer ||
tbn->ty == Tarray ||
tbn->ty == Tsarray ||
tbn->ty == Taarray ||
tbn->ty == Tclass)
{
/* Only do this for types that don't need to have semantic()
* run on them for the size, since they may be forward referenced.
*/
n = tbn->size(loc);
n2 = n * d2;
if ((int)n2 < 0)
goto Loverflow;
if (n2 >= 0x1000000) // put a 'reasonable' limit on it
goto Loverflow;
if (n && n2 / n != d2)
{
Loverflow:
error(loc, "index %lld overflow for static array", d1);
goto Lerror;
}
}
}
switch (tbn->ty)
{
case Ttuple:
{ // Index the tuple to get the type
assert(dim);
TypeTuple *tt = (TypeTuple *)tbn;
uinteger_t d = dim->toUInteger();
if (d >= tt->arguments->dim)
{ error(loc, "tuple index %llu exceeds %u", d, tt->arguments->dim);
goto Lerror;
}
Parameter *arg = (*tt->arguments)[(size_t)d];
return arg->type->addMod(this->mod);
}
case Tstruct:
{ TypeStruct *ts = (TypeStruct *)tbn;
if (0 && ts->sym->isnested)
{ error(loc, "cannot have static array of inner struct %s", ts->toChars());
goto Lerror;
}
break;
}
case Tfunction:
case Tnone:
error(loc, "can't have array of %s", tbn->toChars());
goto Lerror;
}
if (tbn->isscope())
{ error(loc, "cannot have array of scope %s", tbn->toChars());
goto Lerror;
}
/* Ensure things like const(immutable(T)[3]) become immutable(T[3])
* and const(T)[3] become const(T[3])
*/
next = tn;
transitive();
t = addMod(tn->mod);
return t->merge();
Lerror:
return Type::terror;
}
void TypeSArray::toDecoBuffer(OutBuffer *buf, int flag, bool mangle)
{
Type::toDecoBuffer(buf, flag, mangle);
if (dim)
buf->printf("%llu", dim->toInteger());
if (next)
/* Note that static arrays are value types, so
* for a parameter, propagate the 0x100 to the next
* level, since for T[4][3], any const should apply to the T,
* not the [4].
*/
next->toDecoBuffer(buf, (flag & 0x100) ? flag : mod, mangle);
}
void TypeSArray::toCBuffer2(OutBuffer *buf, HdrGenState *hgs, int mod)
{
if (mod != this->mod)
{ toCBuffer3(buf, hgs, mod);
return;
}
next->toCBuffer2(buf, hgs, this->mod);
buf->printf("[%s]", dim->toChars());
}
Expression *TypeSArray::dotExp(Scope *sc, Expression *e, Identifier *ident)
{
#if LOGDOTEXP
printf("TypeSArray::dotExp(e = '%s', ident = '%s')\n", e->toChars(), ident->toChars());
#endif
if (ident == Id::length)
{
e = dim;
}
else if (ident == Id::ptr)
{
e = e->castTo(sc, next->pointerTo());
}
else
{
e = TypeArray::dotExp(sc, e, ident);
}
e = e->semantic(sc);
return e;
}
structalign_t TypeSArray::alignment()
{
return next->alignment();
}
int TypeSArray::isString()
{
TY nty = next->toBasetype()->ty;
return nty == Tchar || nty == Twchar || nty == Tdchar;
}
MATCH TypeSArray::constConv(Type *to)
{
if (to->ty == Tsarray)
{
TypeSArray *tsa = (TypeSArray *)to;
if (!dim->equals(tsa->dim))
return MATCHnomatch;
}
return TypeNext::constConv(to);
}
MATCH TypeSArray::implicitConvTo(Type *to)
{
//printf("TypeSArray::implicitConvTo(to = %s) this = %s\n", to->toChars(), toChars());
// Allow implicit conversion of static array to pointer or dynamic array
if (IMPLICIT_ARRAY_TO_PTR && to->ty == Tpointer)
{
TypePointer *tp = (TypePointer *)to;
if (!MODimplicitConv(next->mod, tp->next->mod))
return MATCHnomatch;
if (tp->next->ty == Tvoid || next->constConv(tp->next) != MATCHnomatch)
{
return MATCHconvert;
}
return MATCHnomatch;
}
if (to->ty == Tarray)
{
TypeDArray *ta = (TypeDArray *)to;
if (!MODimplicitConv(next->mod, ta->next->mod))
return MATCHnomatch;
/* Allow conversion to void[]
*/
if (ta->next->ty == Tvoid)
{
return MATCHconvert;
}
MATCH m = next->constConv(ta->next);
if (m != MATCHnomatch)
{
return MATCHconvert;
}
return MATCHnomatch;
}
if (to->ty == Tsarray)
{
if (this == to)
return MATCHexact;
TypeSArray *tsa = (TypeSArray *)to;
if (dim->equals(tsa->dim))
{
/* Since static arrays are value types, allow
* conversions from const elements to non-const
* ones, just like we allow conversion from const int
* to int.
*/
MATCH m = next->implicitConvTo(tsa->next);
if (m >= MATCHconst)
{
if (mod != to->mod)
m = MATCHconst;
return m;
}
}
}
return MATCHnomatch;
}
Expression *TypeSArray::defaultInit(Loc loc)
{
#if LOGDEFAULTINIT
printf("TypeSArray::defaultInit() '%s'\n", toChars());
#endif
return next->defaultInit(loc);
}
int TypeSArray::isZeroInit(Loc loc)
{
return next->isZeroInit(loc);
}
int TypeSArray::needsDestruction()
{
return next->needsDestruction();
}
/*********************************
*
*/
bool TypeSArray::needsNested()
{
return next->needsNested();
}
Expression *TypeSArray::defaultInitLiteral(Loc loc)
{
#if LOGDEFAULTINIT
printf("TypeSArray::defaultInitLiteral() '%s'\n", toChars());
#endif
size_t d = dim->toInteger();
Expression *elementinit = next->defaultInitLiteral(loc);
Expressions *elements = new Expressions();
elements->setDim(d);
for (size_t i = 0; i < d; i++)
(*elements)[i] = elementinit;
ArrayLiteralExp *ae = new ArrayLiteralExp(0, elements);
ae->type = this;
return ae;
}
Expression *TypeSArray::toExpression()
{
Expression *e = next->toExpression();
if (e)
{ Expressions *arguments = new Expressions();
arguments->push(dim);
e = new ArrayExp(dim->loc, e, arguments);
}
return e;
}
int TypeSArray::hasPointers()
{
/* Don't want to do this, because:
* struct S { T* array[0]; }
* may be a variable length struct.
*/
//if (dim->toInteger() == 0)
//return FALSE;
if (next->ty == Tvoid)
// Arrays of void contain arbitrary data, which may include pointers
return TRUE;
else
return next->hasPointers();
}
/***************************** TypeDArray *****************************/
TypeDArray::TypeDArray(Type *t)
: TypeArray(Tarray, t)
{
//printf("TypeDArray(t = %p)\n", t);
}
Type *TypeDArray::syntaxCopy()
{
Type *t = next->syntaxCopy();
if (t == next)
t = this;
else
{ t = new TypeDArray(t);
t->mod = mod;
}
return t;
}
d_uns64 TypeDArray::size(Loc loc)
{
//printf("TypeDArray::size()\n");
return PTRSIZE * 2;
}
unsigned TypeDArray::alignsize()
{
// A DArray consists of two ptr-sized values, so align it on pointer size
// boundary
return PTRSIZE;
}
Type *TypeDArray::semantic(Loc loc, Scope *sc)
{
Type *tn = next->semantic(loc,sc);
Type *tbn = tn->toBasetype();
switch (tbn->ty)
{
case Tfunction:
case Tnone:
case Ttuple:
error(loc, "can't have array of %s", tbn->toChars());
case Terror:
return Type::terror;
case Tstruct:
{ TypeStruct *ts = (TypeStruct *)tbn;
if (0 && ts->sym->isnested)
error(loc, "cannot have dynamic array of inner struct %s", ts->toChars());
break;
}
}
if (tn->isscope())
error(loc, "cannot have array of scope %s", tn->toChars());
next = tn;
transitive();
return merge();
}
void TypeDArray::resolve(Loc loc, Scope *sc, Expression **pe, Type **pt, Dsymbol **ps)
{
//printf("TypeDArray::resolve() %s\n", toChars());
next->resolve(loc, sc, pe, pt, ps);
//printf("s = %p, e = %p, t = %p\n", *ps, *pe, *pt);
if (*pe)
{ // It's really a slice expression
Expression *e = new SliceExp(loc, *pe, NULL, NULL);
*pe = e;
}
else if (*ps)
{
TupleDeclaration *td = (*ps)->isTupleDeclaration();
if (td)
; // keep *ps
else
goto Ldefault;
}
else
{
Ldefault:
Type::resolve(loc, sc, pe, pt, ps);
}
}
void TypeDArray::toDecoBuffer(OutBuffer *buf, int flag, bool mangle)
{
Type::toDecoBuffer(buf, flag, mangle);
if (next)
next->toDecoBuffer(buf, (flag & 0x100) ? 0 : mod, mangle);
}
void TypeDArray::toCBuffer2(OutBuffer *buf, HdrGenState *hgs, int mod)
{
if (mod != this->mod)
{ toCBuffer3(buf, hgs, mod);
return;
}
if (equals(tstring))
buf->writestring("string");
else
{ next->toCBuffer2(buf, hgs, this->mod);
buf->writestring("[]");
}
}
Expression *TypeDArray::dotExp(Scope *sc, Expression *e, Identifier *ident)
{
#if LOGDOTEXP
printf("TypeDArray::dotExp(e = '%s', ident = '%s')\n", e->toChars(), ident->toChars());
#endif
if (ident == Id::length)
{
if (e->op == TOKstring)
{ StringExp *se = (StringExp *)e;
return new IntegerExp(se->loc, se->len, Type::tindex);
}
if (e->op == TOKnull)
return new IntegerExp(e->loc, 0, Type::tindex);
e = new ArrayLengthExp(e->loc, e);
e->type = Type::tsize_t;
return e;
}
else if (ident == Id::ptr)
{
e = e->castTo(sc, next->pointerTo());
return e;
}
else
{
e = TypeArray::dotExp(sc, e, ident);
}
return e;
}
int TypeDArray::isString()
{
TY nty = next->toBasetype()->ty;
return nty == Tchar || nty == Twchar || nty == Tdchar;
}
MATCH TypeDArray::implicitConvTo(Type *to)
{
//printf("TypeDArray::implicitConvTo(to = %s) this = %s\n", to->toChars(), toChars());
if (equals(to))
return MATCHexact;
// Allow implicit conversion of array to pointer
if (IMPLICIT_ARRAY_TO_PTR && to->ty == Tpointer)
{
TypePointer *tp = (TypePointer *)to;
/* Allow conversion to void*
*/
if (tp->next->ty == Tvoid &&
MODimplicitConv(next->mod, tp->next->mod))
{
return MATCHconvert;
}
return next->constConv(to);
}
if (to->ty == Tarray)
{
TypeDArray *ta = (TypeDArray *)to;
if (!MODimplicitConv(next->mod, ta->next->mod))
return MATCHnomatch; // not const-compatible
// Check head inout conversion:
// T [] -> inout(const(T)[])
// const(T)[] -> inout(const(T)[])
if (isMutable() && ta->isWild())
if ((next->isMutable() || next->isConst()) && ta->next->isConst())
return MATCHnomatch;
/* Allow conversion to void[]
*/
if (next->ty != Tvoid && ta->next->ty == Tvoid)
{
return MATCHconvert;
}
MATCH m = next->constConv(ta->next);
if (m != MATCHnomatch)
{
if (m == MATCHexact && mod != to->mod)
m = MATCHconst;
return m;
}
}
return Type::implicitConvTo(to);
}
Expression *TypeDArray::defaultInit(Loc loc)
{
#if LOGDEFAULTINIT
printf("TypeDArray::defaultInit() '%s'\n", toChars());
#endif
return new NullExp(loc, this);
}
int TypeDArray::isZeroInit(Loc loc)
{
return 1;
}
int TypeDArray::checkBoolean()
{
return TRUE;
}
int TypeDArray::hasPointers()
{
return TRUE;
}
/***************************** TypeAArray *****************************/
TypeAArray::TypeAArray(Type *t, Type *index)
: TypeArray(Taarray, t)
{
this->index = index;
this->impl = NULL;
this->loc = 0;
this->sc = NULL;
}
Type *TypeAArray::syntaxCopy()
{
Type *t = next->syntaxCopy();
Type *ti = index->syntaxCopy();
if (t == next && ti == index)
t = this;
else
{ t = new TypeAArray(t, ti);
t->mod = mod;
}
return t;
}
d_uns64 TypeAArray::size(Loc loc)
{
return PTRSIZE /* * 2*/;
}
Type *TypeAArray::semantic(Loc loc, Scope *sc)
{
//printf("TypeAArray::semantic() %s index->ty = %d\n", toChars(), index->ty);
if (deco)
return this;
this->loc = loc;
this->sc = sc;
if (sc)
sc->setNoFree();
// Deal with the case where we thought the index was a type, but
// in reality it was an expression.
if (index->ty == Tident || index->ty == Tinstance || index->ty == Tsarray)
{
Expression *e;
Type *t;
Dsymbol *s;
index->resolve(loc, sc, &e, &t, &s);
if (e)
{ // It was an expression -
// Rewrite as a static array
TypeSArray *tsa;
tsa = new TypeSArray(next, e);
return tsa->semantic(loc,sc);
}
else if (t)
index = t;
else
{ index->error(loc, "index is not a type or an expression");
return Type::terror;
}
}
else
index = index->semantic(loc,sc);
if (index->nextOf() && !index->nextOf()->isImmutable())
{
index = index->constOf()->mutableOf();
#if 0
printf("index is %p %s\n", index, index->toChars());
index->check();
printf("index->mod = x%x\n", index->mod);
printf("index->ito = x%x\n", index->ito);
if (index->ito) {
printf("index->ito->mod = x%x\n", index->ito->mod);
printf("index->ito->ito = x%x\n", index->ito->ito);
}
#endif
}
switch (index->toBasetype()->ty)
{
case Tfunction:
case Tvoid:
case Tnone:
case Ttuple:
error(loc, "can't have associative array key of %s", index->toBasetype()->toChars());
case Terror:
return Type::terror;
}
next = next->semantic(loc,sc);
transitive();
switch (next->toBasetype()->ty)
{
case Tfunction:
case Tvoid:
case Tnone:
error(loc, "can't have associative array of %s", next->toChars());
case Terror:
return Type::terror;
}
if (next->isscope())
{ error(loc, "cannot have array of scope %s", next->toChars());
return Type::terror;
}
return merge();
}
StructDeclaration *TypeAArray::getImpl()
{
// Do it lazily
if (!impl)
{
Type *index = this->index;
Type *next = this->next;
if (index->reliesOnTident() || next->reliesOnTident())
{
error(loc, "cannot create associative array %s", toChars());
index = terror;
next = terror;
// Head off future failures
StructDeclaration *s = new StructDeclaration(0, NULL);
s->type = terror;
impl = s;
return impl;
}
/* This is really a proxy for the template instance AssocArray!(index, next)
* But the instantiation can fail if it is a template specialization field
* which has Tident's instead of real types.
*/
Objects *tiargs = new Objects();
tiargs->push(index->substWildTo(MODconst)); // hack for bug7757
tiargs->push(next ->substWildTo(MODconst)); // hack for bug7757
// Create AssociativeArray!(index, next)
#if 1
if (! Type::associativearray)
{
ObjectNotFound(Id::AssociativeArray);
}
TemplateInstance *ti = new TemplateInstance(loc, Type::associativearray, tiargs);
#else
//Expression *e = new IdentifierExp(loc, Id::object);
Expression *e = new IdentifierExp(loc, Id::empty);
//e = new DotIdExp(loc, e, Id::object);
DotTemplateInstanceExp *dti = new DotTemplateInstanceExp(loc,
e,
Id::AssociativeArray,
tiargs);
dti->semantic(sc);
TemplateInstance *ti = dti->ti;
#endif
ti->semantic(sc);
ti->semantic2(sc);
ti->semantic3(sc);
impl = ti->toAlias()->isStructDeclaration();
#ifdef DEBUG
if (!impl)
{ Dsymbol *s = ti->toAlias();
printf("%s %s\n", s->kind(), s->toChars());
}
#endif
assert(impl);
}
return impl;
}
void TypeAArray::resolve(Loc loc, Scope *sc, Expression **pe, Type **pt, Dsymbol **ps)
{
//printf("TypeAArray::resolve() %s\n", toChars());
// Deal with the case where we thought the index was a type, but
// in reality it was an expression.
if (index->ty == Tident || index->ty == Tinstance || index->ty == Tsarray)
{
Expression *e;
Type *t;
Dsymbol *s;
index->resolve(loc, sc, &e, &t, &s);
if (e)
{ // It was an expression -
// Rewrite as a static array
TypeSArray *tsa = new TypeSArray(next, e);
return tsa->addMod(this->mod)->resolve(loc, sc, pe, pt, ps);
}
else if (t)
index = t;
else
index->error(loc, "index is not a type or an expression");
}
Type::resolve(loc, sc, pe, pt, ps);
}
Expression *TypeAArray::dotExp(Scope *sc, Expression *e, Identifier *ident)
{
#if LOGDOTEXP
printf("TypeAArray::dotExp(e = '%s', ident = '%s')\n", e->toChars(), ident->toChars());
#endif
#if 0
if (ident == Id::length)
{
Expression *ec;
Expressions *arguments;
//LDC: Build arguments.
static FuncDeclaration *aaLen_fd = NULL;
if(!aaLen_fd) {
Arguments* args = new Arguments;
args->push(new Argument(STCin, Type::tvoid->pointerTo(), NULL, NULL));
aaLen_fd = FuncDeclaration::genCfunc(args, Type::tsize_t, Id::aaLen);
}
ec = new VarExp(0, aaLen_fd);
arguments = new Expressions();
arguments->push(e);
e = new CallExp(e->loc, ec, arguments);
e->type = aaLen_fd->type->nextOf();
}
else
if (ident == Id::keys)
{
Expression *ec;
Expressions *arguments;
int size = index->size(e->loc);
assert(size);
//LDC: Build arguments.
static FuncDeclaration *aaKeys_fd = NULL;
if(!aaKeys_fd) {
Arguments* args = new Arguments;
args->push(new Argument(STCin, Type::tvoid->pointerTo(), NULL, NULL));
args->push(new Argument(STCin, Type::tsize_t, NULL, NULL));
aaKeys_fd = FuncDeclaration::genCfunc(args, Type::tvoid->arrayOf(), Id::aaKeys);
}
ec = new VarExp(0, aaKeys_fd);
arguments = new Expressions();
arguments->push(e);
arguments->push(new IntegerExp(0, size, Type::tsize_t));
e = new CallExp(e->loc, ec, arguments);
e->type = index->arrayOf();
}
else if (ident == Id::values)
{
Expression *ec;
Expressions *arguments;
//LDC: Build arguments.
static FuncDeclaration *aaValues_fd = NULL;
if(!aaValues_fd) {
Arguments* args = new Arguments;
args->push(new Argument(STCin, Type::tvoid->pointerTo(), NULL, NULL));
args->push(new Argument(STCin, Type::tsize_t, NULL, NULL));
args->push(new Argument(STCin, Type::tsize_t, NULL, NULL));
aaValues_fd = FuncDeclaration::genCfunc(args, Type::tvoid->arrayOf(), Id::aaValues);
}
ec = new VarExp(0, aaValues_fd);
arguments = new Expressions();
arguments->push(e);
size_t keysize = index->size(e->loc);
keysize = (keysize + PTRSIZE - 1) & ~(PTRSIZE - 1);
arguments->push(new IntegerExp(0, keysize, Type::tsize_t));
arguments->push(new IntegerExp(0, next->size(e->loc), Type::tsize_t));
e = new CallExp(e->loc, ec, arguments);
e->type = next->arrayOf();
}
else if (ident == Id::rehash)
{
Expression *ec;
Expressions *arguments;
//LDC: Build arguments.
static FuncDeclaration *aaRehash_fd = NULL;
if(!aaRehash_fd) {
Arguments* args = new Arguments;
args->push(new Argument(STCin, Type::tvoid->pointerTo(), NULL, NULL));
args->push(new Argument(STCin, Type::typeinfo->type, NULL, NULL));
aaRehash_fd = FuncDeclaration::genCfunc(args, Type::tvoidptr, Id::aaRehash);
}
ec = new VarExp(0, aaRehash_fd);
arguments = new Expressions();
arguments->push(e->addressOf(sc));
arguments->push(index->getInternalTypeInfo(sc)); // LDC doesn't support getInternalTypeInfo, see above
e = new CallExp(e->loc, ec, arguments);
e->type = this;
}
else
#endif
if (ident != Id::__sizeof &&
ident != Id::__xalignof &&
ident != Id::init &&
ident != Id::mangleof &&
ident != Id::stringof &&
ident != Id::offsetof)
{
//printf("test1: %s, %s\n", e->toChars(), e->type->toChars());
Type *t = getImpl()->type;
//printf("test2: %s, %s\n", e->toChars(), e->type->toChars());
e->type = t;
e = t->dotExp(sc, e, ident);
//printf("test3: %s, %s\n", e->toChars(), e->type->toChars());
}
else
e = Type::dotExp(sc, e, ident);
return e;
}
void TypeAArray::toDecoBuffer(OutBuffer *buf, int flag, bool mangle)
{
Type::toDecoBuffer(buf, flag, mangle);
index->toDecoBuffer(buf, 0, mangle);
next->toDecoBuffer(buf, (flag & 0x100) ? 0 : mod, mangle);
}
void TypeAArray::toCBuffer2(OutBuffer *buf, HdrGenState *hgs, int mod)
{
if (mod != this->mod)
{ toCBuffer3(buf, hgs, mod);
return;
}
next->toCBuffer2(buf, hgs, this->mod);
buf->writeByte('[');
index->toCBuffer2(buf, hgs, 0);
buf->writeByte(']');
}
Expression *TypeAArray::defaultInit(Loc loc)
{
#if LOGDEFAULTINIT
printf("TypeAArray::defaultInit() '%s'\n", toChars());
#endif
return new NullExp(loc, this);
}
int TypeAArray::isZeroInit(Loc loc)
{
return TRUE;
}
int TypeAArray::checkBoolean()
{
return TRUE;
}
Expression *TypeAArray::toExpression()
{
Expression *e = next->toExpression();
if (e)
{
Expression *ei = index->toExpression();
if (ei)
{
Expressions *arguments = new Expressions();
arguments->push(ei);
return new ArrayExp(loc, e, arguments);
}
}
return NULL;
}
int TypeAArray::hasPointers()
{
return TRUE;
}
MATCH TypeAArray::implicitConvTo(Type *to)
{
//printf("TypeAArray::implicitConvTo(to = %s) this = %s\n", to->toChars(), toChars());
if (equals(to))
return MATCHexact;
if (to->ty == Taarray)
{ TypeAArray *ta = (TypeAArray *)to;
if (!MODimplicitConv(next->mod, ta->next->mod))
return MATCHnomatch; // not const-compatible
if (!MODimplicitConv(index->mod, ta->index->mod))
return MATCHnomatch; // not const-compatible
// Check head inout conversion:
// V [K] -> inout(const(V)[K])
// const(V)[K] -> inout(const(V)[K])
if (isMutable() && ta->isWild())
if ((next->isMutable() || next->isConst()) && ta->next->isConst())
return MATCHnomatch;
MATCH m = next->constConv(ta->next);
MATCH mi = index->constConv(ta->index);
if (m != MATCHnomatch && mi != MATCHnomatch)
{
return MODimplicitConv(mod, to->mod) ? MATCHconst : MATCHnomatch;
}
}
else if (to->ty == Tstruct && ((TypeStruct *)to)->sym->ident == Id::AssociativeArray)
{
int errs = global.startGagging();
Type *from = getImpl()->type;
if (global.endGagging(errs))
{
return MATCHnomatch;
}
return from->implicitConvTo(to);
}
return Type::implicitConvTo(to);
}
MATCH TypeAArray::constConv(Type *to)
{
if (to->ty == Taarray)
{
TypeAArray *taa = (TypeAArray *)to;
MATCH mindex = index->constConv(taa->index);
MATCH mkey = next->constConv(taa->next);
// Pick the worst match
return mkey < mindex ? mkey : mindex;
}
return Type::constConv(to);
}
Type *TypeAArray::reliesOnTident(TemplateParameters *tparams)
{
Type *t = TypeNext::reliesOnTident(tparams);
if (!t)
t = index->reliesOnTident(tparams);
return t;
}
/***************************** TypePointer *****************************/
TypePointer::TypePointer(Type *t)
: TypeNext(Tpointer, t)
{
}
Type *TypePointer::syntaxCopy()
{
Type *t = next->syntaxCopy();
if (t == next)
t = this;
else
{ t = new TypePointer(t);
t->mod = mod;
}
return t;
}
Type *TypePointer::semantic(Loc loc, Scope *sc)
{
//printf("TypePointer::semantic() %s\n", toChars());
if (deco)
return this;
Type *n = next->semantic(loc, sc);
switch (n->toBasetype()->ty)
{
case Ttuple:
error(loc, "can't have pointer to %s", n->toChars());
case Terror:
return Type::terror;
}
if (n != next)
{
deco = NULL;
}
next = n;
if (next->ty != Tfunction)
{ transitive();
return merge();
}
#if 1
return merge();
#else
deco = merge()->deco;
/* Don't return merge(), because arg identifiers and default args
* can be different
* even though the types match
*/
return this;
#endif
}
d_uns64 TypePointer::size(Loc loc)
{
return PTRSIZE;
}
void TypePointer::toCBuffer2(OutBuffer *buf, HdrGenState *hgs, int mod)
{
//printf("TypePointer::toCBuffer2() next = %d\n", next->ty);
if (mod != this->mod)
{ toCBuffer3(buf, hgs, mod);
return;
}
next->toCBuffer2(buf, hgs, this->mod);
if (next->ty != Tfunction)
buf->writeByte('*');
}
MATCH TypePointer::implicitConvTo(Type *to)
{
//printf("TypePointer::implicitConvTo(to = %s) %s\n", to->toChars(), toChars());
if (equals(to))
return MATCHexact;
if (next->ty == Tfunction)
{
if (to->ty == Tpointer)
{
TypePointer *tp = (TypePointer*)to;
if (tp->next->ty == Tfunction)
{
if (next->equals(tp->next))
return MATCHconst;
if (next->covariant(tp->next) == 1)
return MATCHconvert;
}
else if (tp->next->ty == Tvoid)
{
// Allow conversions to void*
return MATCHconvert;
}
}
return MATCHnomatch;
}
else if (to->ty == Tpointer)
{
TypePointer *tp = (TypePointer *)to;
assert(tp->next);
if (!MODimplicitConv(next->mod, tp->next->mod))
return MATCHnomatch; // not const-compatible
// Check head inout conversion:
// T * -> inout(const(T)*)
// const(T)* -> inout(const(T)*)
if (isMutable() && tp->isWild())
if ((next->isMutable() || next->isConst()) && tp->next->isConst())
return MATCHnomatch;
/* Alloc conversion to void*
*/
if (next->ty != Tvoid && tp->next->ty == Tvoid)
{
return MATCHconvert;
}
MATCH m = next->constConv(tp->next);
if (m != MATCHnomatch)
{
if (m == MATCHexact && mod != to->mod)
m = MATCHconst;
return m;
}
}
return MATCHnomatch;
}
MATCH TypePointer::constConv(Type *to)
{
if (next->ty == Tfunction)
{
if (to->nextOf() && next->equals(((TypeNext*)to)->next))
return Type::constConv(to);
else
return MATCHnomatch;
}
return TypeNext::constConv(to);
}
int TypePointer::isscalar()
{
return TRUE;
}
Expression *TypePointer::defaultInit(Loc loc)
{
#if LOGDEFAULTINIT
printf("TypePointer::defaultInit() '%s'\n", toChars());
#endif
return new NullExp(loc, this);
}
int TypePointer::isZeroInit(Loc loc)
{
return 1;
}
int TypePointer::hasPointers()
{
return TRUE;
}
/***************************** TypeReference *****************************/
TypeReference::TypeReference(Type *t)
: TypeNext(Treference, t)
{
// BUG: what about references to static arrays?
}
Type *TypeReference::syntaxCopy()
{
Type *t = next->syntaxCopy();
if (t == next)
t = this;
else
{ t = new TypeReference(t);
t->mod = mod;
}
return t;
}
Type *TypeReference::semantic(Loc loc, Scope *sc)
{
//printf("TypeReference::semantic()\n");
Type *n = next->semantic(loc, sc);
if (n != next)
deco = NULL;
next = n;
transitive();
return merge();
}
d_uns64 TypeReference::size(Loc loc)
{
return PTRSIZE;
}
void TypeReference::toCBuffer2(OutBuffer *buf, HdrGenState *hgs, int mod)
{
if (mod != this->mod)
{ toCBuffer3(buf, hgs, mod);
return;
}
next->toCBuffer2(buf, hgs, this->mod);
buf->writeByte('&');
}
Expression *TypeReference::dotExp(Scope *sc, Expression *e, Identifier *ident)
{
#if LOGDOTEXP
printf("TypeReference::dotExp(e = '%s', ident = '%s')\n", e->toChars(), ident->toChars());
#endif
// References just forward things along
return next->dotExp(sc, e, ident);
}
Expression *TypeReference::defaultInit(Loc loc)
{
#if LOGDEFAULTINIT
printf("TypeReference::defaultInit() '%s'\n", toChars());
#endif
return new NullExp(loc, this);
}
int TypeReference::isZeroInit(Loc loc)
{
return 1;
}
/***************************** TypeFunction *****************************/
TypeFunction::TypeFunction(Parameters *parameters, Type *treturn, int varargs, enum LINK linkage, StorageClass stc)
: TypeNext(Tfunction, treturn)
{
//if (!treturn) *(char*)0=0;
// assert(treturn);
assert(0 <= varargs && varargs <= 2);
this->parameters = parameters;
this->varargs = varargs;
this->linkage = linkage;
this->inuse = 0;
this->isnothrow = false;
this->purity = PUREimpure;
this->isproperty = false;
this->isref = false;
this->iswild = false;
this->fargs = NULL;
#if IN_LLVM
this->funcdecl = NULL;
#endif
if (stc & STCpure)
this->purity = PUREfwdref;
if (stc & STCnothrow)
this->isnothrow = true;
if (stc & STCproperty)
this->isproperty = true;
if (stc & STCref)
this->isref = true;
this->trust = TRUSTdefault;
if (stc & STCsafe)
this->trust = TRUSTsafe;
if (stc & STCsystem)
this->trust = TRUSTsystem;
if (stc & STCtrusted)
this->trust = TRUSTtrusted;
}
Type *TypeFunction::syntaxCopy()
{
Type *treturn = next ? next->syntaxCopy() : NULL;
Parameters *params = Parameter::arraySyntaxCopy(parameters);
TypeFunction *t = new TypeFunction(params, treturn, varargs, linkage);
t->mod = mod;
t->isnothrow = isnothrow;
t->purity = purity;
t->isproperty = isproperty;
t->isref = isref;
t->trust = trust;
t->fargs = fargs;
return t;
}
/*******************************
* Covariant means that 'this' can substitute for 't',
* i.e. a pure function is a match for an impure type.
* Returns:
* 0 types are distinct
* 1 this is covariant with t
* 2 arguments match as far as overloading goes,
* but types are not covariant
* 3 cannot determine covariance because of forward references
* *pstc STCxxxx which would make it covariant
*/
int Type::covariant(Type *t, StorageClass *pstc)
{
#if 0
printf("Type::covariant(t = %s) %s\n", t->toChars(), toChars());
printf("deco = %p, %p\n", deco, t->deco);
// printf("ty = %d\n", next->ty);
printf("mod = %x, %x\n", mod, t->mod);
#endif
if (pstc)
*pstc = 0;
StorageClass stc = 0;
int inoutmismatch = 0;
TypeFunction *t1;
TypeFunction *t2;
if (equals(t))
return 1; // covariant
if (ty != Tfunction || t->ty != Tfunction)
goto Ldistinct;
t1 = (TypeFunction *)this;
t2 = (TypeFunction *)t;
if (t1->varargs != t2->varargs)
goto Ldistinct;
if (t1->parameters && t2->parameters)
{
size_t dim = Parameter::dim(t1->parameters);
if (dim != Parameter::dim(t2->parameters))
goto Ldistinct;
for (size_t i = 0; i < dim; i++)
{ Parameter *arg1 = Parameter::getNth(t1->parameters, i);
Parameter *arg2 = Parameter::getNth(t2->parameters, i);
if (!arg1->type->equals(arg2->type))
{
#if 0 // turn on this for contravariant argument types, see bugzilla 3075
// BUG: cannot convert ref to const to ref to immutable
// We can add const, but not subtract it
if (arg2->type->implicitConvTo(arg1->type) < MATCHconst)
#endif
goto Ldistinct;
}
const StorageClass sc = STCref | STCin | STCout | STClazy;
if ((arg1->storageClass & sc) != (arg2->storageClass & sc))
inoutmismatch = 1;
// We can add scope, but not subtract it
if (!(arg1->storageClass & STCscope) && (arg2->storageClass & STCscope))
inoutmismatch = 1;
}
}
else if (t1->parameters != t2->parameters)
{
size_t dim1 = !t1->parameters ? 0 : t1->parameters->dim;
size_t dim2 = !t2->parameters ? 0 : t2->parameters->dim;
if (dim1 || dim2)
goto Ldistinct;
}
// The argument lists match
if (inoutmismatch)
goto Lnotcovariant;
if (t1->linkage != t2->linkage)
goto Lnotcovariant;
{
// Return types
Type *t1n = t1->next;
Type *t2n = t2->next;
if (!t1n || !t2n) // happens with return type inference
goto Lnotcovariant;
if (t1n->equals(t2n))
goto Lcovariant;
if (t1n->ty == Tclass && t2n->ty == Tclass)
{
/* If same class type, but t2n is const, then it's
* covariant. Do this test first because it can work on
* forward references.
*/
if (((TypeClass *)t1n)->sym == ((TypeClass *)t2n)->sym &&
MODimplicitConv(t1n->mod, t2n->mod))
goto Lcovariant;
// If t1n is forward referenced:
ClassDeclaration *cd = ((TypeClass *)t1n)->sym;
// if (cd->scope)
// cd->semantic(NULL);
#if 0
if (!cd->baseClass && cd->baseclasses->dim && !cd->isInterfaceDeclaration())
#else
if (!cd->isBaseInfoComplete())
#endif
{
return 3; // forward references
}
}
if (t1n->ty == Tstruct && t2n->ty == Tstruct)
{
if (((TypeStruct *)t1n)->sym == ((TypeStruct *)t2n)->sym &&
MODimplicitConv(t1n->mod, t2n->mod))
goto Lcovariant;
}
else if (t1n->ty == t2n->ty && t1n->implicitConvTo(t2n))
goto Lcovariant;
else if (t1n->ty == Tnull && t1n->implicitConvTo(t2n))
goto Lcovariant;
}
goto Lnotcovariant;
Lcovariant:
if (t1->isref != t2->isref)
goto Lnotcovariant;
/* Can convert mutable to const
*/
if (!MODimplicitConv(t2->mod, t1->mod))
{
// If adding 'const' will make it covariant
if (MODimplicitConv(t2->mod, MODmerge(t1->mod, MODconst)))
stc |= STCconst;
else
goto Lnotcovariant;
}
/* Can convert pure to impure, and nothrow to throw
*/
if (!t1->purity && t2->purity)
stc |= STCpure;
if (!t1->isnothrow && t2->isnothrow)
stc |= STCnothrow;
/* Can convert safe/trusted to system
*/
if (t1->trust <= TRUSTsystem && t2->trust >= TRUSTtrusted)
// Should we infer trusted or safe? Go with safe.
stc |= STCsafe;
if (stc)
{ if (pstc)
*pstc = stc;
goto Lnotcovariant;
}
//printf("\tcovaraint: 1\n");
return 1;
Ldistinct:
//printf("\tcovaraint: 0\n");
return 0;
Lnotcovariant:
//printf("\tcovaraint: 2\n");
return 2;
}
void TypeFunction::toDecoBuffer(OutBuffer *buf, int flag, bool mangle)
{ unsigned char mc;
//printf("TypeFunction::toDecoBuffer() this = %p %s\n", this, toChars());
//static int nest; if (++nest == 50) *(char*)0=0;
if (inuse)
{ inuse = 2; // flag error to caller
return;
}
inuse++;
MODtoDecoBuffer(buf, mod);
switch (linkage)
{
case LINKd: mc = 'F'; break;
case LINKc: mc = 'U'; break;
case LINKwindows: mc = 'W'; break;
case LINKpascal: mc = 'V'; break;
case LINKcpp: mc = 'R'; break;
// LDC
case LINKintrinsic: mc = 'Q'; break;
default:
assert(0);
}
buf->writeByte(mc);
if (purity || isnothrow || isproperty || isref || trust)
{
if (purity)
buf->writestring("Na");
if (isnothrow)
buf->writestring("Nb");
if (isref)
buf->writestring("Nc");
if (isproperty)
buf->writestring("Nd");
switch (trust)
{
case TRUSTtrusted:
buf->writestring("Ne");
break;
case TRUSTsafe:
buf->writestring("Nf");
break;
default: break;
}
}
#if IN_LLVM
// if we're not producing a mangle string, add the this
// type to prevent merging different member function
if (!mangle && funcdecl)
{
if (funcdecl->needThis())
{
AggregateDeclaration* ad = funcdecl->isMember2();
buf->writeByte('M');
ad->type->toDecoBuffer(buf, 0, false);
}
if (FuncLiteralDeclaration *literal = funcdecl->isFuncLiteralDeclaration()) {
// Never merge types of function literals of different kind
if (literal->tok == TOKdelegate) {
buf->writeByte('D');
} else if (literal->tok == TOKfunction) {
buf->writeByte('F');
} else if (literal->tok == TOKreserved) {
static int counter = 0;
buf->writeByte('L');
// And never merge types of lambdas, because we don't know whether
// they need a nested context argument or not.
buf->printf("%i", counter++);
}
}
/* BUG This causes problems with delegate types
On the other hand, the llvm type for nested functions *is* different
so not doing anything here may be lead to bugs!
A sane solution would be DtoType(Dsymbol)...
if (funcdecl->isNested())
{
buf->writeByte('M');
if (funcdecl->toParent2() && funcdecl->toParent2()->isFuncDeclaration())
{
FuncDeclaration* fd = funcdecl->toParent2()->isFuncDeclaration();
fd->type->toDecoBuffer(buf, 0, false);
}
}*/
}
#endif
// Write argument types
Parameter::argsToDecoBuffer(buf, parameters, mangle);
//if (buf->data[buf->offset - 1] == '@') halt();
buf->writeByte('Z' - varargs); // mark end of arg list
assert(next);
next->toDecoBuffer(buf, 0, mangle);
inuse--;
}
void TypeFunction::toCBuffer(OutBuffer *buf, Identifier *ident, HdrGenState *hgs)
{
toCBufferWithAttributes(buf, ident, hgs, this, NULL);
}
void TypeFunction::toCBufferWithAttributes(OutBuffer *buf, Identifier *ident, HdrGenState* hgs, TypeFunction *attrs, TemplateDeclaration *td)
{
//printf("TypeFunction::toCBuffer() this = %p\n", this);
if (inuse)
{ inuse = 2; // flag error to caller
return;
}
inuse++;
/* Use 'storage class' style for attributes
*/
if (attrs->mod)
{
MODtoBuffer(buf, attrs->mod);
buf->writeByte(' ');
}
if (attrs->purity)
buf->writestring("pure ");
if (attrs->isnothrow)
buf->writestring("nothrow ");
if (attrs->isproperty)
buf->writestring("@property ");
if (attrs->isref)
buf->writestring("ref ");
switch (attrs->trust)
{
case TRUSTsystem:
buf->writestring("@system ");
break;
case TRUSTtrusted:
buf->writestring("@trusted ");
break;
case TRUSTsafe:
buf->writestring("@safe ");
break;
default: break;
}
if (hgs->ddoc != 1)
{
const char *p = NULL;
switch (attrs->linkage)
{
case LINKd: p = NULL; break;
case LINKc: p = "C"; break;
case LINKwindows: p = "Windows"; break;
case LINKpascal: p = "Pascal"; break;
case LINKcpp: p = "C++"; break;
// LDC
case LINKintrinsic: p = "Intrinsic"; break;
default:
assert(0);
}
if (!hgs->hdrgen && p)
{
buf->writestring("extern (");
buf->writestring(p);
buf->writestring(") ");
}
}
if (!ident || ident->toHChars2() == ident->toChars())
{ if (next)
next->toCBuffer2(buf, hgs, 0);
else if (hgs->ddoc)
buf->writestring("auto");
}
if (ident)
{
if (next || hgs->ddoc)
buf->writeByte(' ');
buf->writestring(ident->toHChars2());
}
if (td)
{ buf->writeByte('(');
for (size_t i = 0; i < td->origParameters->dim; i++)
{
TemplateParameter *tp = (*td->origParameters)[i];
if (i)
buf->writestring(", ");
tp->toCBuffer(buf, hgs);
}
buf->writeByte(')');
}
Parameter::argsToCBuffer(buf, hgs, parameters, varargs);
inuse--;
}
// kind is inserted before the argument list and will usually be "function" or "delegate".
void functionToCBuffer2(TypeFunction *t, OutBuffer *buf, HdrGenState *hgs, int mod, const char *kind)
{
if (hgs->ddoc != 1)
{
const char *p = NULL;
switch (t->linkage)
{
case LINKd: p = NULL; break;
case LINKc: p = "C"; break;
case LINKwindows: p = "Windows"; break;
case LINKpascal: p = "Pascal"; break;
case LINKcpp: p = "C++"; break;
// LDC
case LINKintrinsic: p = "Intrinsic"; break;
default:
assert(0);
}
if (!hgs->hdrgen && p)
{
buf->writestring("extern (");
buf->writestring(p);
buf->writestring(") ");
}
}
if (t->next)
{
t->next->toCBuffer2(buf, hgs, 0);
buf->writeByte(' ');
}
buf->writestring(kind);
Parameter::argsToCBuffer(buf, hgs, t->parameters, t->varargs);
t->attributesToCBuffer(buf, mod);
}
void TypeFunction::toCBuffer2(OutBuffer *buf, HdrGenState *hgs, int mod)
{
//printf("TypeFunction::toCBuffer2() this = %p, ref = %d\n", this, isref);
if (inuse)
{ inuse = 2; // flag error to caller
return;
}
inuse++;
functionToCBuffer2(this, buf, hgs, mod, "function");
inuse--;
}
void TypeFunction::attributesToCBuffer(OutBuffer *buf, int mod)
{
/* Use postfix style for attributes
*/
if (mod != this->mod)
{
modToBuffer(buf);
}
if (purity)
buf->writestring(" pure");
if (isnothrow)
buf->writestring(" nothrow");
if (isproperty)
buf->writestring(" @property");
if (isref)
buf->writestring(" ref");
switch (trust)
{
case TRUSTsystem:
buf->writestring(" @system");
break;
case TRUSTtrusted:
buf->writestring(" @trusted");
break;
case TRUSTsafe:
buf->writestring(" @safe");
break;
default: break;
}
}
Type *TypeFunction::semantic(Loc loc, Scope *sc)
{
if (deco) // if semantic() already run
{
//printf("already done\n");
return this;
}
//printf("TypeFunction::semantic() this = %p\n", this);
//printf("TypeFunction::semantic() %s, sc->stc = %llx, fargs = %p\n", toChars(), sc->stc, fargs);
/* Copy in order to not mess up original.
* This can produce redundant copies if inferring return type,
* as semantic() will get called again on this.
*/
TypeFunction *tf = (TypeFunction *)mem.malloc(sizeof(TypeFunction));
memcpy(tf, this, sizeof(TypeFunction));
if (parameters)
{ tf->parameters = (Parameters *)parameters->copy();
for (size_t i = 0; i < parameters->dim; i++)
{ Parameter *arg = (*parameters)[i];
Parameter *cpy = (Parameter *)mem.malloc(sizeof(Parameter));
memcpy(cpy, arg, sizeof(Parameter));
(*tf->parameters)[i] = cpy;
}
}
if (sc->stc & STCpure)
tf->purity = PUREfwdref;
if (sc->stc & STCnothrow)
tf->isnothrow = TRUE;
if (sc->stc & STCref)
tf->isref = TRUE;
if (sc->stc & STCsafe)
tf->trust = TRUSTsafe;
if (sc->stc & STCsystem)
tf->trust = TRUSTsystem;
if (sc->stc & STCtrusted)
tf->trust = TRUSTtrusted;
if (sc->stc & STCproperty)
tf->isproperty = TRUE;
tf->linkage = sc->linkage;
/* If the parent is @safe, then this function defaults to safe
* too.
* If the parent's @safe-ty is inferred, then this function's @safe-ty needs
* to be inferred first.
*/
if (tf->trust == TRUSTdefault)
for (Dsymbol *p = sc->func; p; p = p->toParent2())
{ FuncDeclaration *fd = p->isFuncDeclaration();
if (fd)
{
if (fd->isSafeBypassingInference())
tf->trust = TRUSTsafe; // default to @safe
break;
}
}
bool wildreturn = FALSE;
if (tf->next)
{
sc = sc->push();
sc->stc &= ~(STC_TYPECTOR | STC_FUNCATTR);
tf->next = tf->next->semantic(loc,sc);
sc = sc->pop();
#if !SARRAYVALUE
if (tf->next->toBasetype()->ty == Tsarray)
{ error(loc, "functions cannot return static array %s", tf->next->toChars());
tf->next = Type::terror;
}
#endif
if (tf->next->toBasetype()->ty == Tfunction)
{ error(loc, "functions cannot return a function");
tf->next = Type::terror;
}
if (tf->next->toBasetype()->ty == Ttuple)
{ error(loc, "functions cannot return a tuple");
tf->next = Type::terror;
}
if (tf->next->isscope() && !(sc->flags & SCOPEctor))
error(loc, "functions cannot return scope %s", tf->next->toChars());
if (tf->next->toBasetype()->ty == Tvoid)
tf->isref = FALSE; // rewrite "ref void" as just "void"
if (tf->next->hasWild() &&
!(tf->next->ty == Tpointer && tf->next->nextOf()->ty == Tfunction || tf->next->ty == Tdelegate))
wildreturn = TRUE;
}
bool wildparams = FALSE;
if (tf->parameters)
{
/* Create a scope for evaluating the default arguments for the parameters
*/
Scope *argsc = sc->push();
argsc->stc = 0; // don't inherit storage class
argsc->protection = PROTpublic;
argsc->func = NULL;
size_t dim = Parameter::dim(tf->parameters);
for (size_t i = 0; i < dim; i++)
{ Parameter *fparam = Parameter::getNth(tf->parameters, i);
tf->inuse++;
fparam->type = fparam->type->semantic(loc, argsc);
if (tf->inuse == 1) tf->inuse--;
fparam->type = fparam->type->addStorageClass(fparam->storageClass);
if (fparam->storageClass & (STCauto | STCalias | STCstatic))
{
if (!fparam->type)
continue;
}
// Possible merge conflict
Type *t = fparam->type->toBasetype();
if (fparam->storageClass & (STCout | STCref | STClazy))
{
//if (t->ty == Tsarray)
//error(loc, "cannot have out or ref parameter of type %s", t->toChars());
if (fparam->storageClass & STCout && fparam->type->mod & (STCconst | STCimmutable))
error(loc, "cannot have const or immutable out parameter of type %s", t->toChars());
}
if (!(fparam->storageClass & STClazy) && t->ty == Tvoid)
error(loc, "cannot have parameter of type %s", fparam->type->toChars());
if (t->hasWild() &&
!(t->ty == Tpointer && t->nextOf()->ty == Tfunction || t->ty == Tdelegate))
{
wildparams = TRUE;
//if (tf->next && !wildreturn)
// error(loc, "inout on parameter means inout must be on return type as well (if from D1 code, replace with 'ref')");
}
if (fparam->defaultArg)
{ Expression *e = fparam->defaultArg;
e = e->inferType(fparam->type);
e = e->semantic(argsc);
e = resolveProperties(argsc, e);
if (e->op == TOKfunction) // see Bugzilla 4820
{ FuncExp *fe = (FuncExp *)e;
// Replace function literal with a function symbol,
// since default arg expression must be copied when used
// and copying the literal itself is wrong.
e = new VarExp(e->loc, fe->fd, 0);
e = new AddrExp(e->loc, e);
e = e->semantic(argsc);
}
e = e->implicitCastTo(argsc, fparam->type);
// default arg must be an lvalue
if (fparam->storageClass & (STCout | STCref))
e = e->toLvalue(argsc, e);
fparam->defaultArg = e;
}
/* If fparam after semantic() turns out to be a tuple, the number of parameters may
* change.
*/
if (t->ty == Ttuple)
{
/* TypeFunction::parameter also is used as the storage of
* Parameter objects for FuncDeclaration. So we should copy
* the elements of TypeTuple::arguments to avoid unintended
* sharing of Parameter object among other functions.
*/
TypeTuple *tt = (TypeTuple *)t;
if (tt->arguments && tt->arguments->dim)
{
/* Propagate additional storage class from tuple parameters to their
* element-parameters.
* Make a copy, as original may be referenced elsewhere.
*/
size_t tdim = tt->arguments->dim;
Parameters *newparams = new Parameters();
newparams->setDim(tdim);
for (size_t j = 0; j < tdim; j++)
{ Parameter *narg = (*tt->arguments)[j];
(*newparams)[j] = new Parameter(narg->storageClass | fparam->storageClass,
narg->type, narg->ident, narg->defaultArg);
}
fparam->type = new TypeTuple(newparams);
}
fparam->storageClass = 0;
/* Reset number of parameters, and back up one to do this fparam again,
* now that it is a tuple
*/
dim = Parameter::dim(tf->parameters);
i--;
continue;
}
/* Resolve "auto ref" storage class to be either ref or value,
* based on the argument matching the parameter
*/
if (fparam->storageClass & STCauto)
{
if (fargs && i < fargs->dim)
{ Expression *farg = (*fargs)[i];
if (farg->isLvalue())
; // ref parameter
else
fparam->storageClass &= ~STCref; // value parameter
}
else
error(loc, "auto can only be used for template function parameters");
}
// Remove redundant storage classes for type, they are already applied
fparam->storageClass &= ~(STC_TYPECTOR | STCin);
}
argsc->pop();
}
if (tf->isWild())
wildparams = TRUE;
if (wildreturn && !wildparams)
error(loc, "inout on return means inout must be on a parameter as well for %s", toChars());
tf->iswild = wildparams;
if (tf->next)
tf->deco = tf->merge()->deco;
if (tf->inuse)
{ error(loc, "recursive type");
tf->inuse = 0;
return terror;
}
if (tf->isproperty && (tf->varargs || Parameter::dim(tf->parameters) > 2))
error(loc, "properties can only have zero, one, or two parameter");
if (tf->varargs == 1 && tf->linkage != LINKd && Parameter::dim(tf->parameters) == 0)
error(loc, "variadic functions with non-D linkage must have at least one parameter");
/* Don't return merge(), because arg identifiers and default args
* can be different
* even though the types match
*/
return tf;
}
Type *getIndirection(Type *t)
{
t = t->toBasetype();
if (t->ty == Tsarray)
{ while (t->ty == Tsarray)
t = t->nextOf()->toBasetype();
}
if (t->ty == Tarray || t->ty == Tpointer)
return t->nextOf()->toBasetype();
if (t->ty == Taarray || t->ty == Tclass)
return t;
if (t->ty == Tstruct)
return t->hasPointers() ? t : NULL; // TODO
// should consider TypeDelegate?
return NULL;
}
/********************************************
* Do this lazily, as the parameter types might be forward referenced.
*/
void TypeFunction::purityLevel()
{
//printf("purityLevel(%s)\n", toChars());
TypeFunction *tf = this;
if (tf->purity == PUREfwdref && tf->next)
{ /* Evaluate what kind of purity based on the modifiers for the parameters
*/
enum PURE purity = PUREstrong; // assume strong until something weakens it
size_t dim = Parameter::dim(tf->parameters);
if (dim)
{
Type *tret = tf->next;
assert(tret);
Type *treti = tf->isref ? tret->toBasetype() : getIndirection(tret);
if (treti && (treti->mod & MODimmutable))
treti = NULL; // indirection is immutable
//printf(" tret = %s, treti = %s\n", tret->toChars(), treti ? treti->toChars() : "NULL");
for (size_t i = 0; i < dim; i++)
{ Parameter *fparam = Parameter::getNth(tf->parameters, i);
if (fparam->storageClass & STClazy)
{
purity = PUREweak;
break;
}
if (fparam->storageClass & STCout)
{
purity = PUREweak;
break;
}
if (!fparam->type)
continue;
Type *tprm = fparam->type;
Type *tprmi = fparam->storageClass & STCref ? tprm->toBasetype() : getIndirection(tprm);
//printf(" [%d] tprm = %s, tprmi = %s\n", i, tprm->toChars(), tprmi ? tprmi->toChars() : "NULL");
if (!tprmi || (tprmi->mod & MODimmutable))
continue; // there is no mutable indirection
if (tprmi->isMutable())
{ purity = PUREweak; // indirection is mutable
break;
}
if (!treti)
continue; // mutable indirection is never returned
if (purity < PUREstrong)
continue;
// Determine the parameter is really PUREconst or not
assert(tprmi->mod & (MODconst | MODwild));
if (tprmi->constConv(treti)) // simple case
purity = PUREconst;
else if (tprmi->invariantOf()->equals(treti->invariantOf()))
continue;
else
{
/* The rest of this is little strict; fix later.
* For example:
*
* struct S { immutable* p; }
* pure S foo(const int* p);
*
* which would maintain strong purity.
*/
if (tprmi->hasPointers() || treti->hasPointers())
purity = PUREconst;
}
/* Should catch delegates and function pointers, and fold in their purity
*/
}
}
//printf(" --> purity: %d\n", purity);
tf->purity = purity;
}
}
/********************************************
* FIXME: This function is a workaround for fixing Bugzilla 9210.
* In 2.061, TypeFunction::purityLevel() improved to make more functions
* strong purity, but immutable conversion on return statemet had broken by that.
* Because, it is essentially unrelated to PUREstrong. This function is
* necessary to check the convertibility.
*/
bool TypeFunction::hasMutableIndirectionParams()
{
TypeFunction *tf = this;
size_t dim = Parameter::dim(tf->parameters);
for (size_t i = 0; i < dim; i++)
{
Parameter *fparam = Parameter::getNth(tf->parameters, i);
if (fparam->storageClass & STClazy)
{
return true;
}
if (fparam->storageClass & STCout)
{
return true;
}
if (!fparam->type)
continue;
if (fparam->storageClass & STCref)
{
if (!(fparam->type->mod & (MODconst | MODimmutable | MODwild)))
return true;
if (fparam->type->mod & MODconst)
return true;
}
Type *t = fparam->type->toBasetype();
if (!t->hasPointers())
continue;
if (t->mod & (MODimmutable | MODwild))
continue;
/* The rest of this is too strict; fix later.
* For example, the only pointer members of a struct may be immutable,
* which would maintain strong purity.
*/
if (t->mod & MODconst)
return true;
Type *tn = t->nextOf();
if (tn)
{ tn = tn->toBasetype();
if (tn->ty == Tpointer || tn->ty == Tarray)
{ /* Accept immutable(T)* and immutable(T)[] as being strongly pure
*/
if (tn->mod & (MODimmutable | MODwild))
continue;
if (tn->mod & MODconst)
return true;
}
}
/* Should catch delegates and function pointers, and fold in their purity
*/
return true;
}
return false;
}
/********************************
* 'args' are being matched to function 'this'
* Determine match level.
* Input:
* flag 1 performing a partial ordering match
* Returns:
* MATCHxxxx
*/
MATCH TypeFunction::callMatch(Expression *ethis, Expressions *args, int flag)
{
//printf("TypeFunction::callMatch() %s\n", toChars());
MATCH match = MATCHexact; // assume exact match
unsigned wildmatch = 0;
if (ethis)
{ Type *t = ethis->type;
if (t->toBasetype()->ty == Tpointer)
t = t->toBasetype()->nextOf(); // change struct* to struct
if (t->mod != mod)
{
if (MODimplicitConv(t->mod, mod))
match = MATCHconst;
else if ((mod & MODwild)
&& MODimplicitConv(t->mod, (mod & ~MODwild) | MODconst))
{
match = MATCHconst;
}
else
return MATCHnomatch;
}
if (isWild())
{
if (t->isWild())
wildmatch |= MODwild;
else if (t->isConst())
wildmatch |= MODconst;
else if (t->isImmutable())
wildmatch |= MODimmutable;
else
wildmatch |= MODmutable;
}
}
size_t nparams = Parameter::dim(parameters);
size_t nargs = args ? args->dim : 0;
if (nparams == nargs)
;
else if (nargs > nparams)
{
if (varargs == 0)
goto Nomatch; // too many args; no match
match = MATCHconvert; // match ... with a "conversion" match level
}
for (size_t u = 0; u < nargs; u++)
{
if (u >= nparams)
break;
Parameter *p = Parameter::getNth(parameters, u);
Expression *arg = (*args)[u];
assert(arg);
if (!(p->storageClass & STClazy && p->type->ty == Tvoid && arg->type->ty != Tvoid))
{
unsigned mod = arg->type->wildConvTo(p->type);
if (mod)
{
wildmatch |= mod;
}
}
}
if (wildmatch)
{ /* Calculate wild matching modifier
*/
if (wildmatch & MODconst || wildmatch & (wildmatch - 1))
wildmatch = MODconst;
else if (wildmatch & MODimmutable)
wildmatch = MODimmutable;
else if (wildmatch & MODwild)
wildmatch = MODwild;
else
{ assert(wildmatch & MODmutable);
wildmatch = MODmutable;
}
}
for (size_t u = 0; u < nparams; u++)
{ MATCH m;
// BUG: what about out and ref?
Parameter *p = Parameter::getNth(parameters, u);
assert(p);
if (u >= nargs)
{
if (p->defaultArg)
continue;
goto L1; // try typesafe variadics
}
{
Expression *arg = (*args)[u];
assert(arg);
if (arg->op == TOKfunction)
{
arg = ((FuncExp *)arg)->inferType(p->type, 1);
if (!arg)
goto L1; // try typesafe variadics
}
//printf("arg: %s, type: %s\n", arg->toChars(), arg->type->toChars());
Type *targ = arg->type;
Type *tprm = wildmatch ? p->type->substWildTo(wildmatch) : p->type;
if (p->storageClass & STClazy && tprm->ty == Tvoid && targ->ty != Tvoid)
m = MATCHconvert;
else
{
//printf("%s of type %s implicitConvTo %s\n", arg->toChars(), targ->toChars(), tprm->toChars());
if (flag)
// for partial ordering, value is an irrelevant mockup, just look at the type
m = targ->implicitConvTo(tprm);
else
m = arg->implicitConvTo(tprm);
//printf("match %d\n", m);
}
// Non-lvalues do not match ref or out parameters
if (p->storageClass & STCref)
{ if (m && !arg->isLvalue())
{
Type *ta = targ->aliasthisOf();
if (arg->op == TOKstring && tprm->ty == Tsarray)
{ if (targ->ty != Tsarray)
targ = new TypeSArray(targ->nextOf(),
new IntegerExp(0, ((StringExp *)arg)->len,
Type::tindex));
}
else if (ta && ta->implicitConvTo(tprm))
{
goto Nomatch;
}
else if (arg->op == TOKstructliteral)
{
match = MATCHconvert;
}
else if (arg->op == TOKcall)
{
CallExp *ce = (CallExp *)arg;
if (ce->e1->op == TOKdotvar &&
((DotVarExp *)ce->e1)->var->isCtorDeclaration())
{
match = MATCHconvert;
}
else
goto Nomatch;
}
else
goto Nomatch;
}
Type *targb = targ->toBasetype();
Type *tprmb = tprm->toBasetype();
//printf("%s\n", targb->toChars());
//printf("%s\n", tprmb->toChars());
/* find most derived alias this type being matched.
*/
while (1)
{
Type *tat = targb->aliasthisOf();
if (!tat || !tat->implicitConvTo(tprm))
break;
targb = tat;
}
/* Don't allow static arrays to be passed to mutable references
* to static arrays if the argument cannot be modified.
*/
if (targb->nextOf() && tprmb->ty == Tsarray &&
!MODimplicitConv(targb->nextOf()->mod, tprmb->nextOf()->mod))
goto Nomatch;
// ref variable behaves like head-const reference
if (!targb->constConv(tprmb))
goto Nomatch;
}
else if (p->storageClass & STCout)
{ if (m && !arg->isLvalue())
goto Nomatch;
}
}
/* prefer matching the element type rather than the array
* type when more arguments are present with T[]...
*/
if (varargs == 2 && u + 1 == nparams && nargs > nparams)
goto L1;
//printf("\tm = %d\n", m);
if (m == MATCHnomatch) // if no match
{
L1:
if (varargs == 2 && u + 1 == nparams) // if last varargs param
{ Type *tb = p->type->toBasetype();
TypeSArray *tsa;
dinteger_t sz;
switch (tb->ty)
{
case Tsarray:
tsa = (TypeSArray *)tb;
sz = tsa->dim->toInteger();
if (sz != nargs - u)
goto Nomatch;
case Tarray:
{ TypeArray *ta = (TypeArray *)tb;
for (; u < nargs; u++)
{
Expression *arg = (*args)[u];
assert(arg);
if (arg->op == TOKfunction)
{
arg = ((FuncExp *)arg)->inferType(tb->nextOf(), 1);
if (!arg)
goto Nomatch;
}
/* If lazy array of delegates,
* convert arg(s) to delegate(s)
*/
Type *tret = p->isLazyArray();
if (tret)
{
if (ta->next->equals(arg->type))
m = MATCHexact;
else if (tret->toBasetype()->ty == Tvoid)
m = MATCHconvert;
else
{
m = arg->implicitConvTo(tret);
if (m == MATCHnomatch)
m = arg->implicitConvTo(ta->next);
}
}
else
m = arg->implicitConvTo(ta->next);
if (m == MATCHnomatch)
goto Nomatch;
if (m < match)
match = m;
}
goto Ldone;
}
case Tclass:
// Should see if there's a constructor match?
// Or just leave it ambiguous?
goto Ldone;
default:
goto Nomatch;
}
}
goto Nomatch;
}
if (m < match)
match = m; // pick worst match
}
Ldone:
//printf("match = %d\n", match);
return match;
Nomatch:
//printf("no match\n");
return MATCHnomatch;
}
Type *TypeFunction::reliesOnTident(TemplateParameters *tparams)
{
size_t dim = Parameter::dim(parameters);
for (size_t i = 0; i < dim; i++)
{ Parameter *fparam = Parameter::getNth(parameters, i);
Type *t = fparam->type->reliesOnTident(tparams);
if (t)
return t;
}
return next ? next->reliesOnTident(tparams) : NULL;
}
/********************************************
* Return TRUE if there are lazy parameters.
*/
bool TypeFunction::hasLazyParameters()
{
size_t dim = Parameter::dim(parameters);
for (size_t i = 0; i < dim; i++)
{ Parameter *fparam = Parameter::getNth(parameters, i);
if (fparam->storageClass & STClazy)
return TRUE;
}
return FALSE;
}
/***************************
* Examine function signature for parameter p and see if
* p can 'escape' the scope of the function.
*/
bool TypeFunction::parameterEscapes(Parameter *p)
{
/* Scope parameters do not escape.
* Allow 'lazy' to imply 'scope' -
* lazy parameters can be passed along
* as lazy parameters to the next function, but that isn't
* escaping.
*/
if (p->storageClass & (STCscope | STClazy))
return FALSE;
/* If haven't inferred the return type yet, assume it escapes
*/
if (!nextOf())
return TRUE;
if (purity)
{ /* With pure functions, we need only be concerned if p escapes
* via any return statement.
*/
Type* tret = nextOf()->toBasetype();
if (!isref && !tret->hasPointers())
{ /* The result has no references, so p could not be escaping
* that way.
*/
return FALSE;
}
}
/* Assume it escapes in the absence of better information.
*/
return TRUE;
}
Expression *TypeFunction::defaultInit(Loc loc)
{
error(loc, "function does not have a default initializer");
return new ErrorExp();
}
Type *TypeFunction::addStorageClass(StorageClass stc)
{
TypeFunction *t = (TypeFunction *)Type::addStorageClass(stc);
if ((stc & STCpure && !t->purity) ||
(stc & STCnothrow && !t->isnothrow) ||
(stc & STCsafe && t->trust < TRUSTtrusted))
{
// Klunky to change these
TypeFunction *tf = new TypeFunction(t->parameters, t->next, t->varargs, t->linkage, 0);
tf->mod = t->mod;
tf->fargs = fargs;
tf->purity = t->purity;
tf->isnothrow = t->isnothrow;
tf->isproperty = t->isproperty;
tf->isref = t->isref;
tf->trust = t->trust;
if (stc & STCpure)
tf->purity = PUREfwdref;
if (stc & STCnothrow)
tf->isnothrow = true;
if (stc & STCsafe)
tf->trust = TRUSTsafe;
#if IN_LLVM
tf->funcdecl = t->funcdecl;
#endif
tf->deco = tf->merge()->deco;
t = tf;
}
return t;
}
/***************************** TypeDelegate *****************************/
TypeDelegate::TypeDelegate(Type *t)
: TypeNext(Tfunction, t)
{
ty = Tdelegate;
}
Type *TypeDelegate::syntaxCopy()
{
Type *t = next->syntaxCopy();
if (t == next)
t = this;
else
{ t = new TypeDelegate(t);
t->mod = mod;
}
return t;
}
Type *TypeDelegate::semantic(Loc loc, Scope *sc)
{
//printf("TypeDelegate::semantic() %s\n", toChars());
if (deco) // if semantic() already run
{
//printf("already done\n");
return this;
}
next = next->semantic(loc,sc);
/* In order to deal with Bugzilla 4028, perhaps default arguments should
* be removed from next before the merge.
*/
#if 1
return merge();
#else
/* Don't return merge(), because arg identifiers and default args
* can be different
* even though the types match
*/
deco = merge()->deco;
return this;
#endif
}
d_uns64 TypeDelegate::size(Loc loc)
{
return PTRSIZE * 2;
}
// LDC added, no reason to align to 2*PTRSIZE
unsigned TypeDelegate::alignsize()
{
// A Delegate consists of two ptr values, so align it on pointer size
// boundary
return PTRSIZE;
}
MATCH TypeDelegate::implicitConvTo(Type *to)
{
//printf("TypeDelegate::implicitConvTo(this=%p, to=%p)\n", this, to);
//printf("from: %s\n", toChars());
//printf("to : %s\n", to->toChars());
if (this == to)
return MATCHexact;
#if 1 // not allowing covariant conversions because it interferes with overriding
if (to->ty == Tdelegate && this->nextOf()->covariant(to->nextOf()) == 1)
return MATCHconvert;
#endif
return MATCHnomatch;
}
void TypeDelegate::toCBuffer2(OutBuffer *buf, HdrGenState *hgs, int mod)
{
if (mod != this->mod)
{ toCBuffer3(buf, hgs, mod);
return;
}
functionToCBuffer2((TypeFunction *)next, buf, hgs, mod, "delegate");
}
Expression *TypeDelegate::defaultInit(Loc loc)
{
#if LOGDEFAULTINIT
printf("TypeDelegate::defaultInit() '%s'\n", toChars());
#endif
return new NullExp(loc, this);
}
int TypeDelegate::isZeroInit(Loc loc)
{
return 1;
}
int TypeDelegate::checkBoolean()
{
return TRUE;
}
Expression *TypeDelegate::dotExp(Scope *sc, Expression *e, Identifier *ident)
{
#if LOGDOTEXP
printf("TypeDelegate::dotExp(e = '%s', ident = '%s')\n", e->toChars(), ident->toChars());
#endif
if (ident == Id::ptr)
{
e = new GEPExp(e->loc, e, ident, 0);
e->type = tvoidptr;
return e;
}
else if (ident == Id::funcptr)
{
e = new GEPExp(e->loc, e, ident, 1);
e->type = next->pointerTo();
return e;
}
else
{
e = Type::dotExp(sc, e, ident);
}
return e;
}
int TypeDelegate::hasPointers()
{
return TRUE;
}
/***************************** TypeQualified *****************************/
TypeQualified::TypeQualified(TY ty, Loc loc)
: Type(ty)
{
this->loc = loc;
}
void TypeQualified::syntaxCopyHelper(TypeQualified *t)
{
//printf("TypeQualified::syntaxCopyHelper(%s) %s\n", t->toChars(), toChars());
idents.setDim(t->idents.dim);
for (size_t i = 0; i < idents.dim; i++)
{
Identifier *id = t->idents[i];
if (id->dyncast() == DYNCAST_DSYMBOL)
{
TemplateInstance *ti = (TemplateInstance *)id;
ti = (TemplateInstance *)ti->syntaxCopy(NULL);
id = (Identifier *)ti;
}
idents[i] = id;
}
}
void TypeQualified::addIdent(Identifier *ident)
{
idents.push(ident);
}
void TypeQualified::toCBuffer2Helper(OutBuffer *buf, HdrGenState *hgs)
{
for (size_t i = 0; i < idents.dim; i++)
{ Identifier *id = idents[i];
buf->writeByte('.');
if (id->dyncast() == DYNCAST_DSYMBOL)
{
TemplateInstance *ti = (TemplateInstance *)id;
ti->toCBuffer(buf, hgs);
}
else
buf->writestring(id->toChars());
}
}
d_uns64 TypeQualified::size(Loc loc)
{
error(this->loc, "size of type %s is not known", toChars());
return 1;
}
/*************************************
* Takes an array of Identifiers and figures out if
* it represents a Type or an Expression.
* Output:
* if expression, *pe is set
* if type, *pt is set
*/
void TypeQualified::resolveHelper(Loc loc, Scope *sc,
Dsymbol *s, Dsymbol *scopesym,
Expression **pe, Type **pt, Dsymbol **ps)
{
VarDeclaration *v;
EnumMember *em;
Expression *e;
#if 0
printf("TypeQualified::resolveHelper(sc = %p, idents = '%s')\n", sc, toChars());
if (scopesym)
printf("\tscopesym = '%s'\n", scopesym->toChars());
#endif
*pe = NULL;
*pt = NULL;
*ps = NULL;
if (s)
{
//printf("\t1: s = '%s' %p, kind = '%s'\n",s->toChars(), s, s->kind());
s->checkDeprecated(loc, sc); // check for deprecated aliases
s = s->toAlias();
//printf("\t2: s = '%s' %p, kind = '%s'\n",s->toChars(), s, s->kind());
for (size_t i = 0; i < idents.dim; i++)
{
Identifier *id = idents[i];
Dsymbol *sm = s->searchX(loc, sc, id);
//printf("\t3: s = '%s' %p, kind = '%s'\n",s->toChars(), s, s->kind());
//printf("\tgetType = '%s'\n", s->getType()->toChars());
if (!sm)
{ Type *t;
v = s->isVarDeclaration();
if (v && id == Id::length)
{
e = new VarExp(loc, v);
t = e->type;
if (!t)
goto Lerror;
goto L3;
}
else if (v && (id == Id::stringof || id == Id::offsetof))
{
e = new DsymbolExp(loc, s, 0);
do
{
id = idents[i];
e = new DotIdExp(loc, e, id);
} while (++i < idents.dim);
e = e->semantic(sc);
*pe = e;
return;
}
t = s->getType();
if (!t && s->isDeclaration())
{ t = s->isDeclaration()->type;
if (!t && s->isTupleDeclaration())
{
e = new TupleExp(loc, s->isTupleDeclaration());
e = e->semantic(sc);
t = e->type;
}
}
if (t)
{
sm = t->toDsymbol(sc);
if (sm)
{ sm = sm->search(loc, id, 0);
if (sm)
goto L2;
}
//e = t->getProperty(loc, id);
e = new TypeExp(loc, t);
e = t->dotExp(sc, e, id);
i++;
L3:
for (; i < idents.dim; i++)
{
id = idents[i];
//printf("e: '%s', id: '%s', type = %s\n", e->toChars(), id->toChars(), e->type->toChars());
e = new DotIdExp(e->loc, e, id);
e = e->semantic(sc);
}
if (e->op == TOKtype)
*pt = e->type;
else
*pe = e;
}
else
{
Lerror:
if (id->dyncast() == DYNCAST_DSYMBOL)
{ // searchX already handles errors for template instances
assert(global.errors);
}
else
{
sm = s->search_correct(id);
if (sm)
error(loc, "identifier '%s' of '%s' is not defined, did you mean '%s %s'?",
id->toChars(), toChars(), sm->kind(), sm->toChars());
else
error(loc, "identifier '%s' of '%s' is not defined", id->toChars(), toChars());
}
*pe = new ErrorExp();
}
return;
}
L2:
s = sm->toAlias();
}
v = s->isVarDeclaration();
if (v)
{
*pe = new VarExp(loc, v);
return;
}
#if 0
fd = s->isFuncDeclaration();
if (fd)
{
*pe = new DsymbolExp(loc, fd, 1);
return;
}
#endif
em = s->isEnumMember();
if (em)
{
// It's not a type, it's an expression
*pe = em->value->copy();
return;
}
L1:
Type *t = s->getType();
if (!t)
{
// If the symbol is an import, try looking inside the import
Import *si;
si = s->isImport();
if (si)
{
s = si->search(loc, s->ident, 0);
if (s && s != si)
goto L1;
s = si;
}
*ps = s;
return;
}
if (t->ty == Tinstance && t != this && !t->deco)
{ error(loc, "forward reference to '%s'", t->toChars());
return;
}
if (t != this)
{
if (t->reliesOnTident())
{
if (s->scope)
t = t->semantic(loc, s->scope);
else
{
/* Attempt to find correct scope in which to evaluate t.
* Not sure if this is right or not, or if we should just
* give forward reference error if s->scope is not set.
*/
for (Scope *scx = sc; 1; scx = scx->enclosing)
{
if (!scx)
{ error(loc, "forward reference to '%s'", t->toChars());
return;
}
if (scx->scopesym == scopesym)
{
t = t->semantic(loc, scx);
break;
}
}
}
}
}
if (t->ty == Ttuple)
*pt = t;
else
*pt = t->merge();
}
if (!s)
{
const char *p = toChars();
const char *n = importHint(p);
if (n)
error(loc, "'%s' is not defined, perhaps you need to import %s; ?", p, n);
else
{
Identifier *id = new Identifier(p, TOKidentifier);
s = sc->search_correct(id);
if (s)
error(loc, "undefined identifier %s, did you mean %s %s?", p, s->kind(), s->toChars());
else
error(loc, "undefined identifier %s", p);
}
*pt = Type::terror;
}
}
/***************************** TypeIdentifier *****************************/
TypeIdentifier::TypeIdentifier(Loc loc, Identifier *ident)
: TypeQualified(Tident, loc)
{
this->ident = ident;
}
Type *TypeIdentifier::syntaxCopy()
{
TypeIdentifier *t;
t = new TypeIdentifier(loc, ident);
t->syntaxCopyHelper(this);
t->mod = mod;
return t;
}
void TypeIdentifier::toDecoBuffer(OutBuffer *buf, int flag, bool mangle)
{
Type::toDecoBuffer(buf, flag, mangle);
const char *name = ident->toChars();
size_t len = strlen(name);
buf->printf("%u%s", (unsigned)len, name);
}
void TypeIdentifier::toCBuffer2(OutBuffer *buf, HdrGenState *hgs, int mod)
{
if (mod != this->mod)
{ toCBuffer3(buf, hgs, mod);
return;
}
buf->writestring(this->ident->toChars());
toCBuffer2Helper(buf, hgs);
}
/*************************************
* Takes an array of Identifiers and figures out if
* it represents a Type or an Expression.
* Output:
* if expression, *pe is set
* if type, *pt is set
*/
void TypeIdentifier::resolve(Loc loc, Scope *sc, Expression **pe, Type **pt, Dsymbol **ps)
{
Dsymbol *scopesym;
//printf("TypeIdentifier::resolve(sc = %p, idents = '%s')\n", sc, toChars());
if ((ident->equals(Id::super) || ident->equals(Id::This)) && !hasThis(sc))
{
AggregateDeclaration *ad = sc->getStructClassScope();
if (ad)
{
ClassDeclaration *cd = ad->isClassDeclaration();
if (cd)
{
if (ident->equals(Id::This))
ident = cd->ident;
else if (cd->baseClass && ident->equals(Id::super))
ident = cd->baseClass->ident;
}
else
{
StructDeclaration *sd = ad->isStructDeclaration();
if (sd && ident->equals(Id::This))
ident = sd->ident;
}
}
}
Dsymbol *s = sc->search(loc, ident, &scopesym);
resolveHelper(loc, sc, s, scopesym, pe, pt, ps);
if (*pt)
(*pt) = (*pt)->addMod(mod);
}
/*****************************************
* See if type resolves to a symbol, if so,
* return that symbol.
*/
Dsymbol *TypeIdentifier::toDsymbol(Scope *sc)
{
//printf("TypeIdentifier::toDsymbol('%s')\n", toChars());
if (!sc)
return NULL;
//printf("ident = '%s'\n", ident->toChars());
Dsymbol *scopesym;
Dsymbol *s = sc->search(loc, ident, &scopesym);
if (s)
{
for (size_t i = 0; i < idents.dim; i++)
{
Identifier *id = idents[i];
s = s->searchX(loc, sc, id);
if (!s) // failed to find a symbol
{ //printf("\tdidn't find a symbol\n");
break;
}
}
}
return s;
}
Type *TypeIdentifier::semantic(Loc loc, Scope *sc)
{
Type *t;
Expression *e;
Dsymbol *s;
//printf("TypeIdentifier::semantic(%s)\n", toChars());
resolve(loc, sc, &e, &t, &s);
if (t)
{
//printf("\tit's a type %d, %s, %s\n", t->ty, t->toChars(), t->deco);
if (t->ty == Ttypedef)
{ TypeTypedef *tt = (TypeTypedef *)t;
if (tt->sym->sem == SemanticIn)
error(loc, "circular reference of typedef %s", tt->toChars());
}
t = t->addMod(mod);
}
else
{
if (s)
{
s->error(loc, "is used as a type");
//halt();
}
else
error(loc, "%s is used as a type", toChars());
t = terror;
}
//t->print();
return t;
}
Type *TypeIdentifier::reliesOnTident(TemplateParameters *tparams)
{
if (tparams)
{
if (idents.dim == 0)
{
for (size_t i = 0; i < tparams->dim; i++)
{ TemplateParameter *tp = (*tparams)[i];
if (tp->ident->equals(ident))
return this;
}
}
return NULL;
}
else
return this;
}
Expression *TypeIdentifier::toExpression()
{
Expression *e = new IdentifierExp(loc, ident);
for (size_t i = 0; i < idents.dim; i++)
{
Identifier *id = idents[i];
e = new DotIdExp(loc, e, id);
}
return e;
}
/***************************** TypeInstance *****************************/
TypeInstance::TypeInstance(Loc loc, TemplateInstance *tempinst)
: TypeQualified(Tinstance, loc)
{
this->tempinst = tempinst;
}
Type *TypeInstance::syntaxCopy()
{
//printf("TypeInstance::syntaxCopy() %s, %d\n", toChars(), idents.dim);
TypeInstance *t;
t = new TypeInstance(loc, (TemplateInstance *)tempinst->syntaxCopy(NULL));
t->syntaxCopyHelper(this);
t->mod = mod;
return t;
}
void TypeInstance::toCBuffer2(OutBuffer *buf, HdrGenState *hgs, int mod)
{
if (mod != this->mod)
{ toCBuffer3(buf, hgs, mod);
return;
}
tempinst->toCBuffer(buf, hgs);
toCBuffer2Helper(buf, hgs);
}
void TypeInstance::resolve(Loc loc, Scope *sc, Expression **pe, Type **pt, Dsymbol **ps)
{
// Note close similarity to TypeIdentifier::resolve()
Dsymbol *s;
*pe = NULL;
*pt = NULL;
*ps = NULL;
#if 0
if (!idents.dim)
{
error(loc, "template instance '%s' has no identifier", toChars());
return;
}
#endif
//id = (Identifier *)idents.data[0];
//printf("TypeInstance::resolve(sc = %p, idents = '%s')\n", sc, id->toChars());
s = tempinst;
if (s)
{ //printf("s = %s\n", s->toChars());
s->semantic(sc);
}
resolveHelper(loc, sc, s, NULL, pe, pt, ps);
if (*pt)
*pt = (*pt)->addMod(mod);
//printf("pt = '%s'\n", (*pt)->toChars());
}
Type *TypeInstance::semantic(Loc loc, Scope *sc)
{
Type *t;
Expression *e;
Dsymbol *s;
//printf("TypeInstance::semantic(%p, %s)\n", this, toChars());
if (sc->parameterSpecialization)
{
unsigned errors = global.startGagging();
resolve(loc, sc, &e, &t, &s);
if (global.endGagging(errors))
{
return this;
}
}
else
resolve(loc, sc, &e, &t, &s);
if (!t)
{
error(loc, "%s is used as a type", toChars());
t = terror;
}
return t;
}
Dsymbol *TypeInstance::toDsymbol(Scope *sc)
{
Type *t;
Expression *e;
Dsymbol *s;
//printf("TypeInstance::semantic(%s)\n", toChars());
if (sc->parameterSpecialization)
{
unsigned errors = global.startGagging();
resolve(loc, sc, &e, &t, &s);
if (global.endGagging(errors))
return NULL;
}
else
resolve(loc, sc, &e, &t, &s);
return s;
}
Type *TypeInstance::reliesOnTident(TemplateParameters *tparams)
{
if (tparams)
{
for (size_t i = 0; i < tparams->dim; i++)
{
TemplateParameter *tp = (*tparams)[i];
if (tempinst->name == tp->ident)
return this;
}
if (!tempinst->tiargs)
return NULL;
for (size_t i = 0; i < tempinst->tiargs->dim; i++)
{
Type *t = isType((*tempinst->tiargs)[i]);
t = t ? t->reliesOnTident(tparams) : NULL;
if (t)
return t;
}
return NULL;
}
else
{
return Type::reliesOnTident(tparams);
}
}
/***************************** TypeTypeof *****************************/
TypeTypeof::TypeTypeof(Loc loc, Expression *exp)
: TypeQualified(Ttypeof, loc)
{
this->exp = exp;
inuse = 0;
}
Type *TypeTypeof::syntaxCopy()
{
//printf("TypeTypeof::syntaxCopy() %s\n", toChars());
TypeTypeof *t;
t = new TypeTypeof(loc, exp->syntaxCopy());
t->syntaxCopyHelper(this);
t->mod = mod;
return t;
}
Dsymbol *TypeTypeof::toDsymbol(Scope *sc)
{
Type *t;
t = semantic(loc, sc);
if (t == this)
return NULL;
return t->toDsymbol(sc);
}
void TypeTypeof::toCBuffer2(OutBuffer *buf, HdrGenState *hgs, int mod)
{
if (mod != this->mod)
{ toCBuffer3(buf, hgs, mod);
return;
}
buf->writestring("typeof(");
exp->toCBuffer(buf, hgs);
buf->writeByte(')');
toCBuffer2Helper(buf, hgs);
}
Type *TypeTypeof::semantic(Loc loc, Scope *sc)
{
Type *t;
//printf("TypeTypeof::semantic() %s\n", toChars());
//static int nest; if (++nest == 50) *(char*)0=0;
if (inuse)
{
inuse = 2;
error(loc, "circular typeof definition");
return Type::terror;
}
inuse++;
#if 0
/* Special case for typeof(this) and typeof(super) since both
* should work even if they are not inside a non-static member function
*/
if (exp->op == TOKthis || exp->op == TOKsuper)
{
// Find enclosing struct or class
for (Dsymbol *s = sc->parent; 1; s = s->parent)
{
ClassDeclaration *cd;
StructDeclaration *sd;
if (!s)
{
error(loc, "%s is not in a struct or class scope", exp->toChars());
goto Lerr;
}
cd = s->isClassDeclaration();
if (cd)
{
if (exp->op == TOKsuper)
{
cd = cd->baseClass;
if (!cd)
{ error(loc, "class %s has no 'super'", s->toChars());
goto Lerr;
}
}
t = cd->type;
break;
}
sd = s->isStructDeclaration();
if (sd)
{
if (exp->op == TOKsuper)
{
error(loc, "struct %s has no 'super'", sd->toChars());
goto Lerr;
}
t = sd->type->pointerTo();
break;
}
}
}
else
#endif
{
Scope *sc2 = sc->push();
sc2->intypeof++;
sc2->speculative = true;
sc2->ignoreTemplates++;
sc2->flags |= sc->flags & SCOPEstaticif;
unsigned oldspecgag = global.speculativeGag;
if (global.gag)
global.speculativeGag = global.gag;
exp = exp->semantic(sc2);
global.speculativeGag = oldspecgag;
#if DMDV2
if (exp->type && exp->type->ty == Tfunction &&
((TypeFunction *)exp->type)->isproperty)
exp = resolveProperties(sc2, exp);
#endif
sc2->pop();
if (exp->op == TOKtype)
{
error(loc, "argument %s to typeof is not an expression", exp->toChars());
goto Lerr;
}
t = exp->type;
if (!t)
{
error(loc, "expression (%s) has no type", exp->toChars());
goto Lerr;
}
if (t->ty == Ttypeof)
{ error(loc, "forward reference to %s", toChars());
goto Lerr;
}
t = t->addMod(mod);
/* typeof should reflect the true type,
* not what 'auto' would have gotten us.
*/
//t = t->toHeadMutable();
}
if (idents.dim)
{
Dsymbol *s = t->toDsymbol(sc);
for (size_t i = 0; i < idents.dim; i++)
{
if (!s)
break;
Identifier *id = idents[i];
s = s->searchX(loc, sc, id);
}
if (s)
{
t = s->getType();
if (!t)
{ error(loc, "%s is not a type", s->toChars());
goto Lerr;
}
}
else
{ error(loc, "cannot resolve .property for %s", toChars());
goto Lerr;
}
}
inuse--;
return t;
Lerr:
inuse--;
return terror;
}
d_uns64 TypeTypeof::size(Loc loc)
{
if (exp->type)
return exp->type->size(loc);
else
return TypeQualified::size(loc);
}
/***************************** TypeReturn *****************************/
TypeReturn::TypeReturn(Loc loc)
: TypeQualified(Treturn, loc)
{
}
Type *TypeReturn::syntaxCopy()
{
TypeReturn *t = new TypeReturn(loc);
t->syntaxCopyHelper(this);
t->mod = mod;
return t;
}
Dsymbol *TypeReturn::toDsymbol(Scope *sc)
{
Type *t = semantic(0, sc);
if (t == this)
return NULL;
return t->toDsymbol(sc);
}
Type *TypeReturn::semantic(Loc loc, Scope *sc)
{
Type *t;
FuncDeclaration *func = sc->func;
if (!func)
{ error(loc, "typeof(return) must be inside function");
goto Lerr;
}
if (func->fes)
func = func->fes->func;
t = func->type->nextOf();
if (!t)
{
error(loc, "cannot use typeof(return) inside function %s with inferred return type", sc->func->toChars());
goto Lerr;
}
t = t->addMod(mod);
if (idents.dim)
{
Dsymbol *s = t->toDsymbol(sc);
for (size_t i = 0; i < idents.dim; i++)
{
if (!s)
break;
Identifier *id = idents[i];
s = s->searchX(loc, sc, id);
}
if (s)
{
t = s->getType();
if (!t)
{ error(loc, "%s is not a type", s->toChars());
goto Lerr;
}
}
else
{ error(loc, "cannot resolve .property for %s", toChars());
goto Lerr;
}
}
return t;
Lerr:
return terror;
}
void TypeReturn::toCBuffer2(OutBuffer *buf, HdrGenState *hgs, int mod)
{
if (mod != this->mod)
{ toCBuffer3(buf, hgs, mod);
return;
}
buf->writestring("typeof(return)");
toCBuffer2Helper(buf, hgs);
}
/***************************** TypeEnum *****************************/
TypeEnum::TypeEnum(EnumDeclaration *sym)
: Type(Tenum)
{
this->sym = sym;
}
char *TypeEnum::toChars()
{
if (mod)
return Type::toChars();
return sym->toChars();
}
Type *TypeEnum::syntaxCopy()
{
return this;
}
Type *TypeEnum::semantic(Loc loc, Scope *sc)
{
//printf("TypeEnum::semantic() %s\n", toChars());
//sym->semantic(sc);
return merge();
}
d_uns64 TypeEnum::size(Loc loc)
{
if (!sym->memtype)
{
error(loc, "enum %s is forward referenced", sym->toChars());
return 4;
}
return sym->memtype->size(loc);
}
unsigned TypeEnum::alignsize()
{
if (!sym->memtype)
{
error(0, "enum %s is forward referenced", sym->toChars());
return 4;
}
return sym->memtype->alignsize();
}
Dsymbol *TypeEnum::toDsymbol(Scope *sc)
{
return sym;
}
Type *TypeEnum::toBasetype()
{
if (sym->scope)
{ // Enum is forward referenced. We don't need to resolve the whole thing,
// just the base type
if (sym->memtype)
{ sym->memtype = sym->memtype->semantic(sym->loc, sym->scope);
}
else
{ if (!sym->isAnonymous())
sym->memtype = Type::tint32;
}
}
if (!sym->memtype)
{
error(sym->loc, "enum %s is forward referenced", sym->toChars());
return tint32;
}
return sym->memtype->toBasetype();
}
void TypeEnum::toDecoBuffer(OutBuffer *buf, int flag, bool mangle)
{
const char *name = sym->mangle();
Type::toDecoBuffer(buf, flag, mangle);
buf->printf("%s", name);
}
void TypeEnum::toCBuffer2(OutBuffer *buf, HdrGenState *hgs, int mod)
{
if (mod != this->mod)
{ toCBuffer3(buf, hgs, mod);
return;
}
buf->writestring(sym->toChars());
}
Expression *TypeEnum::dotExp(Scope *sc, Expression *e, Identifier *ident)
{
#if LOGDOTEXP
printf("TypeEnum::dotExp(e = '%s', ident = '%s') '%s'\n", e->toChars(), ident->toChars(), toChars());
#endif
Dsymbol *s = sym->search(e->loc, ident, 0);
if (!s)
{
if (ident == Id::max ||
ident == Id::min ||
ident == Id::init ||
ident == Id::mangleof ||
!sym->memtype
)
{
return getProperty(e->loc, ident);
}
return sym->memtype->dotExp(sc, e, ident);
}
EnumMember *m = s->isEnumMember();
Expression *em = m->value->copy();
em->loc = e->loc;
return em;
}
Expression *TypeEnum::getProperty(Loc loc, Identifier *ident)
{ Expression *e;
if (ident == Id::max)
{
if (!sym->maxval)
goto Lfwd;
e = sym->maxval;
}
else if (ident == Id::min)
{
if (!sym->minval)
goto Lfwd;
e = sym->minval;
}
else if (ident == Id::init)
{
e = defaultInitLiteral(loc);
}
else if (ident == Id::stringof)
{ char *s = toChars();
e = new StringExp(loc, s, strlen(s), 'c');
Scope sc;
e = e->semantic(&sc);
}
else if (ident == Id::mangleof)
{
e = Type::getProperty(loc, ident);
}
else
{
e = toBasetype()->getProperty(loc, ident);
}
return e;
Lfwd:
error(loc, "forward reference of %s.%s", toChars(), ident->toChars());
return new ErrorExp();
}
int TypeEnum::isintegral()
{
return sym->memtype->isintegral();
}
int TypeEnum::isfloating()
{
return sym->memtype->isfloating();
}
int TypeEnum::isreal()
{
return sym->memtype->isreal();
}
int TypeEnum::isimaginary()
{
return sym->memtype->isimaginary();
}
int TypeEnum::iscomplex()
{
return sym->memtype->iscomplex();
}
int TypeEnum::isunsigned()
{
return sym->memtype->isunsigned();
}
int TypeEnum::isscalar()
{
return sym->memtype->isscalar();
}
int TypeEnum::isAssignable(int blit)
{
return sym->memtype->isAssignable(blit);
}
int TypeEnum::checkBoolean()
{
return sym->memtype->checkBoolean();
}
int TypeEnum::needsDestruction()
{
return sym->memtype->needsDestruction();
}
bool TypeEnum::needsNested()
{
return sym->memtype ? sym->memtype->needsNested() : false;
}
MATCH TypeEnum::implicitConvTo(Type *to)
{ MATCH m;
//printf("TypeEnum::implicitConvTo()\n");
if (ty == to->ty && sym == ((TypeEnum *)to)->sym)
m = (mod == to->mod) ? MATCHexact : MATCHconst;
else if (sym->memtype->implicitConvTo(to))
m = MATCHconvert; // match with conversions
else
m = MATCHnomatch; // no match
return m;
}
MATCH TypeEnum::constConv(Type *to)
{
if (equals(to))
return MATCHexact;
if (ty == to->ty && sym == ((TypeEnum *)to)->sym &&
MODimplicitConv(mod, to->mod))
return MATCHconst;
return MATCHnomatch;
}
Expression *TypeEnum::defaultInit(Loc loc)
{
#if LOGDEFAULTINIT
printf("TypeEnum::defaultInit() '%s'\n", toChars());
#endif
// Initialize to first member of enum
//printf("%s\n", sym->defaultval->type->toChars());
if (!sym->defaultval)
{
error(loc, "forward reference of %s.init", toChars());
return new ErrorExp();
}
Expression *e = sym->defaultval;
e = e->copy();
e->type = this;
return e;
}
int TypeEnum::isZeroInit(Loc loc)
{
if (!sym->defaultval && sym->scope)
{ // Enum is forward referenced. We need to resolve the whole thing.
sym->semantic(NULL);
}
if (!sym->defaultval)
{
error(loc, "enum %s is forward referenced", sym->toChars());
return 0;
}
return sym->defaultval->isBool(FALSE);
}
int TypeEnum::hasPointers()
{
return toBasetype()->hasPointers();
}
/***************************** TypeTypedef *****************************/
TypeTypedef::TypeTypedef(TypedefDeclaration *sym)
: Type(Ttypedef)
{
this->sym = sym;
}
Type *TypeTypedef::syntaxCopy()
{
return this;
}
char *TypeTypedef::toChars()
{
return Type::toChars();
}
Type *TypeTypedef::semantic(Loc loc, Scope *sc)
{
//printf("TypeTypedef::semantic(%s), sem = %d\n", toChars(), sym->sem);
int errors = global.errors;
sym->semantic(sc);
if (errors != global.errors)
return terror;
return merge();
}
d_uns64 TypeTypedef::size(Loc loc)
{
return sym->basetype->size(loc);
}
unsigned TypeTypedef::alignsize()
{
return sym->basetype->alignsize();
}
Dsymbol *TypeTypedef::toDsymbol(Scope *sc)
{
return sym;
}
void TypeTypedef::toDecoBuffer(OutBuffer *buf, int flag, bool mangle)
{
Type::toDecoBuffer(buf, flag, mangle);
const char *name = sym->mangle();
buf->printf("%s", name);
}
void TypeTypedef::toCBuffer2(OutBuffer *buf, HdrGenState *hgs, int mod)
{
//printf("TypeTypedef::toCBuffer2() '%s'\n", sym->toChars());
if (mod != this->mod)
{ toCBuffer3(buf, hgs, mod);
return;
}
buf->writestring(sym->toChars());
}
Expression *TypeTypedef::dotExp(Scope *sc, Expression *e, Identifier *ident)
{
#if LOGDOTEXP
printf("TypeTypedef::dotExp(e = '%s', ident = '%s') '%s'\n", e->toChars(), ident->toChars(), toChars());
#endif
if (ident == Id::init)
{
return Type::dotExp(sc, e, ident);
}
return sym->basetype->dotExp(sc, e, ident);
}
structalign_t TypeTypedef::alignment()
{
if (sym->inuse)
{
sym->error("circular definition");
sym->basetype = Type::terror;
return STRUCTALIGN_DEFAULT;
}
sym->inuse = 1;
structalign_t a = sym->basetype->alignment();
sym->inuse = 0;
return a;
}
Expression *TypeTypedef::getProperty(Loc loc, Identifier *ident)
{
#if LOGDOTEXP
printf("TypeTypedef::getProperty(ident = '%s') '%s'\n", ident->toChars(), toChars());
#endif
if (ident == Id::init)
{
return Type::getProperty(loc, ident);
}
return sym->basetype->getProperty(loc, ident);
}
int TypeTypedef::isintegral()
{
//printf("TypeTypedef::isintegral()\n");
//printf("sym = '%s'\n", sym->toChars());
//printf("basetype = '%s'\n", sym->basetype->toChars());
return sym->basetype->isintegral();
}
int TypeTypedef::isfloating()
{
return sym->basetype->isfloating();
}
int TypeTypedef::isreal()
{
return sym->basetype->isreal();
}
int TypeTypedef::isimaginary()
{
return sym->basetype->isimaginary();
}
int TypeTypedef::iscomplex()
{
return sym->basetype->iscomplex();
}
int TypeTypedef::isunsigned()
{
return sym->basetype->isunsigned();
}
int TypeTypedef::isscalar()
{
return sym->basetype->isscalar();
}
int TypeTypedef::isAssignable(int blit)
{
return sym->basetype->isAssignable(blit);
}
int TypeTypedef::checkBoolean()
{
return sym->basetype->checkBoolean();
}
int TypeTypedef::needsDestruction()
{
return sym->basetype->needsDestruction();
}
bool TypeTypedef::needsNested()
{
return sym->basetype->needsNested();
}
Type *TypeTypedef::toBasetype()
{
if (sym->inuse)
{
sym->error("circular definition");
sym->basetype = Type::terror;
return Type::terror;
}
sym->inuse = 1;
Type *t = sym->basetype->toBasetype();
sym->inuse = 0;
t = t->addMod(mod);
return t;
}
MATCH TypeTypedef::implicitConvTo(Type *to)
{ MATCH m;
//printf("TypeTypedef::implicitConvTo(to = %s) %s\n", to->toChars(), toChars());
if (equals(to))
m = MATCHexact; // exact match
else if (sym->basetype->implicitConvTo(to))
m = MATCHconvert; // match with conversions
else if (ty == to->ty && sym == ((TypeTypedef *)to)->sym)
{
m = constConv(to);
}
else
m = MATCHnomatch; // no match
return m;
}
MATCH TypeTypedef::constConv(Type *to)
{
if (equals(to))
return MATCHexact;
if (ty == to->ty && sym == ((TypeTypedef *)to)->sym)
return sym->basetype->implicitConvTo(((TypeTypedef *)to)->sym->basetype);
return MATCHnomatch;
}
Type *TypeTypedef::toHeadMutable()
{
if (!mod)
return this;
Type *tb = toBasetype();
Type *t = tb->toHeadMutable();
if (t->equals(tb))
return this;
else
return mutableOf();
}
Expression *TypeTypedef::defaultInit(Loc loc)
{
#if LOGDEFAULTINIT
printf("TypeTypedef::defaultInit() '%s'\n", toChars());
#endif
if (sym->init)
{
//sym->init->toExpression()->print();
return sym->init->toExpression();
}
Type *bt = sym->basetype;
Expression *e = bt->defaultInit(loc);
e->type = this;
while (bt->ty == Tsarray)
{ TypeSArray *tsa = (TypeSArray *)bt;
e->type = tsa->next;
bt = tsa->next->toBasetype();
}
return e;
}
Expression *TypeTypedef::defaultInitLiteral(Loc loc)
{
#if LOGDEFAULTINIT
printf("TypeTypedef::defaultInitLiteral() '%s'\n", toChars());
#endif
if (sym->init)
{
//sym->init->toExpression()->print();
return sym->init->toExpression();
}
Type *bt = sym->basetype;
Expression *e = bt->defaultInitLiteral(loc);
e->type = this;
return e;
}
int TypeTypedef::isZeroInit(Loc loc)
{
if (sym->init)
{
if (sym->init->isVoidInitializer())
return 1; // initialize voids to 0
Expression *e = sym->init->toExpression();
if (e && e->isBool(FALSE))
return 1;
return 0; // assume not
}
if (sym->inuse)
{
sym->error("circular definition");
sym->basetype = Type::terror;
}
sym->inuse = 1;
int result = sym->basetype->isZeroInit(loc);
sym->inuse = 0;
return result;
}
int TypeTypedef::hasPointers()
{
return toBasetype()->hasPointers();
}
int TypeTypedef::hasWild()
{
assert(toBasetype());
return mod & MODwild || toBasetype()->hasWild();
}
/***************************** TypeStruct *****************************/
TypeStruct::TypeStruct(StructDeclaration *sym)
: Type(Tstruct)
{
this->sym = sym;
// LDC
this->unaligned = 0;
}
char *TypeStruct::toChars()
{
//printf("sym.parent: %s, deco = %s\n", sym->parent->toChars(), deco);
if (mod)
return Type::toChars();
TemplateInstance *ti = sym->parent->isTemplateInstance();
if (ti && ti->toAlias() == sym)
{
return ti->toChars();
}
return sym->toChars();
}
Type *TypeStruct::syntaxCopy()
{
return this;
}
Type *TypeStruct::semantic(Loc loc, Scope *sc)
{
//printf("TypeStruct::semantic('%s')\n", sym->toChars());
/* Cannot do semantic for sym because scope chain may not
* be right.
*/
//sym->semantic(sc);
return merge();
}
d_uns64 TypeStruct::size(Loc loc)
{
return sym->size(loc);
}
unsigned TypeStruct::alignsize()
{
sym->size(0); // give error for forward references
return sym->alignsize;
}
Dsymbol *TypeStruct::toDsymbol(Scope *sc)
{
return sym;
}
void TypeStruct::toDecoBuffer(OutBuffer *buf, int flag, bool mangle)
{
const char *name = sym->mangle();
//printf("TypeStruct::toDecoBuffer('%s') = '%s'\n", toChars(), name);
Type::toDecoBuffer(buf, flag, mangle);
buf->printf("%s", name);
}
void TypeStruct::toCBuffer2(OutBuffer *buf, HdrGenState *hgs, int mod)
{
if (mod != this->mod)
{ toCBuffer3(buf, hgs, mod);
return;
}
TemplateInstance *ti = sym->parent->isTemplateInstance();
if (ti && ti->toAlias() == sym)
buf->writestring(ti->toChars());
else
buf->writestring(sym->toChars());
}
Expression *TypeStruct::dotExp(Scope *sc, Expression *e, Identifier *ident)
{
VarDeclaration *v;
Dsymbol *s;
DotVarExp *de;
Declaration *d;
#if LOGDOTEXP
printf("TypeStruct::dotExp(e = '%s', ident = '%s')\n", e->toChars(), ident->toChars());
#endif
if (!sym->members)
{
error(e->loc, "struct %s is forward referenced", sym->toChars());
return new ErrorExp();
}
/* If e.tupleof
*/
if (ident == Id::tupleof)
{
/* Create a TupleExp out of the fields of the struct e:
* (e.field0, e.field1, e.field2, ...)
*/
e = e->semantic(sc); // do this before turning on noaccesscheck
e->type->size(); // do semantic of type
Expressions *exps = new Expressions;
exps->reserve(sym->fields.dim);
Expression *ev = e;
for (size_t i = 0; i < sym->fields.dim; i++)
{ VarDeclaration *v = sym->fields[i];
Expression *fe;
if (i == 0 && sc->func && sym->fields.dim > 1 &&
e->hasSideEffect())
{
Identifier *id = Lexer::uniqueId("__tup");
ExpInitializer *ei = new ExpInitializer(e->loc, e);
VarDeclaration *vd = new VarDeclaration(e->loc, NULL, id, ei);
vd->storage_class |= STCctfe | STCref | STCforeach;
ev = new VarExp(e->loc, vd);
fe = new CommaExp(e->loc, new DeclarationExp(e->loc, vd), ev);
fe = new DotVarExp(e->loc, fe, v);
}
else
fe = new DotVarExp(ev->loc, ev, v);
exps->push(fe);
}
e = new TupleExp(e->loc, exps);
sc = sc->push();
sc->noaccesscheck = 1;
e = e->semantic(sc);
sc->pop();
return e;
}
if (e->op == TOKdotexp)
{ DotExp *de = (DotExp *)e;
if (de->e1->op == TOKimport)
{
assert(0); // cannot find a case where this happens; leave
// assert in until we do
ScopeExp *se = (ScopeExp *)de->e1;
s = se->sds->search(e->loc, ident, 0);
e = de->e1;
goto L1;
}
}
s = sym->search(e->loc, ident, 0);
L1:
if (!s)
{
if (sym->scope) // it's a fwd ref, maybe we can resolve it
{
sym->semantic(NULL);
s = sym->search(e->loc, ident, 0);
if (!s)
return noMember(sc, e, ident);
}
else
return noMember(sc, e, ident);
}
if (!s->isFuncDeclaration()) // because of overloading
s->checkDeprecated(e->loc, sc);
s = s->toAlias();
v = s->isVarDeclaration();
if (v && !v->isDataseg())
{
Expression *ei = v->getConstInitializer();
if (ei)
{ e = ei->copy(); // need to copy it if it's a StringExp
e = e->semantic(sc);
return e;
}
}
if (s->getType())
{
return new TypeExp(e->loc, s->getType());
}
EnumMember *em = s->isEnumMember();
if (em)
{
assert(em->value);
return em->value->copy();
}
TemplateMixin *tm = s->isTemplateMixin();
if (tm)
{
Expression *de = new DotExp(e->loc, e, new ScopeExp(e->loc, tm));
de->type = e->type;
return de;
}
TemplateDeclaration *td = s->isTemplateDeclaration();
if (td)
{
e = new DotTemplateExp(e->loc, e, td);
e = e->semantic(sc);
return e;
}
TemplateInstance *ti = s->isTemplateInstance();
if (ti)
{ if (!ti->semanticRun)
{
if (global.errors)
return new ErrorExp(); // TemplateInstance::semantic() will fail anyway
ti->semantic(sc);
}
s = ti->inst->toAlias();
if (!s->isTemplateInstance())
goto L1;
Expression *de = new DotExp(e->loc, e, new ScopeExp(e->loc, ti));
de->type = e->type;
return de;
}
if (s->isImport() || s->isModule() || s->isPackage())
{
e = new DsymbolExp(e->loc, s, 0);
e = e->semantic(sc);
return e;
}
OverloadSet *o = s->isOverloadSet();
if (o)
{
OverExp *oe = new OverExp(o);
if (e->op == TOKtype)
return oe;
return new DotExp(e->loc, e, oe);
}
d = s->isDeclaration();
#ifdef DEBUG
if (!d)
printf("d = %s '%s'\n", s->kind(), s->toChars());
#endif
assert(d);
if (e->op == TOKtype)
{ FuncDeclaration *fd = sc->func;
if (d->isTupleDeclaration())
{
e = new TupleExp(e->loc, d->isTupleDeclaration());
e = e->semantic(sc);
return e;
}
else if (d->needThis() && fd && fd->vthis)
{
e = new DotVarExp(e->loc, new ThisExp(e->loc), d);
e = e->semantic(sc);
return e;
}
accessCheck(e->loc, sc, e, d);
VarExp *ve = new VarExp(e->loc, d, 1);
if (d->isVarDeclaration() && d->needThis())
ve->type = d->type->addMod(e->type->mod);
return ve;
}
if (d->isDataseg())
{
// (e, d)
VarExp *ve;
accessCheck(e->loc, sc, e, d);
ve = new VarExp(e->loc, d);
e = new CommaExp(e->loc, e, ve);
e = e->semantic(sc);
return e;
}
if (v)
{
if (v->toParent() != sym)
sym->error(e->loc, "'%s' is not a member", v->toChars());
// *(&e + offset)
accessCheck(e->loc, sc, e, d);
#if 0
Expression *b = new AddrExp(e->loc, e);
b->type = e->type->pointerTo();
b = new AddExp(e->loc, b, new IntegerExp(e->loc, v->offset, Type::tint32));
b->type = v->type->pointerTo();
b = new PtrExp(e->loc, b);
b->type = v->type->addMod(e->type->mod);
return b;
#endif
}
de = new DotVarExp(e->loc, e, d);
return de->semantic(sc);
}
structalign_t TypeStruct::alignment()
{
if (sym->alignment == 0)
sym->size(0);
return sym->alignment;
}
Expression *TypeStruct::defaultInit(Loc loc)
{
#if LOGDEFAULTINIT
printf("TypeStruct::defaultInit() '%s'\n", toChars());
#endif
#if IN_LLVM
Declaration *d = new StaticStructInitDeclaration(sym->loc, sym);
#else
Symbol *s = sym->toInitializer();
Declaration *d = new SymbolDeclaration(sym->loc, s, sym);
#endif
assert(d);
d->type = this;
return new VarExp(sym->loc, d);
}
/***************************************
* Use when we prefer the default initializer to be a literal,
* rather than a global immutable variable.
*/
Expression *TypeStruct::defaultInitLiteral(Loc loc)
{
#if LOGDEFAULTINIT
printf("TypeStruct::defaultInitLiteral() '%s'\n", toChars());
#endif
//if (sym->isNested())
// return defaultInit(loc);
Expressions *structelems = new Expressions();
structelems->setDim(sym->fields.dim - sym->isnested);
for (size_t j = 0; j < structelems->dim; j++)
{
VarDeclaration *vd = sym->fields[j];
Expression *e;
if (vd->init)
{ if (vd->init->isVoidInitializer())
e = NULL;
else
e = vd->init->toExpression();
}
else
e = vd->type->defaultInitLiteral(loc);
if (e && vd->scope)
e = e->semantic(vd->scope);
(*structelems)[j] = e;
}
StructLiteralExp *structinit = new StructLiteralExp(loc, (StructDeclaration *)sym, structelems);
#if IN_DMD
/* Copy from the initializer symbol for larger symbols,
* otherwise the literals expressed as code get excessively large.
*/
if (size(loc) > PTRSIZE * 4 && !needsNested())
structinit->sinit = sym->toInitializer();
#endif
structinit->type = this;
return structinit;
}
int TypeStruct::isZeroInit(Loc loc)
{
return sym->zeroInit;
}
int TypeStruct::checkBoolean()
{
return FALSE;
}
int TypeStruct::needsDestruction()
{
return sym->dtor != NULL;
}
bool TypeStruct::needsNested()
{
if (sym->isnested)
return true;
for (size_t i = 0; i < sym->fields.dim; i++)
{
Dsymbol *s = sym->fields[i];
VarDeclaration *vd = s->isVarDeclaration();
if (vd && !vd->isDataseg() && vd->type->needsNested())
return true;
}
return false;
}
int TypeStruct::isAssignable(int blit)
{
if (!blit)
{
if (sym->hasIdentityAssign)
return TRUE;
// has non-identity opAssign
if (search_function(sym, Id::assign))
return FALSE;
}
int assignable = TRUE;
unsigned offset;
/* If any of the fields are const or invariant,
* then one cannot assign this struct.
*/
for (size_t i = 0; i < sym->fields.dim; i++)
{ VarDeclaration *v = sym->fields[i];
//printf("%s [%d] v = (%s) %s, v->offset = %d, v->parent = %s", sym->toChars(), i, v->kind(), v->toChars(), v->offset, v->parent->kind());
if (i == 0)
;
else if (v->offset == offset)
{
/* If any fields of anonymous union are assignable,
* then regard union as assignable.
* This is to support unsafe things like Rebindable templates.
*/
if (assignable)
continue;
}
else
{
if (!assignable)
return FALSE;
}
assignable = v->type->isMutable() && v->type->isAssignable(blit);
offset = v->offset;
//printf(" -> assignable = %d\n", assignable);
}
return assignable;
}
int TypeStruct::hasPointers()
{
// Probably should cache this information in sym rather than recompute
StructDeclaration *s = sym;
sym->size(0); // give error for forward references
for (size_t i = 0; i < s->fields.dim; i++)
{
Dsymbol *sm = s->fields[i];
Declaration *d = sm->isDeclaration();
if (d->storage_class & STCref || d->hasPointers())
return TRUE;
}
return FALSE;
}
MATCH TypeStruct::implicitConvTo(Type *to)
{ MATCH m;
//printf("TypeStruct::implicitConvTo(%s => %s)\n", toChars(), to->toChars());
if (to->ty == Taarray && sym->ident == Id::AssociativeArray)
{
/* If there is an error instantiating AssociativeArray!(), it shouldn't
* be reported -- it just means implicit conversion is impossible.
*/
int errs = global.startGagging();
to = ((TypeAArray*)to)->getImpl()->type;
if (global.endGagging(errs))
{
return MATCHnomatch;
}
}
if (ty == to->ty && sym == ((TypeStruct *)to)->sym)
{ m = MATCHexact; // exact match
if (mod != to->mod)
{
m = MATCHconst;
if (MODimplicitConv(mod, to->mod))
;
else
{ /* Check all the fields. If they can all be converted,
* allow the conversion.
*/
for (size_t i = 0; i < sym->fields.dim; i++)
{ Dsymbol *s = sym->fields[i];
VarDeclaration *v = s->isVarDeclaration();
assert(v && v->storage_class & STCfield);
// 'from' type
Type *tvf = v->type->addMod(mod);
// 'to' type
Type *tv = v->type->castMod(to->mod);
// field match
MATCH mf = tvf->implicitConvTo(tv);
//printf("\t%s => %s, match = %d\n", v->type->toChars(), tv->toChars(), mf);
if (mf == MATCHnomatch)
return mf;
if (mf < m) // if field match is worse
m = mf;
}
}
}
}
else if (sym->aliasthis)
m = aliasthisOf()->implicitConvTo(to);
else
m = MATCHnomatch; // no match
return m;
}
MATCH TypeStruct::constConv(Type *to)
{
if (equals(to))
return MATCHexact;
if (ty == to->ty && sym == ((TypeStruct *)to)->sym &&
MODimplicitConv(mod, to->mod))
return MATCHconst;
return MATCHnomatch;
}
unsigned TypeStruct::wildConvTo(Type *tprm)
{
if (ty == tprm->ty && sym == ((TypeStruct *)tprm)->sym)
return Type::wildConvTo(tprm);
if (sym->aliasthis)
{ Type *t = aliasthisOf();
assert(t);
return t->wildConvTo(tprm);
}
return 0;
}
Type *TypeStruct::toHeadMutable()
{
return this;
}
/***************************** TypeClass *****************************/
TypeClass::TypeClass(ClassDeclaration *sym)
: Type(Tclass)
{
this->sym = sym;
}
char *TypeClass::toChars()
{
if (mod)
return Type::toChars();
return (char *)sym->toPrettyChars();
}
Type *TypeClass::syntaxCopy()
{
return this;
}
Type *TypeClass::semantic(Loc loc, Scope *sc)
{
//printf("TypeClass::semantic(%s)\n", sym->toChars());
if (deco)
return this;
//printf("\t%s\n", merge()->deco);
return merge();
}
d_uns64 TypeClass::size(Loc loc)
{
return PTRSIZE;
}
Dsymbol *TypeClass::toDsymbol(Scope *sc)
{
return sym;
}
void TypeClass::toDecoBuffer(OutBuffer *buf, int flag, bool mangle)
{
const char *name = sym->mangle();
//printf("TypeClass::toDecoBuffer('%s' flag=%d mod=%x) = '%s'\n", toChars(), flag, mod, name);
Type::toDecoBuffer(buf, flag, mangle);
buf->printf("%s", name);
}
void TypeClass::toCBuffer2(OutBuffer *buf, HdrGenState *hgs, int mod)
{
if (mod != this->mod)
{ toCBuffer3(buf, hgs, mod);
return;
}
buf->writestring(sym->toChars());
}
Expression *TypeClass::dotExp(Scope *sc, Expression *e, Identifier *ident)
{
VarDeclaration *v;
Dsymbol *s;
#if LOGDOTEXP
printf("TypeClass::dotExp(e='%s', ident='%s')\n", e->toChars(), ident->toChars());
#endif
if (e->op == TOKdotexp)
{ DotExp *de = (DotExp *)e;
if (de->e1->op == TOKimport)
{
ScopeExp *se = (ScopeExp *)de->e1;
s = se->sds->search(e->loc, ident, 0);
e = de->e1;
goto L1;
}
}
if (ident == Id::tupleof)
{
/* Create a TupleExp
*/
e = e->semantic(sc); // do this before turning on noaccesscheck
/* If this is called in the middle of a class declaration,
* class Inner {
* int x;
* alias typeof(Inner.tupleof) T;
* int y;
* }
* then Inner.y will be omitted from the tuple.
*/
// Detect that error, and at least try to run semantic() on it if we can
sym->size(e->loc);
Expressions *exps = new Expressions;
exps->reserve(sym->fields.dim);
Expression *ev = e;
for (size_t i = 0; i < sym->fields.dim; i++)
{ VarDeclaration *v = sym->fields[i];
// Don't include hidden 'this' pointer
if (v->isThisDeclaration())
continue;
Expression *fe;
if (i == 0 && sc->func && sym->fields.dim > 1 &&
e->hasSideEffect())
{
Identifier *id = Lexer::uniqueId("__tup");
ExpInitializer *ei = new ExpInitializer(e->loc, e);
VarDeclaration *vd = new VarDeclaration(e->loc, NULL, id, ei);
vd->storage_class |= STCctfe | STCref | STCforeach;
ev = new VarExp(e->loc, vd);
fe = new CommaExp(e->loc, new DeclarationExp(e->loc, vd), ev);
fe = new DotVarExp(e->loc, fe, v);
}
else
fe = new DotVarExp(e->loc, ev, v);
exps->push(fe);
}
e = new TupleExp(e->loc, exps);
sc = sc->push();
sc->noaccesscheck = 1;
e = e->semantic(sc);
sc->pop();
return e;
}
s = sym->search(e->loc, ident, 0);
L1:
if (!s)
{
// See if it's 'this' class or a base class
if (e->op != TOKtype)
{
Dsymbol *cbase = sym->ident == ident ?
sym : sym->searchBase(e->loc, ident);
if (cbase)
{
e = new DotTypeExp(0, e, cbase);
return e;
}
}
if (ident == Id::classinfo)
{
assert(ClassDeclaration::classinfo);
Type *t = ClassDeclaration::classinfo->type;
if (e->op == TOKtype || e->op == TOKdottype)
{
/* For type.classinfo, we know the classinfo
* at compile time.
*/
if (!sym->vclassinfo)
sym->vclassinfo = new TypeInfoClassDeclaration(sym->type);
e = new VarExp(e->loc, sym->vclassinfo);
e = e->addressOf(sc);
e->type = t; // do this so we don't get redundant dereference
}
else
{
/* For class objects, the classinfo reference is the first
* entry in the vtbl[]
*/
#if IN_LLVM
Type* ct;
if (sym->isInterfaceDeclaration()) {
ct = t->pointerTo()->pointerTo()->pointerTo();
}
else {
ct = t->pointerTo()->pointerTo();
}
e = e->castTo(sc, ct);
e = new PtrExp(e->loc, e);
e->type = ct->nextOf();
e = new PtrExp(e->loc, e);
e->type = ct->nextOf()->nextOf();
if (sym->isInterfaceDeclaration())
{
if (sym->isCOMinterface())
{ /* COM interface vtbl[]s are different in that the
* first entry is always pointer to QueryInterface().
* We can't get a .classinfo for it.
*/
error(e->loc, "no .classinfo for COM interface objects");
}
/* For an interface, the first entry in the vtbl[]
* is actually a pointer to an instance of struct Interface.
* The first member of Interface is the .classinfo,
* so add an extra pointer indirection.
*/
e = new PtrExp(e->loc, e);
e->type = ct->nextOf()->nextOf()->nextOf();
}
}
#else
e = new PtrExp(e->loc, e);
e->type = t->pointerTo();
if (sym->isInterfaceDeclaration())
{
if (sym->isCPPinterface())
{ /* C++ interface vtbl[]s are different in that the
* first entry is always pointer to the first virtual
* function, not classinfo.
* We can't get a .classinfo for it.
*/
error(e->loc, "no .classinfo for C++ interface objects");
}
/* For an interface, the first entry in the vtbl[]
* is actually a pointer to an instance of struct Interface.
* The first member of Interface is the .classinfo,
* so add an extra pointer indirection.
*/
e->type = e->type->pointerTo();
e = new PtrExp(e->loc, e);
e->type = t->pointerTo();
}
e = new PtrExp(e->loc, e, t);
}
#endif // !LDC
return e;
}
if (ident == Id::__vptr)
{ /* The pointer to the vtbl[]
* *cast(invariant(void*)**)e
*/
e = e->castTo(sc, tvoidptr->invariantOf()->pointerTo()->pointerTo());
e = new PtrExp(e->loc, e);
e = e->semantic(sc);
return e;
}
if (ident == Id::__monitor)
{ /* The handle to the monitor (call it a void*)
* *(cast(void**)e + 1)
*/
#if IN_LLVM
e = e->castTo(sc, tint8->pointerTo()->pointerTo());
e = new AddExp(e->loc, e, new IntegerExp(1));
e->type = tint8->pointerTo();
e = e->castTo(sc, tvoidptr->pointerTo());
e = new PtrExp(e->loc, e);
#else
e = e->castTo(sc, tvoidptr->pointerTo());
e = new AddExp(e->loc, e, new IntegerExp(1));
e = new PtrExp(e->loc, e);
#endif
e = e->semantic(sc);
return e;
}
if (ident == Id::typeinfo)
{
error(e->loc, ".typeinfo deprecated, use typeid(type)");
return getTypeInfo(sc);
}
if (ident == Id::outer && sym->vthis)
{
s = sym->vthis;
}
else
{
return noMember(sc, e, ident);
}
}
if (!s->isFuncDeclaration()) // because of overloading
s->checkDeprecated(e->loc, sc);
s = s->toAlias();
v = s->isVarDeclaration();
if (v && !v->isDataseg())
{ Expression *ei = v->getConstInitializer();
if (ei)
{ e = ei->copy(); // need to copy it if it's a StringExp
e = e->semantic(sc);
return e;
}
}
if (s->getType())
{
return new TypeExp(e->loc, s->getType());
}
EnumMember *em = s->isEnumMember();
if (em)
{
assert(em->value);
return em->value->copy();
}
TemplateMixin *tm = s->isTemplateMixin();
if (tm)
{
Expression *de = new DotExp(e->loc, e, new ScopeExp(e->loc, tm));
de->type = e->type;
return de;
}
TemplateDeclaration *td = s->isTemplateDeclaration();
if (td)
{
e = new DotTemplateExp(e->loc, e, td);
e = e->semantic(sc);
return e;
}
TemplateInstance *ti = s->isTemplateInstance();
if (ti)
{ if (!ti->semanticRun)
{
if (global.errors)
return new ErrorExp(); // TemplateInstance::semantic() will fail anyway
ti->semantic(sc);
}
s = ti->inst->toAlias();
if (!s->isTemplateInstance())
goto L1;
Expression *de = new DotExp(e->loc, e, new ScopeExp(e->loc, ti));
de->type = e->type;
return de;
}
if (s->isImport() || s->isModule() || s->isPackage())
{
e = new DsymbolExp(e->loc, s, 0);
e = e->semantic(sc);
return e;
}
OverloadSet *o = s->isOverloadSet();
if (o)
{
OverExp *oe = new OverExp(o);
if (e->op == TOKtype)
return oe;
return new DotExp(e->loc, e, oe);
}
Declaration *d = s->isDeclaration();
if (!d)
{
e->error("%s.%s is not a declaration", e->toChars(), ident->toChars());
return new ErrorExp();
}
if (e->op == TOKtype)
{
/* It's:
* Class.d
*/
if (d->isTupleDeclaration())
{
e = new TupleExp(e->loc, d->isTupleDeclaration());
e = e->semantic(sc);
return e;
}
#if 1 // Workaround for Bugzilla 9213
FuncDeclaration *fd = sc->func;
if (d->needThis() && d->isVarDeclaration() && fd && fd->vthis)
{
e = new DotVarExp(e->loc, new ThisExp(e->loc), d);
e = e->semantic(sc);
return e;
}
#endif
FuncDeclaration *fdthis = hasThis(sc);
if (d->needThis() && fdthis)
{
if (d->isFuncDeclaration())
{
// This is almost same as getRightThis() in expression.c
Expression *e1 = new VarExp(e->loc, fdthis->vthis);
e1 = e1->semantic(sc);
L2:
Type *t = e1->type->toBasetype();
ClassDeclaration *cd = e->type->isClassHandle();
ClassDeclaration *tcd = t->isClassHandle();
if (cd && tcd && (tcd == cd || cd->isBaseOf(tcd, NULL)))
{
e = new DotTypeExp(e1->loc, e1, cd);
e = new DotVarExp(e->loc, e, d);
e = e->semantic(sc);
return e;
}
if (tcd && tcd->isNested())
{ /* e1 is the 'this' pointer for an inner class: tcd.
* Rewrite it as the 'this' pointer for the outer class.
*/
e1 = new DotVarExp(e->loc, e1, tcd->vthis);
e1->type = tcd->vthis->type;
e1->type = e1->type->addMod(t->mod);
// Do not call checkNestedRef()
//e1 = e1->semantic(sc);
// Skip up over nested functions, and get the enclosing
// class type.
int n = 0;
Dsymbol *s;
for (s = tcd->toParent();
s && s->isFuncDeclaration();
s = s->toParent())
{ FuncDeclaration *f = s->isFuncDeclaration();
if (f->vthis)
{
//printf("rewriting e1 to %s's this\n", f->toChars());
n++;
e1 = new VarExp(e->loc, f->vthis);
}
else
{
e = new VarExp(e->loc, d, 1);
return e;
}
}
if (s && s->isClassDeclaration())
{ e1->type = s->isClassDeclaration()->type;
e1->type = e1->type->addMod(t->mod);
if (n > 1)
e1 = e1->semantic(sc);
}
else
e1 = e1->semantic(sc);
goto L2;
}
}
else
{
/* Rewrite as:
* this.d
*/
DotVarExp *de = new DotVarExp(e->loc, new ThisExp(e->loc), d);
e = de->semantic(sc);
return e;
}
}
accessCheck(e->loc, sc, e, d);
VarExp *ve = new VarExp(e->loc, d, 1);
if (d->isVarDeclaration() && d->needThis())
ve->type = d->type->addMod(e->type->mod);
return ve;
}
if (d->isDataseg())
{
// (e, d)
VarExp *ve;
accessCheck(e->loc, sc, e, d);
ve = new VarExp(e->loc, d);
e = new CommaExp(e->loc, e, ve);
e = e->semantic(sc);
return e;
}
if (d->parent && d->toParent()->isModule())
{
// (e, d)
VarExp *ve = new VarExp(e->loc, d, 1);
e = new CommaExp(e->loc, e, ve);
e->type = d->type;
return e;
}
DotVarExp *de = new DotVarExp(e->loc, e, d, d->hasOverloads());
return de->semantic(sc);
}
ClassDeclaration *TypeClass::isClassHandle()
{
return sym;
}
int TypeClass::isscope()
{
return sym->isscope;
}
int TypeClass::isBaseOf(Type *t, int *poffset)
{
if (t->ty == Tclass)
{ ClassDeclaration *cd;
cd = ((TypeClass *)t)->sym;
if (sym->isBaseOf(cd, poffset))
return 1;
}
return 0;
}
MATCH TypeClass::implicitConvTo(Type *to)
{
//printf("TypeClass::implicitConvTo(to = '%s') %s\n", to->toChars(), toChars());
MATCH m = constConv(to);
if (m != MATCHnomatch)
return m;
ClassDeclaration *cdto = to->isClassHandle();
if (cdto)
{
if (cdto->scope)
cdto->semantic(NULL);
if (cdto->isBaseOf(sym, NULL) && MODimplicitConv(mod, to->mod))
{ //printf("'to' is base\n");
return MATCHconvert;
}
}
if (global.params.Dversion == 1)
{
// Allow conversion to (void *)
if (to->ty == Tpointer && ((TypePointer *)to)->next->ty == Tvoid)
return MATCHconvert;
}
m = MATCHnomatch;
if (sym->aliasthis)
m = aliasthisOf()->implicitConvTo(to);
return m;
}
MATCH TypeClass::constConv(Type *to)
{
if (equals(to))
return MATCHexact;
if (ty == to->ty && sym == ((TypeClass *)to)->sym &&
MODimplicitConv(mod, to->mod))
return MATCHconst;
/* Conversion derived to const(base)
*/
int offset = 0;
if (to->isBaseOf(this, &offset) && offset == 0 && !to->isMutable())
return MATCHconvert;
return MATCHnomatch;
}
unsigned TypeClass::wildConvTo(Type *tprm)
{
Type *tcprm = tprm->substWildTo(MODconst);
if (constConv(tcprm))
return Type::wildConvTo(tprm);
ClassDeclaration *cdprm = tcprm->isClassHandle();
if (cdprm && cdprm->isBaseOf(sym, NULL))
return Type::wildConvTo(tprm);
if (sym->aliasthis)
return aliasthisOf()->wildConvTo(tprm);
return 0;
}
Type *TypeClass::toHeadMutable()
{
return this;
}
Expression *TypeClass::defaultInit(Loc loc)
{
#if LOGDEFAULTINIT
printf("TypeClass::defaultInit() '%s'\n", toChars());
#endif
return new NullExp(loc, this);
}
int TypeClass::isZeroInit(Loc loc)
{
return 1;
}
int TypeClass::checkBoolean()
{
return TRUE;
}
int TypeClass::hasPointers()
{
return TRUE;
}
/***************************** TypeTuple *****************************/
TypeTuple::TypeTuple(Parameters *arguments)
: Type(Ttuple)
{
//printf("TypeTuple(this = %p)\n", this);
this->arguments = arguments;
//printf("TypeTuple() %p, %s\n", this, toChars());
#ifdef DEBUG
if (arguments)
{
for (size_t i = 0; i < arguments->dim; i++)
{
Parameter *arg = (*arguments)[i];
assert(arg && arg->type);
}
}
#endif
}
/****************
* Form TypeTuple from the types of the expressions.
* Assume exps[] is already tuple expanded.
*/
TypeTuple::TypeTuple(Expressions *exps)
: Type(Ttuple)
{
Parameters *arguments = new Parameters;
if (exps)
{
arguments->setDim(exps->dim);
for (size_t i = 0; i < exps->dim; i++)
{ Expression *e = (*exps)[i];
if (e->type->ty == Ttuple)
e->error("cannot form tuple of tuples");
Parameter *arg = new Parameter(STCundefined, e->type, NULL, NULL);
(*arguments)[i] = arg;
}
}
this->arguments = arguments;
//printf("TypeTuple() %p, %s\n", this, toChars());
}
/*******************************************
* Type tuple with 0, 1 or 2 types in it.
*/
TypeTuple::TypeTuple()
: Type(Ttuple)
{
arguments = new Parameters();
}
TypeTuple::TypeTuple(Type *t1)
: Type(Ttuple)
{
arguments = new Parameters();
arguments->push(new Parameter(0, t1, NULL, NULL));
}
TypeTuple::TypeTuple(Type *t1, Type *t2)
: Type(Ttuple)
{
arguments = new Parameters();
arguments->push(new Parameter(0, t1, NULL, NULL));
arguments->push(new Parameter(0, t2, NULL, NULL));
}
Type *TypeTuple::syntaxCopy()
{
Parameters *args = Parameter::arraySyntaxCopy(arguments);
Type *t = new TypeTuple(args);
t->mod = mod;
return t;
}
Type *TypeTuple::semantic(Loc loc, Scope *sc)
{
//printf("TypeTuple::semantic(this = %p)\n", this);
//printf("TypeTuple::semantic() %p, %s\n", this, toChars());
if (!deco)
deco = merge()->deco;
/* Don't return merge(), because a tuple with one type has the
* same deco as that type.
*/
return this;
}
int TypeTuple::equals(Object *o)
{ Type *t;
t = (Type *)o;
//printf("TypeTuple::equals(%s, %s)\n", toChars(), t->toChars());
if (this == t)
{
return 1;
}
if (t->ty == Ttuple)
{ TypeTuple *tt = (TypeTuple *)t;
if (arguments->dim == tt->arguments->dim)
{
for (size_t i = 0; i < tt->arguments->dim; i++)
{ Parameter *arg1 = (*arguments)[i];
Parameter *arg2 = (*tt->arguments)[i];
if (!arg1->type->equals(arg2->type))
return 0;
}
return 1;
}
}
return 0;
}
Type *TypeTuple::reliesOnTident(TemplateParameters *tparams)
{
if (arguments)
{
for (size_t i = 0; i < arguments->dim; i++)
{
Parameter *arg = (*arguments)[i];
Type *t = arg->type->reliesOnTident(tparams);
if (t)
return t;
}
}
return NULL;
}
#if 0
Type *TypeTuple::makeConst()
{
//printf("TypeTuple::makeConst() %s\n", toChars());
if (cto)
return cto;
TypeTuple *t = (TypeTuple *)Type::makeConst();
t->arguments = new Parameters();
t->arguments->setDim(arguments->dim);
for (size_t i = 0; i < arguments->dim; i++)
{ Parameter *arg = (*arguments)[i];
Parameter *narg = new Parameter(arg->storageClass, arg->type->constOf(), arg->ident, arg->defaultArg);
(*t->arguments)[i] = (Parameter *)narg;
}
return t;
}
#endif
void TypeTuple::toCBuffer2(OutBuffer *buf, HdrGenState *hgs, int mod)
{
Parameter::argsToCBuffer(buf, hgs, arguments, 0);
}
void TypeTuple::toDecoBuffer(OutBuffer *buf, int flag, bool mangle)
{
//printf("TypeTuple::toDecoBuffer() this = %p, %s\n", this, toChars());
Type::toDecoBuffer(buf, flag, mangle);
OutBuffer buf2;
Parameter::argsToDecoBuffer(&buf2, arguments, mangle);
int len = (int)buf2.offset;
buf->printf("%d%.*s", len, len, (char *)buf2.extractData());
}
Expression *TypeTuple::getProperty(Loc loc, Identifier *ident)
{ Expression *e;
#if LOGDOTEXP
printf("TypeTuple::getProperty(type = '%s', ident = '%s')\n", toChars(), ident->toChars());
#endif
if (ident == Id::length)
{
e = new IntegerExp(loc, arguments->dim, Type::tsize_t);
}
else if (ident == Id::init)
{
e = defaultInitLiteral(loc);
}
else
{
error(loc, "no property '%s' for tuple '%s'", ident->toChars(), toChars());
e = new ErrorExp();
}
return e;
}
Expression *TypeTuple::defaultInit(Loc loc)
{
Expressions *exps = new Expressions();
exps->setDim(arguments->dim);
for (size_t i = 0; i < arguments->dim; i++)
{
Parameter *p = (*arguments)[i];
assert(p->type);
Expression *e = p->type->defaultInitLiteral(loc);
if (e->op == TOKerror)
return e;
(*exps)[i] = e;
}
return new TupleExp(loc, exps);
}
/***************************** TypeSlice *****************************/
/* This is so we can slice a TypeTuple */
TypeSlice::TypeSlice(Type *next, Expression *lwr, Expression *upr)
: TypeNext(Tslice, next)
{
//printf("TypeSlice[%s .. %s]\n", lwr->toChars(), upr->toChars());
this->lwr = lwr;
this->upr = upr;
}
Type *TypeSlice::syntaxCopy()
{
Type *t = new TypeSlice(next->syntaxCopy(), lwr->syntaxCopy(), upr->syntaxCopy());
t->mod = mod;
return t;
}
Type *TypeSlice::semantic(Loc loc, Scope *sc)
{
//printf("TypeSlice::semantic() %s\n", toChars());
next = next->semantic(loc, sc);
transitive();
//printf("next: %s\n", next->toChars());
Type *tbn = next->toBasetype();
if (tbn->ty != Ttuple)
{ error(loc, "can only slice tuple types, not %s", tbn->toChars());
return Type::terror;
}
TypeTuple *tt = (TypeTuple *)tbn;
lwr = semanticLength(sc, tbn, lwr);
lwr = lwr->ctfeInterpret();
uinteger_t i1 = lwr->toUInteger();
upr = semanticLength(sc, tbn, upr);
upr = upr->ctfeInterpret();
uinteger_t i2 = upr->toUInteger();
if (!(i1 <= i2 && i2 <= tt->arguments->dim))
{ error(loc, "slice [%llu..%llu] is out of range of [0..%u]", i1, i2, tt->arguments->dim);
return Type::terror;
}
Parameters *args = new Parameters;
args->reserve(i2 - i1);
for (size_t i = i1; i < i2; i++)
{ Parameter *arg = (*tt->arguments)[i];
args->push(arg);
}
Type *t = (new TypeTuple(args))->semantic(loc, sc);
return t;
}
void TypeSlice::resolve(Loc loc, Scope *sc, Expression **pe, Type **pt, Dsymbol **ps)
{
next->resolve(loc, sc, pe, pt, ps);
if (*pe)
{ // It's really a slice expression
Expression *e;
e = new SliceExp(loc, *pe, lwr, upr);
*pe = e;
}
else if (*ps)
{ Dsymbol *s = *ps;
TupleDeclaration *td = s->isTupleDeclaration();
if (td)
{
/* It's a slice of a TupleDeclaration
*/
ScopeDsymbol *sym = new ArrayScopeSymbol(sc, td);
sym->parent = sc->scopesym;
sc = sc->push(sym);
lwr = lwr->semantic(sc);
lwr = lwr->ctfeInterpret();
uinteger_t i1 = lwr->toUInteger();
upr = upr->semantic(sc);
upr = upr->ctfeInterpret();
uinteger_t i2 = upr->toUInteger();
sc = sc->pop();
if (!(i1 <= i2 && i2 <= td->objects->dim))
{ error(loc, "slice [%llu..%llu] is out of range of [0..%u]", i1, i2, td->objects->dim);
goto Ldefault;
}
if (i1 == 0 && i2 == td->objects->dim)
{
*ps = td;
return;
}
/* Create a new TupleDeclaration which
* is a slice [i1..i2] out of the old one.
*/
Objects *objects = new Objects;
objects->setDim(i2 - i1);
for (size_t i = 0; i < objects->dim; i++)
{
(*objects)[i] = (*td->objects)[(size_t)i1 + i];
}
TupleDeclaration *tds = new TupleDeclaration(loc, td->ident, objects);
*ps = tds;
}
else
goto Ldefault;
}
else
{
Ldefault:
Type::resolve(loc, sc, pe, pt, ps);
}
}
void TypeSlice::toCBuffer2(OutBuffer *buf, HdrGenState *hgs, int mod)
{
if (mod != this->mod)
{ toCBuffer3(buf, hgs, mod);
return;
}
next->toCBuffer2(buf, hgs, this->mod);
buf->printf("[%s .. ", lwr->toChars());
buf->printf("%s]", upr->toChars());
}
/***************************** TypeNull *****************************/
TypeNull::TypeNull()
: Type(Tnull)
{
}
Type *TypeNull::syntaxCopy()
{
// No semantic analysis done, no need to copy
return this;
}
MATCH TypeNull::implicitConvTo(Type *to)
{
//printf("TypeNull::implicitConvTo(this=%p, to=%p)\n", this, to);
//printf("from: %s\n", toChars());
//printf("to : %s\n", to->toChars());
MATCH m = Type::implicitConvTo(to);
if (m)
return m;
// NULL implicitly converts to any pointer type or dynamic array
//if (type->ty == Tpointer && type->nextOf()->ty == Tvoid)
{
Type *tb= to->toBasetype();
if (tb->ty == Tpointer || tb->ty == Tarray ||
tb->ty == Taarray || tb->ty == Tclass ||
tb->ty == Tdelegate)
return MATCHconst;
}
return MATCHnomatch;
}
void TypeNull::toDecoBuffer(OutBuffer *buf, int flag, bool mangle)
{
//tvoidptr->toDecoBuffer(buf, flag);
Type::toDecoBuffer(buf, flag, mangle);
}
void TypeNull::toCBuffer(OutBuffer *buf, Identifier *ident, HdrGenState *hgs)
{
buf->writestring("typeof(null)");
}
d_uns64 TypeNull::size(Loc loc) { return tvoidptr->size(loc); }
//Expression *TypeNull::getProperty(Loc loc, Identifier *ident) { return new ErrorExp(); }
//Expression *TypeNull::dotExp(Scope *sc, Expression *e, Identifier *ident) { return new ErrorExp(); }
Expression *TypeNull::defaultInit(Loc loc) { return new NullExp(0, Type::tnull); }
//Expression *TypeNull::defaultInitLiteral(Loc loc) { return new ErrorExp(); }
/***************************** Parameter *****************************/
Parameter::Parameter(StorageClass storageClass, Type *type, Identifier *ident, Expression *defaultArg)
{
this->type = type;
this->ident = ident;
this->storageClass = storageClass;
this->defaultArg = defaultArg;
}
Parameter *Parameter::syntaxCopy()
{
Parameter *a = new Parameter(storageClass,
type ? type->syntaxCopy() : NULL,
ident,
defaultArg ? defaultArg->syntaxCopy() : NULL);
return a;
}
Parameters *Parameter::arraySyntaxCopy(Parameters *args)
{ Parameters *a = NULL;
if (args)
{
a = new Parameters();
a->setDim(args->dim);
for (size_t i = 0; i < a->dim; i++)
{ Parameter *arg = (*args)[i];
arg = arg->syntaxCopy();
(*a)[i] = arg;
}
}
return a;
}
char *Parameter::argsTypesToChars(Parameters *args, int varargs)
{
OutBuffer *buf = new OutBuffer();
HdrGenState hgs;
argsToCBuffer(buf, &hgs, args, varargs);
return buf->toChars();
}
void Parameter::argsToCBuffer(OutBuffer *buf, HdrGenState *hgs, Parameters *arguments, int varargs)
{
buf->writeByte('(');
if (arguments)
{
OutBuffer argbuf;
size_t dim = Parameter::dim(arguments);
for (size_t i = 0; i < dim; i++)
{
if (i)
buf->writestring(", ");
Parameter *arg = Parameter::getNth(arguments, i);
if (arg->storageClass & STCauto)
buf->writestring("auto ");
if (arg->storageClass & STCout)
buf->writestring("out ");
else if (arg->storageClass & STCref)
buf->writestring((global.params.Dversion == 1)
? "inout " : "ref ");
else if (arg->storageClass & STCin)
buf->writestring("in ");
else if (arg->storageClass & STClazy)
buf->writestring("lazy ");
else if (arg->storageClass & STCalias)
buf->writestring("alias ");
StorageClass stc = arg->storageClass;
if (arg->type && arg->type->mod & MODshared)
stc &= ~STCshared;
StorageClassDeclaration::stcToCBuffer(buf,
stc & (STCconst | STCimmutable | STCshared | STCscope));
argbuf.reset();
if (arg->storageClass & STCalias)
{ if (arg->ident)
argbuf.writestring(arg->ident->toChars());
}
else
arg->type->toCBuffer(&argbuf, arg->ident, hgs);
if (arg->defaultArg)
{
argbuf.writestring(" = ");
arg->defaultArg->toCBuffer(&argbuf, hgs);
}
buf->write(&argbuf);
}
if (varargs)
{
if (arguments->dim && varargs == 1)
buf->writestring(", ");
buf->writestring("...");
}
}
buf->writeByte(')');
}
static int argsToDecoBufferDg(void *ctx, size_t n, Parameter *arg)
{
#if IN_LLVM
arg->toDecoBuffer((OutBuffer *)ctx, false);
#else
arg->toDecoBuffer((OutBuffer *)ctx);
#endif
return 0;
}
#if IN_LLVM
static int argsToDecoBufferDg2(void *ctx, size_t n, Parameter *arg)
{
arg->toDecoBuffer((OutBuffer *)ctx, true);
return 0;
}
#endif
void Parameter::argsToDecoBuffer(OutBuffer *buf, Parameters *arguments, bool mangle)
{
//printf("Parameter::argsToDecoBuffer()\n");
// Write argument types
#if IN_LLVM
foreach(arguments, mangle ? &argsToDecoBufferDg2 : &argsToDecoBufferDg, buf);
#else
foreach(arguments, &argsToDecoBufferDg, buf);
#endif
}
/****************************************
* Determine if parameter list is really a template parameter list
* (i.e. it has auto or alias parameters)
*/
static int isTPLDg(void *ctx, size_t n, Parameter *arg)
{
if (arg->storageClass & (STCalias | STCauto | STCstatic))
return 1;
return 0;
}
int Parameter::isTPL(Parameters *arguments)
{
//printf("Parameter::isTPL()\n");
return foreach(arguments, &isTPLDg, NULL);
}
/****************************************************
* Determine if parameter is a lazy array of delegates.
* If so, return the return type of those delegates.
* If not, return NULL.
*/
Type *Parameter::isLazyArray()
{
// if (inout == Lazy)
{
Type *tb = type->toBasetype();
if (tb->ty == Tsarray || tb->ty == Tarray)
{
Type *tel = ((TypeArray *)tb)->next->toBasetype();
if (tel->ty == Tdelegate)
{
TypeDelegate *td = (TypeDelegate *)tel;
TypeFunction *tf = (TypeFunction *)td->next;
if (!tf->varargs && Parameter::dim(tf->parameters) == 0)
{
return tf->next; // return type of delegate
}
}
}
}
return NULL;
}
void Parameter::toDecoBuffer(OutBuffer *buf, bool mangle)
{
if (storageClass & STCscope)
buf->writeByte('M');
switch (storageClass & (STCin | STCout | STCref | STClazy))
{ case 0:
case STCin:
break;
case STCout:
buf->writeByte('J');
break;
case STCref:
buf->writeByte('K');
break;
case STClazy:
buf->writeByte('L');
break;
default:
#ifdef DEBUG
printf("storageClass = x%llx\n", storageClass & (STCin | STCout | STCref | STClazy));
halt();
#endif
assert(0);
}
#if 0
int mod = 0x100;
if (type->toBasetype()->ty == Tclass)
mod = 0;
type->toDecoBuffer(buf, mod);
#else
//type->toHeadMutable()->toDecoBuffer(buf, 0);
type->toDecoBuffer(buf, 0, mangle);
#endif
}
/***************************************
* Determine number of arguments, folding in tuples.
*/
static int dimDg(void *ctx, size_t n, Parameter *)
{
++*(size_t *)ctx;
return 0;
}
size_t Parameter::dim(Parameters *args)
{
size_t n = 0;
foreach(args, &dimDg, &n);
return n;
}
/***************************************
* Get nth Parameter, folding in tuples.
* Returns:
* Parameter* nth Parameter
* NULL not found, *pn gets incremented by the number
* of Parameters
*/
struct GetNthParamCtx
{
size_t nth;
Parameter *arg;
};
static int getNthParamDg(void *ctx, size_t n, Parameter *arg)
{
GetNthParamCtx *p = (GetNthParamCtx *)ctx;
if (n == p->nth)
{ p->arg = arg;
return 1;
}
return 0;
}
Parameter *Parameter::getNth(Parameters *args, size_t nth, size_t *pn)
{
GetNthParamCtx ctx = { nth, NULL };
int res = foreach(args, &getNthParamDg, &ctx);
return res ? ctx.arg : NULL;
}
/***************************************
* Expands tuples in args in depth first order. Calls
* dg(void *ctx, size_t argidx, Parameter *arg) for each Parameter.
* If dg returns !=0, stops and returns that value else returns 0.
* Use this function to avoid the O(N + N^2/2) complexity of
* calculating dim and calling N times getNth.
*/
int Parameter::foreach(Parameters *args, Parameter::ForeachDg dg, void *ctx, size_t *pn)
{
assert(dg);
if (!args)
return 0;
size_t n = pn ? *pn : 0; // take over index
int result = 0;
for (size_t i = 0; i < args->dim; i++)
{ Parameter *arg = (*args)[i];
Type *t = arg->type->toBasetype();
if (t->ty == Ttuple)
{ TypeTuple *tu = (TypeTuple *)t;
result = foreach(tu->arguments, dg, ctx, &n);
}
else
result = dg(ctx, n++, arg);
if (result)
break;
}
if (pn)
*pn = n; // update index
return result;
}