Files
ldc/gen/tocall.cpp
Tomas Lindquist Olsen f7ea1da010 Removed TypeOpaque from DMD.
Changed runtime functions taking opaque[] to void[].
Implemented proper type painting, to avoid "resizing" array casts in runtime calls that previously took opaque[].
Implemented dynamic arrays as first class types, this implements proper ABI for these types on x86.
Added dwarf region end after call to assert function, fixes some problems with llvm not allowing this to be missing.
Reverted change to WithStatement from rev [704] it breaks MiniD, mini/with2.d needs to be fixed some other way...
Fixed tango bug 1339 in runtime, problem with _adReverseChar on invalid UTF-8.
Disabled .bc generation in the compiler runtime part, genobj.d triggers some llvm bug when using debug info. the .o seems to work fine.
2008-10-22 14:55:33 +02:00

401 lines
13 KiB
C++

#include "gen/llvm.h"
#include "mtype.h"
#include "declaration.h"
#include "gen/tollvm.h"
#include "gen/llvmhelpers.h"
#include "gen/irstate.h"
#include "gen/dvalue.h"
#include "gen/functions.h"
#include "gen/logger.h"
//////////////////////////////////////////////////////////////////////////////////////////
TypeFunction* DtoTypeFunction(DValue* fnval)
{
Type* type = fnval->getType()->toBasetype();
if (type->ty == Tfunction)
{
return (TypeFunction*)type;
}
else if (type->ty == Tdelegate)
{
assert(type->next->ty == Tfunction);
return (TypeFunction*)type->next;
}
assert(0 && "cant get TypeFunction* from non lazy/function/delegate");
return 0;
}
//////////////////////////////////////////////////////////////////////////////////////////
unsigned DtoCallingConv(LINK l)
{
if (l == LINKc || l == LINKcpp)
return llvm::CallingConv::C;
else if (l == LINKd || l == LINKdefault)
{
if (global.params.cpu == ARCHx86)
return llvm::CallingConv::X86_StdCall;
else
return llvm::CallingConv::Fast;
}
else if (l == LINKwindows)
return llvm::CallingConv::X86_StdCall;
else
assert(0 && "Unsupported calling convention");
}
//////////////////////////////////////////////////////////////////////////////////////////
DValue* DtoVaArg(Loc& loc, Type* type, Expression* valistArg)
{
DValue* expelem = valistArg->toElem(gIR);
const LLType* llt = DtoType(type);
if (DtoIsPassedByRef(type))
llt = getPtrToType(llt);
// issue a warning for broken va_arg instruction.
if (global.params.cpu != ARCHx86)
warning("%s: va_arg for C variadic functions is probably broken for anything but x86", loc.toChars());
// done
return new DImValue(type, gIR->ir->CreateVAArg(expelem->getLVal(), llt, "tmp"));
}
//////////////////////////////////////////////////////////////////////////////////////////
LLValue* DtoCallableValue(DValue* fn)
{
Type* type = fn->getType()->toBasetype();
if (type->ty == Tfunction)
{
return fn->getRVal();
}
else if (type->ty == Tdelegate)
{
LLValue* dg = fn->getRVal();
if (Logger::enabled())
Logger::cout() << "delegate: " << *dg << '\n';
LLValue* funcptr = DtoGEPi(dg, 0, 1);
return DtoLoad(funcptr);
}
else
{
assert(0 && "not a callable type");
return NULL;
}
}
//////////////////////////////////////////////////////////////////////////////////////////
const LLFunctionType* DtoExtractFunctionType(const LLType* type)
{
if (const LLFunctionType* fty = isaFunction(type))
return fty;
else if (const LLPointerType* pty = isaPointer(type))
{
if (const LLFunctionType* fty = isaFunction(pty->getElementType()))
return fty;
}
return NULL;
}
//////////////////////////////////////////////////////////////////////////////////////////
void DtoBuildDVarArgList(std::vector<LLValue*>& args, llvm::AttrListPtr& palist, TypeFunction* tf, Expressions* arguments, size_t argidx)
{
Logger::println("doing d-style variadic arguments");
std::vector<const LLType*> vtypes;
// number of non variadic args
int begin = tf->parameters->dim;
Logger::println("num non vararg params = %d", begin);
// get n args in arguments list
size_t n_arguments = arguments ? arguments->dim : 0;
// build struct with argument types (non variadic args)
for (int i=begin; i<n_arguments; i++)
{
Expression* argexp = (Expression*)arguments->data[i];
vtypes.push_back(DtoType(argexp->type));
size_t sz = getABITypeSize(vtypes.back());
if (sz < PTRSIZE)
vtypes.back() = DtoSize_t();
}
const LLStructType* vtype = LLStructType::get(vtypes);
if (Logger::enabled())
Logger::cout() << "d-variadic argument struct type:\n" << *vtype << '\n';
LLValue* mem = DtoAlloca(vtype,"_argptr_storage");
// store arguments in the struct
for (int i=begin,k=0; i<n_arguments; i++,k++)
{
Expression* argexp = (Expression*)arguments->data[i];
if (global.params.llvmAnnotate)
DtoAnnotation(argexp->toChars());
LLValue* argdst = DtoGEPi(mem,0,k);
argdst = DtoBitCast(argdst, getPtrToType(DtoType(argexp->type)));
DtoVariadicArgument(argexp, argdst);
}
// build type info array
assert(Type::typeinfo->ir.irStruct->constInit);
const LLType* typeinfotype = DtoType(Type::typeinfo->type);
const LLArrayType* typeinfoarraytype = LLArrayType::get(typeinfotype,vtype->getNumElements());
llvm::GlobalVariable* typeinfomem =
new llvm::GlobalVariable(typeinfoarraytype, true, llvm::GlobalValue::InternalLinkage, NULL, "._arguments.storage", gIR->module);
if (Logger::enabled())
Logger::cout() << "_arguments storage: " << *typeinfomem << '\n';
std::vector<LLConstant*> vtypeinfos;
for (int i=begin,k=0; i<n_arguments; i++,k++)
{
Expression* argexp = (Expression*)arguments->data[i];
vtypeinfos.push_back(DtoTypeInfoOf(argexp->type));
}
// apply initializer
LLConstant* tiinits = llvm::ConstantArray::get(typeinfoarraytype, vtypeinfos);
typeinfomem->setInitializer(tiinits);
// put data in d-array
std::vector<LLConstant*> pinits;
pinits.push_back(DtoConstSize_t(vtype->getNumElements()));
pinits.push_back(llvm::ConstantExpr::getBitCast(typeinfomem, getPtrToType(typeinfotype)));
const LLType* tiarrty = DtoType(Type::typeinfo->type->arrayOf());
tiinits = llvm::ConstantStruct::get(pinits);
LLValue* typeinfoarrayparam = new llvm::GlobalVariable(tiarrty,
true, llvm::GlobalValue::InternalLinkage, tiinits, "._arguments.array", gIR->module);
// specify arguments
args.push_back(DtoLoad(typeinfoarrayparam));
++argidx;
args.push_back(gIR->ir->CreateBitCast(mem, getPtrToType(LLType::Int8Ty), "tmp"));
++argidx;
// pass non variadic args
for (int i=0; i<begin; i++)
{
Argument* fnarg = Argument::getNth(tf->parameters, i);
DValue* argval = DtoArgument(fnarg, (Expression*)arguments->data[i]);
args.push_back(argval->getRVal());
if (fnarg->llvmAttrs)
palist = palist.addAttr(argidx, fnarg->llvmAttrs);
++argidx;
}
}
DValue* DtoCallFunction(Loc& loc, Type* resulttype, DValue* fnval, Expressions* arguments)
{
// the callee D type
Type* calleeType = fnval->getType();
// if the type has not yet been processed, do so now
if (calleeType->ir.type == NULL)
DtoType(calleeType);
// get func value if any
DFuncValue* dfnval = fnval->isFunc();
// handle special vararg intrinsics
bool va_intrinsic = (dfnval && dfnval->func && dfnval->func->isVaIntrinsic());
// get function type info
TypeFunction* tf = DtoTypeFunction(fnval);
// misc
bool retinptr = tf->retInPtr;
bool thiscall = tf->usesThis;
bool delegatecall = (calleeType->toBasetype()->ty == Tdelegate);
bool nestedcall = tf->usesNest;
bool dvarargs = (tf->linkage == LINKd && tf->varargs == 1);
unsigned callconv = DtoCallingConv(tf->linkage);
// get callee llvm value
LLValue* callable = DtoCallableValue(fnval);
const LLFunctionType* callableTy = DtoExtractFunctionType(callable->getType());
assert(callableTy);
// get n arguments
size_t n_arguments = arguments ? arguments->dim : 0;
// get llvm argument iterator, for types
LLFunctionType::param_iterator argbegin = callableTy->param_begin();
LLFunctionType::param_iterator argiter = argbegin;
// parameter attributes
llvm::AttrListPtr palist;
// return attrs
if (tf->retAttrs)
palist = palist.addAttr(0, tf->retAttrs);
// handle implicit arguments
std::vector<LLValue*> args;
// return in hidden ptr is first
if (retinptr)
{
LLValue* retvar = DtoAlloca(argiter->get()->getContainedType(0), ".rettmp");
++argiter;
args.push_back(retvar);
palist = palist.addAttr(1, llvm::Attribute::StructRet);
}
// then comes a context argument...
if(thiscall || delegatecall || nestedcall)
{
// ... which can be a 'this' argument
if (thiscall && dfnval && dfnval->vthis)
{
LLValue* thisarg = DtoBitCast(dfnval->vthis, argiter->get());
++argiter;
args.push_back(thisarg);
}
// ... or a delegate context arg
else if (delegatecall)
{
LLValue* ctxarg = DtoLoad(DtoGEPi(fnval->getRVal(), 0,0));
assert(ctxarg->getType() == argiter->get());
++argiter;
args.push_back(ctxarg);
}
// ... or a nested function context arg
else if (nestedcall)
{
LLValue* contextptr = DtoNestedContext(loc, dfnval->func);
contextptr = DtoBitCast(contextptr, getVoidPtrType());
++argiter;
args.push_back(contextptr);
}
else
{
error(loc, "Context argument required but none given");
fatal();
}
}
// handle the rest of the arguments based on param passing style
// variadic instrinsics need some custom casts
if (va_intrinsic)
{
for (int i=0; i<n_arguments; i++)
{
Expression* exp = (Expression*)arguments->data[i];
DValue* expelem = exp->toElem(gIR);
// cast to va_list*
LLValue* val = DtoBitCast(expelem->getLVal(), getVoidPtrType());
++argiter;
args.push_back(val);
}
}
// d style varargs needs a few more hidden arguments as well as special passing
else if (dvarargs)
{
DtoBuildDVarArgList(args, palist, tf, arguments, argiter-argbegin+1);
}
// otherwise we're looking at a normal function call
else
{
Logger::println("doing normal arguments");
for (int i=0; i<n_arguments; i++) {
int j = argiter-argbegin;
Argument* fnarg = Argument::getNth(tf->parameters, i);
DValue* argval = DtoArgument(fnarg, (Expression*)arguments->data[i]);
LLValue* arg = argval->getRVal();
if (fnarg) // can fnarg ever be null in this block?
{
if (Logger::enabled())
{
Logger::cout() << "arg: " << *arg << '\n';
Logger::cout() << "expects: " << *callableTy->getParamType(j) << '\n';
}
if (arg->getType() != callableTy->getParamType(j))
arg = DtoBitCast(arg, callableTy->getParamType(j));
if (fnarg->llvmAttrs)
palist = palist.addAttr(j+1, fnarg->llvmAttrs);
}
++argiter;
args.push_back(arg);
}
}
#if 0
Logger::println("%d params passed", n);
for (int i=0; i<args.size(); ++i) {
assert(args[i]);
Logger::cout() << "arg["<<i<<"] = " << *args[i] << '\n';
}
#endif
// void returns cannot not be named
const char* varname = "";
if (callableTy->getReturnType() != LLType::VoidTy)
varname = "tmp";
//Logger::cout() << "Calling: " << *funcval << '\n';
// call the function
CallOrInvoke* call = gIR->CreateCallOrInvoke(callable, args.begin(), args.end(), varname);
// get return value
LLValue* retllval = (retinptr) ? args[0] : call->get();
// repaint the type if necessary
if (resulttype)
{
Type* rbase = resulttype->toBasetype();
Type* nextbase = tf->next->toBasetype();
if (!rbase->equals(nextbase))
{
Logger::println("repainting return value from '%s' to '%s'", tf->next->toChars(), rbase->toChars());
switch(rbase->ty)
{
case Tarray:
retllval = DtoAggrPaint(retllval, DtoType(rbase));
break;
case Tclass:
case Taarray:
case Tpointer:
retllval = DtoBitCast(retllval, DtoType(rbase));
break;
default:
assert(0 && "unhandled repainting of return value");
}
if (Logger::enabled())
Logger::cout() << "final return value: " << *retllval << '\n';
}
}
// set calling convention and parameter attributes
if (dfnval && dfnval->func)
{
LLFunction* llfunc = llvm::dyn_cast<LLFunction>(dfnval->val);
if (llfunc && llfunc->isIntrinsic())
palist = llvm::Intrinsic::getAttributes((llvm::Intrinsic::ID)llfunc->getIntrinsicID());
else
call->setCallingConv(callconv);
}
else
call->setCallingConv(callconv);
call->setAttributes(palist);
return new DImValue(resulttype, retllval);
}