Files
ldc/gen/toobj.cpp
Tomas Lindquist Olsen f7ea1da010 Removed TypeOpaque from DMD.
Changed runtime functions taking opaque[] to void[].
Implemented proper type painting, to avoid "resizing" array casts in runtime calls that previously took opaque[].
Implemented dynamic arrays as first class types, this implements proper ABI for these types on x86.
Added dwarf region end after call to assert function, fixes some problems with llvm not allowing this to be missing.
Reverted change to WithStatement from rev [704] it breaks MiniD, mini/with2.d needs to be fixed some other way...
Fixed tango bug 1339 in runtime, problem with _adReverseChar on invalid UTF-8.
Disabled .bc generation in the compiler runtime part, genobj.d triggers some llvm bug when using debug info. the .o seems to work fine.
2008-10-22 14:55:33 +02:00

1009 lines
34 KiB
C++

// Copyright (c) 1999-2004 by Digital Mars
// All Rights Reserved
// written by Walter Bright
// www.digitalmars.com
// License for redistribution is by either the Artistic License
// in artistic.txt, or the GNU General Public License in gnu.txt.
// See the included readme.txt for details.
#include <cstddef>
#include <iostream>
#include <fstream>
#include "gen/llvm.h"
#include "llvm/Analysis/Verifier.h"
#include "llvm/Bitcode/ReaderWriter.h"
#include "llvm/Target/SubtargetFeature.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetMachineRegistry.h"
#include "llvm/Module.h"
#include "llvm/ModuleProvider.h"
#include "llvm/PassManager.h"
#include "llvm/LinkAllPasses.h"
#include "llvm/System/Program.h"
#include "llvm/System/Path.h"
#include "llvm/Support/raw_ostream.h"
#include "mars.h"
#include "module.h"
#include "mtype.h"
#include "declaration.h"
#include "statement.h"
#include "enum.h"
#include "aggregate.h"
#include "init.h"
#include "attrib.h"
#include "id.h"
#include "import.h"
#include "template.h"
#include "scope.h"
#include "gen/irstate.h"
#include "gen/logger.h"
#include "gen/tollvm.h"
#include "gen/llvmhelpers.h"
#include "gen/arrays.h"
#include "gen/structs.h"
#include "gen/classes.h"
#include "gen/functions.h"
#include "gen/todebug.h"
#include "gen/runtime.h"
#include "ir/irvar.h"
#include "ir/irmodule.h"
//////////////////////////////////////////////////////////////////////////////////////////
// in gen/optimize.cpp
void ldc_optimize_module(llvm::Module* m, char lvl, bool doinline);
// fwd decl
void write_asm_to_file(llvm::TargetMachine &Target, llvm::Module& m, llvm::raw_fd_ostream& Out);
void assemble(const llvm::sys::Path& asmpath, const llvm::sys::Path& objpath, char** envp);
//////////////////////////////////////////////////////////////////////////////////////////
void Module::genobjfile(int multiobj, char** envp)
{
bool logenabled = Logger::enabled();
if (llvmForceLogging && !logenabled)
{
Logger::enable();
}
Logger::println("Generating module: %s\n", (md ? md->toChars() : toChars()));
LOG_SCOPE;
//printf("codegen: %s\n", srcfile->toChars());
// start by deleting the old object file
deleteObjFile();
// create a new ir state
// TODO look at making the instance static and moving most functionality into IrModule where it belongs
IRState ir;
gIR = &ir;
ir.dmodule = this;
// reset all IR data stored in Dsymbols and Types
IrDsymbol::resetAll();
IrType::resetAll();
// name the module
std::string mname(toChars());
if (md != 0)
mname = md->toChars();
ir.module = new llvm::Module(mname);
// module ir state
// might already exist via import, just overwrite...
//FIXME: is there a good reason for overwriting?
this->ir.irModule = new IrModule(this, srcfile->toChars());
// set target stuff
ir.module->setTargetTriple(global.params.targetTriple);
// get the target machine
const llvm::TargetMachineRegistry::entry* MArch;
std::string Err;
MArch = llvm::TargetMachineRegistry::getClosestStaticTargetForModule(*ir.module, Err);
if (MArch == 0) {
error("error auto-selecting target for module '%s'", Err.c_str());
fatal();
}
llvm::SubtargetFeatures Features;
//TODO: Features?
// Features.setCPU(MCPU);
// for (unsigned i = 0; i != MAttrs.size(); ++i)
// Features.AddFeature(MAttrs[i]);
// only generate PIC code when -fPIC switch is used
if (global.params.pic)
llvm::TargetMachine::setRelocationModel(llvm::Reloc::PIC_);
// allocate the target machine
std::auto_ptr<llvm::TargetMachine> target(MArch->CtorFn(*ir.module, Features.getString()));
assert(target.get() && "Could not allocate target machine!");
llvm::TargetMachine &Target = *target.get();
gTargetData = Target.getTargetData();
ir.module->setDataLayout(gTargetData->getStringRepresentation());
// debug info
if (global.params.symdebug) {
RegisterDwarfSymbols(ir.module);
DtoDwarfCompileUnit(this);
}
// start out by providing opaque for the built-in class types
if (!ClassDeclaration::object->type->ir.type)
ClassDeclaration::object->type->ir.type = new llvm::PATypeHolder(llvm::OpaqueType::get());
if (!Type::typeinfo->type->ir.type)
Type::typeinfo->type->ir.type = new llvm::PATypeHolder(llvm::OpaqueType::get());
if (!ClassDeclaration::classinfo->type->ir.type)
ClassDeclaration::classinfo->type->ir.type = new llvm::PATypeHolder(llvm::OpaqueType::get());
// process module members
for (int k=0; k < members->dim; k++) {
Dsymbol* dsym = (Dsymbol*)(members->data[k]);
assert(dsym);
dsym->toObjFile(multiobj);
}
// main driver loop
DtoEmptyAllLists();
// generate ModuleInfo
genmoduleinfo();
// do this again as moduleinfo might have pulled something in!
DtoEmptyAllLists();
// emit usedArray
if (!ir.usedArray.empty())
{
const LLArrayType* usedTy = LLArrayType::get(getVoidPtrType(), ir.usedArray.size());
LLConstant* usedInit = LLConstantArray::get(usedTy, ir.usedArray);
LLGlobalVariable* usedArray = new LLGlobalVariable(usedTy, true, LLGlobalValue::AppendingLinkage, usedInit, "llvm.used", ir.module);
usedArray->setSection("llvm.metadata");
}
// verify the llvm
if (!global.params.novalidate) {
std::string verifyErr;
Logger::println("Verifying module...");
LOG_SCOPE;
if (llvm::verifyModule(*ir.module,llvm::ReturnStatusAction,&verifyErr))
{
error("%s", verifyErr.c_str());
fatal();
}
else {
Logger::println("Verification passed!");
}
}
// always run this pass to eliminate dead code that breaks debug info
llvm::PassManager pm;
pm.add(new llvm::TargetData(ir.module));
pm.add(llvm::createCFGSimplificationPass());
pm.run(*ir.module);
// run optimizer
ldc_optimize_module(ir.module, global.params.optimizeLevel, global.params.llvmInline);
// verify the llvm
if (!global.params.novalidate && (global.params.optimizeLevel >= 0 || global.params.llvmInline)) {
std::string verifyErr;
Logger::println("Verifying module... again...");
LOG_SCOPE;
if (llvm::verifyModule(*ir.module,llvm::ReturnStatusAction,&verifyErr))
{
error("%s", verifyErr.c_str());
fatal();
}
else {
Logger::println("Verification passed!");
}
}
// eventually do our own path stuff, dmd's is a bit strange.
typedef llvm::sys::Path LLPath;
// write LLVM bitcode
if (global.params.output_bc) {
LLPath bcpath = LLPath(objfile->name->toChars());
bcpath.eraseSuffix();
bcpath.appendSuffix(std::string(global.bc_ext));
Logger::println("Writing LLVM bitcode to: %s\n", bcpath.c_str());
std::ofstream bos(bcpath.c_str(), std::ios::binary);
llvm::WriteBitcodeToFile(ir.module, bos);
}
// write LLVM IR
if (global.params.output_ll) {
LLPath llpath = LLPath(objfile->name->toChars());
llpath.eraseSuffix();
llpath.appendSuffix(std::string(global.ll_ext));
Logger::println("Writing LLVM asm to: %s\n", llpath.c_str());
std::ofstream aos(llpath.c_str());
ir.module->print(aos, NULL);
}
// write native assembly
if (global.params.output_s || global.params.output_o) {
LLPath spath = LLPath(objfile->name->toChars());
spath.eraseSuffix();
spath.appendSuffix(std::string(global.s_ext));
if (!global.params.output_s) {
spath.createTemporaryFileOnDisk();
}
Logger::println("Writing native asm to: %s\n", spath.c_str());
std::string err;
{
llvm::raw_fd_ostream out(spath.c_str(), err);
write_asm_to_file(Target, *ir.module, out);
}
// call gcc to convert assembly to object file
if (global.params.output_o) {
LLPath objpath = LLPath(objfile->name->toChars());
assemble(spath, objpath, envp);
}
if (!global.params.output_s) {
spath.eraseFromDisk();
}
}
delete ir.module;
gTargetData = 0;
gIR = NULL;
if (llvmForceLogging && !logenabled)
{
Logger::disable();
}
}
/* ================================================================== */
// based on llc code, University of Illinois Open Source License
void write_asm_to_file(llvm::TargetMachine &Target, llvm::Module& m, llvm::raw_fd_ostream& out)
{
using namespace llvm;
// Build up all of the passes that we want to do to the module.
ExistingModuleProvider Provider(&m);
FunctionPassManager Passes(&Provider);
Passes.add(new TargetData(*Target.getTargetData()));
// Ask the target to add backend passes as necessary.
MachineCodeEmitter *MCE = 0;
//TODO: May want to switch it on for -O0?
bool Fast = false;
FileModel::Model mod = Target.addPassesToEmitFile(Passes, out, TargetMachine::AssemblyFile, Fast);
assert(mod == FileModel::AsmFile);
bool err = Target.addPassesToEmitFileFinish(Passes, MCE, Fast);
assert(!err);
Passes.doInitialization();
// Run our queue of passes all at once now, efficiently.
for (llvm::Module::iterator I = m.begin(), E = m.end(); I != E; ++I)
if (!I->isDeclaration())
Passes.run(*I);
Passes.doFinalization();
// release module from module provider so we can delete it ourselves
std::string Err;
llvm::Module* rmod = Provider.releaseModule(&Err);
assert(rmod);
}
/* ================================================================== */
// helper functions for gcc call to assemble
// based on llvm-ld code, University of Illinois Open Source License
/// CopyEnv - This function takes an array of environment variables and makes a
/// copy of it. This copy can then be manipulated any way the caller likes
/// without affecting the process's real environment.
///
/// Inputs:
/// envp - An array of C strings containing an environment.
///
/// Return value:
/// NULL - An error occurred.
///
/// Otherwise, a pointer to a new array of C strings is returned. Every string
/// in the array is a duplicate of the one in the original array (i.e. we do
/// not copy the char *'s from one array to another).
///
static char ** CopyEnv(char ** const envp) {
// Count the number of entries in the old list;
unsigned entries; // The number of entries in the old environment list
for (entries = 0; envp[entries] != NULL; entries++)
/*empty*/;
// Add one more entry for the NULL pointer that ends the list.
++entries;
// If there are no entries at all, just return NULL.
if (entries == 0)
return NULL;
// Allocate a new environment list.
char **newenv = new char* [entries];
if ((newenv = new char* [entries]) == NULL)
return NULL;
// Make a copy of the list. Don't forget the NULL that ends the list.
entries = 0;
while (envp[entries] != NULL) {
newenv[entries] = new char[strlen (envp[entries]) + 1];
strcpy (newenv[entries], envp[entries]);
++entries;
}
newenv[entries] = NULL;
return newenv;
}
// based on llvm-ld code, University of Illinois Open Source License
/// RemoveEnv - Remove the specified environment variable from the environment
/// array.
///
/// Inputs:
/// name - The name of the variable to remove. It cannot be NULL.
/// envp - The array of environment variables. It cannot be NULL.
///
/// Notes:
/// This is mainly done because functions to remove items from the environment
/// are not available across all platforms. In particular, Solaris does not
/// seem to have an unsetenv() function or a setenv() function (or they are
/// undocumented if they do exist).
///
static void RemoveEnv(const char * name, char ** const envp) {
for (unsigned index=0; envp[index] != NULL; index++) {
// Find the first equals sign in the array and make it an EOS character.
char *p = strchr (envp[index], '=');
if (p == NULL)
continue;
else
*p = '\0';
// Compare the two strings. If they are equal, zap this string.
// Otherwise, restore it.
if (!strcmp(name, envp[index]))
*envp[index] = '\0';
else
*p = '=';
}
return;
}
// uses gcc to make an obj out of an assembly file
// based on llvm-ld code, University of Illinois Open Source License
void assemble(const llvm::sys::Path& asmpath, const llvm::sys::Path& objpath, char** envp)
{
using namespace llvm;
sys::Path gcc = llvm::sys::Program::FindProgramByName("gcc");
// Remove these environment variables from the environment of the
// programs that we will execute. It appears that GCC sets these
// environment variables so that the programs it uses can configure
// themselves identically.
//
// However, when we invoke GCC below, we want it to use its normal
// configuration. Hence, we must sanitize its environment.
char ** clean_env = CopyEnv(envp);
if (clean_env == NULL)
return;
RemoveEnv("LIBRARY_PATH", clean_env);
RemoveEnv("COLLECT_GCC_OPTIONS", clean_env);
RemoveEnv("GCC_EXEC_PREFIX", clean_env);
RemoveEnv("COMPILER_PATH", clean_env);
RemoveEnv("COLLECT_GCC", clean_env);
// Run GCC to assemble and link the program into native code.
//
// Note:
// We can't just assemble and link the file with the system assembler
// and linker because we don't know where to put the _start symbol.
// GCC mysteriously knows how to do it.
std::vector<std::string> args;
args.push_back(gcc.toString());
args.push_back("-fno-strict-aliasing");
args.push_back("-O3");
args.push_back("-c");
args.push_back("-xassembler");
args.push_back(asmpath.toString());
args.push_back("-o");
args.push_back(objpath.toString());
//FIXME: only use this if needed?
args.push_back("-fpic");
// Now that "args" owns all the std::strings for the arguments, call the c_str
// method to get the underlying string array. We do this game so that the
// std::string array is guaranteed to outlive the const char* array.
std::vector<const char *> Args;
for (unsigned i = 0, e = args.size(); i != e; ++i)
Args.push_back(args[i].c_str());
Args.push_back(0);
Logger::println("Assembling with: ");
std::vector<const char*>::const_iterator I = Args.begin(), E = Args.end();
std::ostream& logstr = Logger::cout();
for (; I != E; ++I)
if (*I)
logstr << "'" << *I << "'" << " ";
logstr << "\n" << std::flush;
// Run the compiler to assembly the program.
std::string ErrMsg;
int R = sys::Program::ExecuteAndWait(
gcc, &Args[0], (const char**)clean_env, 0, 0, 0, &ErrMsg);
delete [] clean_env;
}
/* ================================================================== */
// the following code generates functions and needs to output
// debug info. these macros are useful for that
#define DBG_TYPE ( getPtrToType(llvm::StructType::get(NULL,NULL)) )
#define DBG_CAST(X) ( llvm::ConstantExpr::getBitCast(X, DBG_TYPE) )
// build module ctor
llvm::Function* build_module_ctor()
{
if (gIR->ctors.empty())
return NULL;
size_t n = gIR->ctors.size();
if (n == 1)
return gIR->ctors[0]->ir.irFunc->func;
std::string name("_D");
name.append(gIR->dmodule->mangle());
name.append("6__ctorZ");
std::vector<const LLType*> argsTy;
const llvm::FunctionType* fnTy = llvm::FunctionType::get(LLType::VoidTy,argsTy,false);
assert(gIR->module->getFunction(name) == NULL);
llvm::Function* fn = llvm::Function::Create(fnTy, llvm::GlobalValue::InternalLinkage, name, gIR->module);
fn->setCallingConv(DtoCallingConv(LINKd));
llvm::BasicBlock* bb = llvm::BasicBlock::Create("entry", fn);
IRBuilder<> builder(bb);
// debug info
LLGlobalVariable* subprog;
if(global.params.symdebug) {
subprog = DtoDwarfSubProgramInternal(name.c_str(), name.c_str());
builder.CreateCall(gIR->module->getFunction("llvm.dbg.func.start"), DBG_CAST(subprog));
}
for (size_t i=0; i<n; i++) {
llvm::Function* f = gIR->ctors[i]->ir.irFunc->func;
llvm::CallInst* call = builder.CreateCall(f,"");
call->setCallingConv(DtoCallingConv(LINKd));
}
// debug info end
if(global.params.symdebug)
builder.CreateCall(gIR->module->getFunction("llvm.dbg.region.end"), DBG_CAST(subprog));
builder.CreateRetVoid();
return fn;
}
// build module dtor
static llvm::Function* build_module_dtor()
{
if (gIR->dtors.empty())
return NULL;
size_t n = gIR->dtors.size();
if (n == 1)
return gIR->dtors[0]->ir.irFunc->func;
std::string name("_D");
name.append(gIR->dmodule->mangle());
name.append("6__dtorZ");
std::vector<const LLType*> argsTy;
const llvm::FunctionType* fnTy = llvm::FunctionType::get(LLType::VoidTy,argsTy,false);
assert(gIR->module->getFunction(name) == NULL);
llvm::Function* fn = llvm::Function::Create(fnTy, llvm::GlobalValue::InternalLinkage, name, gIR->module);
fn->setCallingConv(DtoCallingConv(LINKd));
llvm::BasicBlock* bb = llvm::BasicBlock::Create("entry", fn);
IRBuilder<> builder(bb);
// debug info
LLGlobalVariable* subprog;
if(global.params.symdebug) {
subprog = DtoDwarfSubProgramInternal(name.c_str(), name.c_str());
builder.CreateCall(gIR->module->getFunction("llvm.dbg.func.start"), DBG_CAST(subprog));
}
for (size_t i=0; i<n; i++) {
llvm::Function* f = gIR->dtors[i]->ir.irFunc->func;
llvm::CallInst* call = builder.CreateCall(f,"");
call->setCallingConv(DtoCallingConv(LINKd));
}
// debug info end
if(global.params.symdebug)
builder.CreateCall(gIR->module->getFunction("llvm.dbg.region.end"), DBG_CAST(subprog));
builder.CreateRetVoid();
return fn;
}
// build module unittest
static llvm::Function* build_module_unittest()
{
if (gIR->unitTests.empty())
return NULL;
size_t n = gIR->unitTests.size();
if (n == 1)
return gIR->unitTests[0]->ir.irFunc->func;
std::string name("_D");
name.append(gIR->dmodule->mangle());
name.append("10__unittestZ");
std::vector<const LLType*> argsTy;
const llvm::FunctionType* fnTy = llvm::FunctionType::get(LLType::VoidTy,argsTy,false);
assert(gIR->module->getFunction(name) == NULL);
llvm::Function* fn = llvm::Function::Create(fnTy, llvm::GlobalValue::InternalLinkage, name, gIR->module);
fn->setCallingConv(DtoCallingConv(LINKd));
llvm::BasicBlock* bb = llvm::BasicBlock::Create("entry", fn);
IRBuilder<> builder(bb);
// debug info
LLGlobalVariable* subprog;
if(global.params.symdebug) {
subprog = DtoDwarfSubProgramInternal(name.c_str(), name.c_str());
builder.CreateCall(gIR->module->getFunction("llvm.dbg.func.start"), DBG_CAST(subprog));
}
for (size_t i=0; i<n; i++) {
llvm::Function* f = gIR->unitTests[i]->ir.irFunc->func;
llvm::CallInst* call = builder.CreateCall(f,"");
call->setCallingConv(DtoCallingConv(LINKd));
}
// debug info end
if(global.params.symdebug)
builder.CreateCall(gIR->module->getFunction("llvm.dbg.region.end"), DBG_CAST(subprog));
builder.CreateRetVoid();
return fn;
}
// build ModuleReference and register function, to register the module info in the global linked list
static LLFunction* build_module_reference_and_ctor(LLConstant* moduleinfo)
{
// build ctor type
const LLFunctionType* fty = LLFunctionType::get(LLType::VoidTy, std::vector<const LLType*>(), false);
// build ctor name
std::string fname = "_D";
fname += gIR->dmodule->mangle();
fname += "16__moduleinfoCtorZ";
// build a function that registers the moduleinfo in the global moduleinfo linked list
LLFunction* ctor = LLFunction::Create(fty, LLGlobalValue::InternalLinkage, fname, gIR->module);
// provide the default initializer
const LLStructType* modulerefTy = DtoModuleReferenceType();
std::vector<LLConstant*> mrefvalues;
mrefvalues.push_back(LLConstant::getNullValue(modulerefTy->getContainedType(0)));
mrefvalues.push_back(moduleinfo);
LLConstant* thismrefinit = LLConstantStruct::get(modulerefTy, mrefvalues);
// create the ModuleReference node for this module
std::string thismrefname = "_D";
thismrefname += gIR->dmodule->mangle();
thismrefname += "11__moduleRefZ";
LLGlobalVariable* thismref = new LLGlobalVariable(modulerefTy, false, LLGlobalValue::InternalLinkage, thismrefinit, thismrefname, gIR->module);
// make sure _Dmodule_ref is declared
LLGlobalVariable* mref = gIR->module->getNamedGlobal("_Dmodule_ref");
if (!mref)
mref = new LLGlobalVariable(getPtrToType(modulerefTy), false, LLGlobalValue::ExternalLinkage, NULL, "_Dmodule_ref", gIR->module);
// make the function insert this moduleinfo as the beginning of the _Dmodule_ref linked list
llvm::BasicBlock* bb = llvm::BasicBlock::Create("moduleinfoCtorEntry", ctor);
IRBuilder<> builder(bb);
// debug info
LLGlobalVariable* subprog;
if(global.params.symdebug) {
subprog = DtoDwarfSubProgramInternal(fname.c_str(), fname.c_str());
builder.CreateCall(gIR->module->getFunction("llvm.dbg.func.start"), DBG_CAST(subprog));
}
// get current beginning
LLValue* curbeg = builder.CreateLoad(mref, "current");
// put current beginning as the next of this one
LLValue* gep = builder.CreateStructGEP(thismref, 0, "next");
builder.CreateStore(curbeg, gep);
// replace beginning
builder.CreateStore(thismref, mref);
// debug info end
if(global.params.symdebug)
builder.CreateCall(gIR->module->getFunction("llvm.dbg.region.end"), DBG_CAST(subprog));
// return
builder.CreateRetVoid();
return ctor;
}
// Put out instance of ModuleInfo for this Module
void Module::genmoduleinfo()
{
// The layout is:
// {
// void **vptr;
// monitor_t monitor;
// char[] name; // class name
// ModuleInfo importedModules[];
// ClassInfo localClasses[];
// uint flags; // initialization state
// void *ctor;
// void *dtor;
// void *unitTest;
// }
// resolve ModuleInfo
assert(moduleinfo);
DtoForceConstInitDsymbol(moduleinfo);
// moduleinfo llvm struct type
const llvm::StructType* moduleinfoTy = isaStruct(moduleinfo->type->ir.type->get());
// classinfo llvm struct type
const llvm::StructType* classinfoTy = isaStruct(ClassDeclaration::classinfo->type->ir.type->get());
// initializer vector
std::vector<LLConstant*> initVec;
LLConstant* c = 0;
// vtable
c = moduleinfo->ir.irStruct->vtbl;
initVec.push_back(c);
// monitor
c = getNullPtr(getPtrToType(LLType::Int8Ty));
initVec.push_back(c);
// name
char *name = toPrettyChars();
c = DtoConstString(name);
initVec.push_back(c);
// importedModules[]
int aimports_dim = aimports.dim;
std::vector<LLConstant*> importInits;
for (size_t i = 0; i < aimports.dim; i++)
{
Module *m = (Module *)aimports.data[i];
if (!m->needModuleInfo())
aimports_dim--;
else { // declare
// create name
std::string m_name("_D");
m_name.append(m->mangle());
m_name.append("8__ModuleZ");
llvm::GlobalVariable* m_gvar = gIR->module->getGlobalVariable(m_name);
if (!m_gvar) m_gvar = new llvm::GlobalVariable(moduleinfoTy, false, llvm::GlobalValue::ExternalLinkage, NULL, m_name, gIR->module);
importInits.push_back(m_gvar);
}
}
// has import array?
if (!importInits.empty())
{
const llvm::ArrayType* importArrTy = llvm::ArrayType::get(getPtrToType(moduleinfoTy), importInits.size());
c = llvm::ConstantArray::get(importArrTy, importInits);
std::string m_name("_D");
m_name.append(mangle());
m_name.append("9__importsZ");
llvm::GlobalVariable* m_gvar = gIR->module->getGlobalVariable(m_name);
if (!m_gvar) m_gvar = new llvm::GlobalVariable(importArrTy, true, llvm::GlobalValue::InternalLinkage, c, m_name, gIR->module);
c = llvm::ConstantExpr::getBitCast(m_gvar, getPtrToType(importArrTy->getElementType()));
c = DtoConstSlice(DtoConstSize_t(importInits.size()), c);
}
else
c = moduleinfo->ir.irStruct->constInit->getOperand(3);
initVec.push_back(c);
// localClasses[]
ClassDeclarations aclasses;
//printf("members->dim = %d\n", members->dim);
for (size_t i = 0; i < members->dim; i++)
{
Dsymbol *member;
member = (Dsymbol *)members->data[i];
//printf("\tmember '%s'\n", member->toChars());
member->addLocalClass(&aclasses);
}
// fill inits
std::vector<LLConstant*> classInits;
for (size_t i = 0; i < aclasses.dim; i++)
{
ClassDeclaration* cd = (ClassDeclaration*)aclasses.data[i];
if (cd->isInterfaceDeclaration())
{
Logger::println("skipping interface '%s' in moduleinfo", cd->toPrettyChars());
continue;
}
Logger::println("class: %s", cd->toPrettyChars());
assert(cd->ir.irStruct->classInfo);
classInits.push_back(cd->ir.irStruct->classInfo);
}
// has class array?
if (!classInits.empty())
{
const llvm::ArrayType* classArrTy = llvm::ArrayType::get(getPtrToType(classinfoTy), classInits.size());
c = llvm::ConstantArray::get(classArrTy, classInits);
std::string m_name("_D");
m_name.append(mangle());
m_name.append("9__classesZ");
assert(gIR->module->getGlobalVariable(m_name) == NULL);
llvm::GlobalVariable* m_gvar = new llvm::GlobalVariable(classArrTy, true, llvm::GlobalValue::InternalLinkage, c, m_name, gIR->module);
c = llvm::ConstantExpr::getBitCast(m_gvar, getPtrToType(classArrTy->getElementType()));
c = DtoConstSlice(DtoConstSize_t(classInits.size()), c);
}
else
c = moduleinfo->ir.irStruct->constInit->getOperand(4);
initVec.push_back(c);
// flags
c = DtoConstUint(0);
if (!needmoduleinfo)
c = DtoConstUint(4); // flags (4 means MIstandalone)
initVec.push_back(c);
// ctor
llvm::Function* fctor = build_module_ctor();
c = fctor ? fctor : moduleinfo->ir.irStruct->constInit->getOperand(6);
initVec.push_back(c);
// dtor
llvm::Function* fdtor = build_module_dtor();
c = fdtor ? fdtor : moduleinfo->ir.irStruct->constInit->getOperand(7);
initVec.push_back(c);
// unitTest
llvm::Function* unittest = build_module_unittest();
c = unittest ? unittest : moduleinfo->ir.irStruct->constInit->getOperand(8);
initVec.push_back(c);
// xgetMembers
c = moduleinfo->ir.irStruct->constInit->getOperand(9);
initVec.push_back(c);
// ictor
c = moduleinfo->ir.irStruct->constInit->getOperand(10);
initVec.push_back(c);
/*Logger::println("MODULE INFO INITIALIZERS");
for (size_t i=0; i<initVec.size(); ++i)
{
Logger::cout() << *initVec[i] << '\n';
if (initVec[i]->getType() != moduleinfoTy->getElementType(i))
assert(0);
}*/
// create initializer
LLConstant* constMI = llvm::ConstantStruct::get(moduleinfoTy, initVec);
// create name
std::string MIname("_D");
MIname.append(mangle());
MIname.append("8__ModuleZ");
// declare
// flags will be modified at runtime so can't make it constant
llvm::GlobalVariable* gvar = gIR->module->getGlobalVariable(MIname);
if (!gvar) gvar = new llvm::GlobalVariable(moduleinfoTy, false, llvm::GlobalValue::ExternalLinkage, NULL, MIname, gIR->module);
gvar->setInitializer(constMI);
// build the modulereference and ctor for registering it
LLFunction* mictor = build_module_reference_and_ctor(gvar);
// register this ctor in the magic llvm.global_ctors appending array
const LLFunctionType* magicfty = LLFunctionType::get(LLType::VoidTy, std::vector<const LLType*>(), false);
std::vector<const LLType*> magictypes;
magictypes.push_back(LLType::Int32Ty);
magictypes.push_back(getPtrToType(magicfty));
const LLStructType* magicsty = LLStructType::get(magictypes);
// make the constant element
std::vector<LLConstant*> magicconstants;
magicconstants.push_back(DtoConstUint(65535));
magicconstants.push_back(mictor);
LLConstant* magicinit = LLConstantStruct::get(magicsty, magicconstants);
// declare the appending array
const llvm::ArrayType* appendArrTy = llvm::ArrayType::get(magicsty, 1);
std::vector<LLConstant*> appendInits(1, magicinit);
LLConstant* appendInit = llvm::ConstantArray::get(appendArrTy, appendInits);
std::string appendName("llvm.global_ctors");
llvm::GlobalVariable* appendVar = new llvm::GlobalVariable(appendArrTy, true, llvm::GlobalValue::AppendingLinkage, appendInit, appendName, gIR->module);
}
/* ================================================================== */
void Dsymbol::toObjFile(int multiobj)
{
Logger::println("Ignoring Dsymbol::toObjFile for %s", toChars());
}
/* ================================================================== */
void Declaration::toObjFile()
{
Logger::println("Ignoring Declaration::toObjFile for %s", toChars());
}
/* ================================================================== */
void InterfaceDeclaration::toObjFile(int multiobj)
{
//Logger::println("Ignoring InterfaceDeclaration::toObjFile for %s", toChars());
gIR->resolveList.push_back(this);
}
/* ================================================================== */
void StructDeclaration::toObjFile(int multiobj)
{
gIR->resolveList.push_back(this);
}
/* ================================================================== */
void ClassDeclaration::toObjFile(int multiobj)
{
gIR->resolveList.push_back(this);
}
/******************************************
* Get offset of base class's vtbl[] initializer from start of csym.
* Returns ~0 if not this csym.
*/
unsigned ClassDeclaration::baseVtblOffset(BaseClass *bc)
{
return ~0;
}
/* ================================================================== */
void VarDeclaration::toObjFile(int multiobj)
{
Logger::print("VarDeclaration::toObjFile(): %s | %s\n", toChars(), type->toChars());
LOG_SCOPE;
if (aliassym)
{
Logger::println("alias sym");
toAlias()->toObjFile(multiobj);
return;
}
// global variable or magic
if (isDataseg())
{
Logger::println("data segment");
// don't duplicate work
if (this->ir.resolved) return;
this->ir.resolved = true;
this->ir.declared = true;
this->ir.irGlobal = new IrGlobal(this);
Logger::println("parent: %s (%s)", parent->toChars(), parent->kind());
// handle static local variables
bool static_local = false;
bool _isconst = isConst();
if (parent && parent->isFuncDeclaration())
{
static_local = true;
if (init && init->isExpInitializer()) {
_isconst = false;
}
}
Logger::println("Creating global variable");
const LLType* _type = this->ir.irGlobal->type.get();
llvm::GlobalValue::LinkageTypes _linkage = DtoLinkage(this);
std::string _name(mangle());
llvm::GlobalVariable* gvar = new llvm::GlobalVariable(_type,_isconst,_linkage,NULL,_name,gIR->module);
this->ir.irGlobal->value = gvar;
if (Logger::enabled())
Logger::cout() << *gvar << '\n';
if (static_local)
DtoConstInitGlobal(this);
else
gIR->constInitList.push_back(this);
}
// inside aggregate declaration. declare a field.
else
{
Logger::println("Aggregate var declaration: '%s' offset=%d", toChars(), offset);
const LLType* _type = DtoType(type);
this->ir.irField = new IrField(this);
// add the field in the IRStruct
gIR->topstruct()->offsets.insert(std::make_pair(offset, IrStruct::Offset(this, _type)));
}
Logger::println("VarDeclaration::toObjFile is done");
}
/* ================================================================== */
void TypedefDeclaration::toObjFile(int multiobj)
{
static int tdi = 0;
Logger::print("TypedefDeclaration::toObjFile(%d): %s\n", tdi++, toChars());
LOG_SCOPE;
// generate typeinfo
DtoTypeInfoOf(type, false);
}
/* ================================================================== */
void EnumDeclaration::toObjFile(int multiobj)
{
Logger::println("Ignoring EnumDeclaration::toObjFile for %s", toChars());
}
/* ================================================================== */
void FuncDeclaration::toObjFile(int multiobj)
{
gIR->resolveList.push_back(this);
}