Files
ldc/gen/llvmhelpers.cpp
Tomas Lindquist Olsen fc480b7fd8 SWITCHED TO LLVM 2.5 !
Applied patch from ticket #129 to compile against latest LLVM. Thanks Frits van Bommel.

Fixed implicit return by asm block at the end of a function on x86-32. Other architectures will produce an error at the moment. Adding support for new targets is fairly simple.

Fixed return calling convention for complex numbers, ST and ST(1) were switched around.

Added some testcases.

I've run a dstress test and there are no regressions. However, the runtime does not seem to compile with symbolic debug information. -O3 -release -inline works well and is what I used for the dstress run. Tango does not compile, a small workaround is needed in tango.io.digest.Digest.Digest.hexDigest. See ticket #206 .
2009-02-08 05:26:54 +01:00

1587 lines
50 KiB
C++

#include "gen/llvm.h"
#include "llvm/Target/TargetMachineRegistry.h"
#include "mars.h"
#include "init.h"
#include "id.h"
#include "expression.h"
#include "template.h"
#include "module.h"
#include "gen/tollvm.h"
#include "gen/llvmhelpers.h"
#include "gen/irstate.h"
#include "gen/runtime.h"
#include "gen/logger.h"
#include "gen/arrays.h"
#include "gen/dvalue.h"
#include "gen/complex.h"
#include "gen/classes.h"
#include "gen/functions.h"
#include "gen/typeinf.h"
#include "gen/todebug.h"
#include "ir/irmodule.h"
#include <stack>
/****************************************************************************************/
/*////////////////////////////////////////////////////////////////////////////////////////
// DYNAMIC MEMORY HELPERS
////////////////////////////////////////////////////////////////////////////////////////*/
LLValue* DtoNew(Type* newtype)
{
// get runtime function
llvm::Function* fn = LLVM_D_GetRuntimeFunction(gIR->module, "_d_allocmemoryT");
// get type info
LLConstant* ti = DtoTypeInfoOf(newtype);
assert(isaPointer(ti));
// call runtime allocator
LLValue* mem = gIR->CreateCallOrInvoke(fn, ti, ".gc_mem")->get();
// cast
return DtoBitCast(mem, getPtrToType(DtoType(newtype)), ".gc_mem");
}
void DtoDeleteMemory(LLValue* ptr)
{
// get runtime function
llvm::Function* fn = LLVM_D_GetRuntimeFunction(gIR->module, "_d_delmemory");
// build args
LLSmallVector<LLValue*,1> arg;
arg.push_back(DtoBitCast(ptr, getVoidPtrType(), ".tmp"));
// call
gIR->CreateCallOrInvoke(fn, arg.begin(), arg.end());
}
void DtoDeleteClass(LLValue* inst)
{
// get runtime function
llvm::Function* fn = LLVM_D_GetRuntimeFunction(gIR->module, "_d_delclass");
// build args
LLSmallVector<LLValue*,1> arg;
arg.push_back(DtoBitCast(inst, fn->getFunctionType()->getParamType(0), ".tmp"));
// call
gIR->CreateCallOrInvoke(fn, arg.begin(), arg.end());
}
void DtoDeleteInterface(LLValue* inst)
{
// get runtime function
llvm::Function* fn = LLVM_D_GetRuntimeFunction(gIR->module, "_d_delinterface");
// build args
LLSmallVector<LLValue*,1> arg;
arg.push_back(DtoBitCast(inst, fn->getFunctionType()->getParamType(0), ".tmp"));
// call
gIR->CreateCallOrInvoke(fn, arg.begin(), arg.end());
}
void DtoDeleteArray(DValue* arr)
{
// get runtime function
llvm::Function* fn = LLVM_D_GetRuntimeFunction(gIR->module, "_d_delarray");
// build args
LLSmallVector<LLValue*,2> arg;
arg.push_back(DtoArrayLen(arr));
arg.push_back(DtoBitCast(DtoArrayPtr(arr), getVoidPtrType(), ".tmp"));
// call
gIR->CreateCallOrInvoke(fn, arg.begin(), arg.end());
}
/****************************************************************************************/
/*////////////////////////////////////////////////////////////////////////////////////////
// ALLOCA HELPERS
////////////////////////////////////////////////////////////////////////////////////////*/
llvm::AllocaInst* DtoAlloca(const LLType* lltype, const std::string& name)
{
return new llvm::AllocaInst(lltype, name, gIR->topallocapoint());
}
llvm::AllocaInst* DtoAlloca(const LLType* lltype, LLValue* arraysize, const std::string& name)
{
return new llvm::AllocaInst(lltype, arraysize, name, gIR->topallocapoint());
}
/****************************************************************************************/
/*////////////////////////////////////////////////////////////////////////////////////////
// ASSERT HELPER
////////////////////////////////////////////////////////////////////////////////////////*/
void DtoAssert(Module* M, Loc* loc, DValue* msg)
{
std::vector<LLValue*> args;
// func
const char* fname = msg ? "_d_assert_msg" : "_d_assert";
llvm::Function* fn = LLVM_D_GetRuntimeFunction(gIR->module, fname);
// msg param
if (msg)
{
args.push_back(msg->getRVal());
}
// file param
// we might be generating for an imported template function
if (!M->ir.irModule)
M->ir.irModule = new IrModule(M, M->srcfile->toChars());
args.push_back(DtoLoad(M->ir.irModule->fileName));
// line param
LLConstant* c = DtoConstUint(loc->linnum);
args.push_back(c);
// call
CallOrInvoke* call = gIR->CreateCallOrInvoke(fn, args.begin(), args.end());
// end debug info
if (global.params.symdebug)
DtoDwarfFuncEnd(gIR->func()->decl);
// after assert is always unreachable
gIR->ir->CreateUnreachable();
}
/****************************************************************************************/
/*////////////////////////////////////////////////////////////////////////////////////////
// LABEL HELPER
////////////////////////////////////////////////////////////////////////////////////////*/
LabelStatement* DtoLabelStatement(Identifier* ident)
{
FuncDeclaration* fd = gIR->func()->decl;
FuncDeclaration::LabelMap::iterator iter = fd->labmap.find(ident->toChars());
if (iter == fd->labmap.end())
{
if (fd->returnLabel && fd->returnLabel->ident->equals(ident))
{
assert(fd->returnLabel->statement);
return fd->returnLabel->statement;
}
return NULL;
}
return iter->second;
}
/****************************************************************************************/
/*////////////////////////////////////////////////////////////////////////////////////////
// GOTO HELPER
////////////////////////////////////////////////////////////////////////////////////////*/
void DtoGoto(Loc* loc, Identifier* target, EnclosingHandler* enclosinghandler, TryFinallyStatement* sourcetf)
{
assert(!gIR->scopereturned());
LabelStatement* lblstmt = DtoLabelStatement(target);
if(!lblstmt) {
error(*loc, "the label %s does not exist", target->toChars());
fatal();
}
// if the target label is inside inline asm, error
if(lblstmt->asmLabel) {
error(*loc, "cannot goto to label %s inside an inline asm block", target->toChars());
fatal();
}
// find target basic block
std::string labelname = gIR->func()->getScopedLabelName(target->toChars());
llvm::BasicBlock*& targetBB = gIR->func()->labelToBB[labelname];
if (targetBB == NULL)
targetBB = llvm::BasicBlock::Create("label", gIR->topfunc());
// find finallys between goto and label
EnclosingHandler* endfinally = enclosinghandler;
while(endfinally != NULL && endfinally != lblstmt->enclosinghandler) {
endfinally = endfinally->getEnclosing();
}
// error if didn't find tf statement of label
if(endfinally != lblstmt->enclosinghandler)
error(*loc, "cannot goto into try block");
// goto into finally blocks is forbidden by the spec
// though it should not be problematic to implement
if(lblstmt->tf != sourcetf) {
error(*loc, "spec disallows goto into finally block");
fatal();
}
// emit code for finallys between goto and label
DtoEnclosingHandlers(enclosinghandler, endfinally);
llvm::BranchInst::Create(targetBB, gIR->scopebb());
}
/****************************************************************************************/
/*////////////////////////////////////////////////////////////////////////////////////////
// TRY-FINALLY, VOLATILE AND SYNCHRONIZED HELPER
////////////////////////////////////////////////////////////////////////////////////////*/
void EnclosingSynchro::emitCode(IRState * p)
{
if (s->exp)
DtoLeaveMonitor(s->llsync);
else
DtoLeaveCritical(s->llsync);
}
EnclosingHandler* EnclosingSynchro::getEnclosing()
{
return s->enclosinghandler;
}
////////////////////////////////////////////////////////////////////////////////////////
void EnclosingVolatile::emitCode(IRState * p)
{
// store-load barrier
DtoMemoryBarrier(false, false, true, false);
}
EnclosingHandler* EnclosingVolatile::getEnclosing()
{
return v->enclosinghandler;
}
////////////////////////////////////////////////////////////////////////////////////////
void EnclosingTryFinally::emitCode(IRState * p)
{
if (tf->finalbody)
tf->finalbody->toIR(p);
}
EnclosingHandler* EnclosingTryFinally::getEnclosing()
{
return tf->enclosinghandler;
}
////////////////////////////////////////////////////////////////////////////////////////
void DtoEnclosingHandlers(EnclosingHandler* start, EnclosingHandler* end)
{
// verify that end encloses start
EnclosingHandler* endfinally = start;
while(endfinally != NULL && endfinally != end) {
endfinally = endfinally->getEnclosing();
}
assert(endfinally == end);
//
// emit code for finallys between start and end
//
// since the labelstatements possibly inside are private
// and might already exist push a label scope
gIR->func()->pushUniqueLabelScope("enclosing");
EnclosingHandler* tf = start;
while(tf != end) {
tf->emitCode(gIR);
tf = tf->getEnclosing();
}
gIR->func()->popLabelScope();
}
/****************************************************************************************/
/*////////////////////////////////////////////////////////////////////////////////////////
// SYNCHRONIZED SECTION HELPERS
////////////////////////////////////////////////////////////////////////////////////////*/
void DtoEnterCritical(LLValue* g)
{
LLFunction* fn = LLVM_D_GetRuntimeFunction(gIR->module, "_d_criticalenter");
gIR->CreateCallOrInvoke(fn, g);
}
void DtoLeaveCritical(LLValue* g)
{
LLFunction* fn = LLVM_D_GetRuntimeFunction(gIR->module, "_d_criticalexit");
gIR->CreateCallOrInvoke(fn, g);
}
void DtoEnterMonitor(LLValue* v)
{
LLFunction* fn = LLVM_D_GetRuntimeFunction(gIR->module, "_d_monitorenter");
v = DtoBitCast(v, fn->getFunctionType()->getParamType(0));
gIR->CreateCallOrInvoke(fn, v);
}
void DtoLeaveMonitor(LLValue* v)
{
LLFunction* fn = LLVM_D_GetRuntimeFunction(gIR->module, "_d_monitorexit");
v = DtoBitCast(v, fn->getFunctionType()->getParamType(0));
gIR->CreateCallOrInvoke(fn, v);
}
/****************************************************************************************/
/*////////////////////////////////////////////////////////////////////////////////////////
// NESTED VARIABLE HELPERS
////////////////////////////////////////////////////////////////////////////////////////*/
DValue* DtoNestedVariable(Loc loc, Type* astype, VarDeclaration* vd)
{
Dsymbol* vdparent = vd->toParent2();
assert(vdparent);
IrFunction* irfunc = gIR->func();
// is the nested variable in this scope?
if (vdparent == irfunc->decl)
{
LLValue* val = vd->ir.getIrValue();
return new DVarValue(astype, vd, val);
}
// get it from the nested context
LLValue* ctx = 0;
if (irfunc->decl->isMember2())
{
ClassDeclaration* cd = irfunc->decl->isMember2()->isClassDeclaration();
LLValue* val = DtoLoad(irfunc->thisArg);
ctx = DtoLoad(DtoGEPi(val, 0,cd->vthis->ir.irField->index, ".vthis"));
}
else
ctx = irfunc->nestArg;
assert(ctx);
assert(vd->ir.irLocal);
LLValue* val = DtoBitCast(ctx, getPtrToType(getVoidPtrType()));
val = DtoGEPi1(val, vd->ir.irLocal->nestedIndex);
val = DtoLoad(val);
assert(vd->ir.irLocal->value);
val = DtoBitCast(val, vd->ir.irLocal->value->getType(), vd->toChars());
return new DVarValue(astype, vd, val);
}
LLValue* DtoNestedContext(Loc loc, Dsymbol* sym)
{
Logger::println("DtoNestedContext for %s", sym->toPrettyChars());
LOG_SCOPE;
IrFunction* irfunc = gIR->func();
// if this func has its own vars that are accessed by nested funcs
// use its own context
if (irfunc->nestedVar)
return irfunc->nestedVar;
// otherwise, it may have gotten a context from the caller
else if (irfunc->nestArg)
return irfunc->nestArg;
// or just have a this argument
else if (irfunc->thisArg)
{
ClassDeclaration* cd = irfunc->decl->isMember2()->isClassDeclaration();
if (!cd || !cd->vthis)
return getNullPtr(getVoidPtrType());
LLValue* val = DtoLoad(irfunc->thisArg);
return DtoLoad(DtoGEPi(val, 0,cd->vthis->ir.irField->index, ".vthis"));
}
else
{
return getNullPtr(getVoidPtrType());
}
}
/****************************************************************************************/
/*////////////////////////////////////////////////////////////////////////////////////////
// ASSIGNMENT HELPER (store this in that)
////////////////////////////////////////////////////////////////////////////////////////*/
void DtoAssign(Loc& loc, DValue* lhs, DValue* rhs)
{
Logger::println("DtoAssign(...);\n");
LOG_SCOPE;
Type* t = lhs->getType()->toBasetype();
Type* t2 = rhs->getType()->toBasetype();
if (t->ty == Tstruct) {
if (!t->equals(t2)) {
// TODO: fix this, use 'rhs' for something
DtoAggrZeroInit(lhs->getLVal());
}
else {
DtoAggrCopy(lhs->getLVal(), rhs->getRVal());
}
}
else if (t->ty == Tarray) {
// lhs is slice
if (DSliceValue* s = lhs->isSlice()) {
if (DSliceValue* s2 = rhs->isSlice()) {
DtoArrayCopySlices(s, s2);
}
else if (t->nextOf()->toBasetype()->equals(t2)) {
DtoArrayInit(loc, s, rhs);
}
else {
DtoArrayCopyToSlice(s, rhs);
}
}
// rhs is slice
else if (DSliceValue* s = rhs->isSlice()) {
assert(s->getType()->toBasetype() == lhs->getType()->toBasetype());
DtoSetArray(lhs->getLVal(),DtoArrayLen(s),DtoArrayPtr(s));
}
// null
else if (rhs->isNull()) {
DtoSetArrayToNull(lhs->getLVal());
}
// reference assignment
else if (t2->ty == Tarray) {
DtoStore(rhs->getRVal(), lhs->getLVal());
}
// some implicitly converting ref assignment
else {
DtoSetArray(lhs->getLVal(), DtoArrayLen(rhs), DtoArrayPtr(rhs));
}
}
else if (t->ty == Tsarray) {
// T[n] = T[n]
if (DtoType(lhs->getType()) == DtoType(rhs->getType())) {
DtoStaticArrayCopy(lhs->getLVal(), rhs->getRVal());
}
// T[n] = T
else if (t->nextOf()->toBasetype()->equals(t2)) {
DtoArrayInit(loc, lhs, rhs);
}
// T[n] = T[] - generally only generated by frontend in rare cases
else if (t2->ty == Tarray && t->nextOf()->toBasetype()->equals(t2->nextOf()->toBasetype())) {
DtoMemCpy(lhs->getLVal(), DtoArrayPtr(rhs), DtoArrayLen(rhs));
} else {
assert(0 && "Unimplemented static array assign!");
}
}
else if (t->ty == Tdelegate) {
LLValue* l = lhs->getLVal();
LLValue* r = rhs->getRVal();
if (Logger::enabled())
Logger::cout() << "assign\nlhs: " << *l << "rhs: " << *r << '\n';
DtoStore(r, l);
}
else if (t->ty == Tclass) {
assert(t2->ty == Tclass);
LLValue* l = lhs->getLVal();
LLValue* r = rhs->getRVal();
if (Logger::enabled())
{
Logger::cout() << "l : " << *l << '\n';
Logger::cout() << "r : " << *r << '\n';
}
r = DtoBitCast(r, l->getType()->getContainedType(0));
DtoStore(r, l);
}
else if (t->iscomplex()) {
LLValue* dst;
if (DLRValue* lr = lhs->isLRValue()) {
dst = lr->getLVal();
rhs = DtoCastComplex(loc, rhs, lr->getLType());
}
else {
dst = lhs->getLVal();
}
DtoStore(rhs->getRVal(), dst);
}
else {
LLValue* l = lhs->getLVal();
LLValue* r = rhs->getRVal();
if (Logger::enabled())
Logger::cout() << "assign\nlhs: " << *l << "rhs: " << *r << '\n';
const LLType* lit = l->getType()->getContainedType(0);
if (r->getType() != lit) {
// handle lvalue cast assignments
if (DLRValue* lr = lhs->isLRValue()) {
Logger::println("lvalue cast!");
r = DtoCast(loc, rhs, lr->getLType())->getRVal();
}
else {
r = DtoCast(loc, rhs, lhs->getType())->getRVal();
}
if (Logger::enabled())
Logger::cout() << "really assign\nlhs: " << *l << "rhs: " << *r << '\n';
assert(r->getType() == l->getType()->getContainedType(0));
}
gIR->ir->CreateStore(r, l);
}
}
/****************************************************************************************/
/*////////////////////////////////////////////////////////////////////////////////////////
// NULL VALUE HELPER
////////////////////////////////////////////////////////////////////////////////////////*/
DValue* DtoNullValue(Type* type)
{
Type* basetype = type->toBasetype();
TY basety = basetype->ty;
const LLType* lltype = DtoType(basetype);
// complex, needs to be first since complex are also floating
if (basetype->iscomplex())
{
const LLType* basefp = DtoComplexBaseType(basetype);
LLValue* res = DtoAggrPair(DtoType(type), LLConstant::getNullValue(basefp), LLConstant::getNullValue(basefp));
return new DImValue(type, res);
}
// integer, floating, pointer and class have no special representation
else if (basetype->isintegral() || basetype->isfloating() || basety == Tpointer || basety == Tclass)
{
return new DConstValue(type, LLConstant::getNullValue(lltype));
}
// dynamic array
else if (basety == Tarray)
{
LLValue* len = DtoConstSize_t(0);
LLValue* ptr = getNullPtr(getPtrToType(DtoType(basetype->nextOf())));
return new DSliceValue(type, len, ptr);
}
// delegate
else if (basety == Tdelegate)
{
return new DNullValue(type, LLConstant::getNullValue(lltype));
}
// unknown
std::cout << "unsupported: null value for " << type->toChars() << '\n';
assert(0);
return 0;
}
/****************************************************************************************/
/*////////////////////////////////////////////////////////////////////////////////////////
// CASTING HELPERS
////////////////////////////////////////////////////////////////////////////////////////*/
DValue* DtoCastInt(Loc& loc, DValue* val, Type* _to)
{
const LLType* tolltype = DtoType(_to);
Type* to = _to->toBasetype();
Type* from = val->getType()->toBasetype();
assert(from->isintegral());
size_t fromsz = from->size();
size_t tosz = to->size();
LLValue* rval = val->getRVal();
if (rval->getType() == tolltype) {
return new DImValue(_to, rval);
}
if (to->ty == Tbool) {
LLValue* zero = LLConstantInt::get(rval->getType(), 0, false);
rval = gIR->ir->CreateICmpNE(rval, zero, "tmp");
}
else if (to->isintegral()) {
if (fromsz < tosz || from->ty == Tbool) {
if (Logger::enabled())
Logger::cout() << "cast to: " << *tolltype << '\n';
if (from->isunsigned() || from->ty == Tbool) {
rval = new llvm::ZExtInst(rval, tolltype, "tmp", gIR->scopebb());
} else {
rval = new llvm::SExtInst(rval, tolltype, "tmp", gIR->scopebb());
}
}
else if (fromsz > tosz) {
rval = new llvm::TruncInst(rval, tolltype, "tmp", gIR->scopebb());
}
else {
rval = DtoBitCast(rval, tolltype);
}
}
else if (to->iscomplex()) {
return DtoComplex(loc, to, val);
}
else if (to->isfloating()) {
if (from->isunsigned()) {
rval = new llvm::UIToFPInst(rval, tolltype, "tmp", gIR->scopebb());
}
else {
rval = new llvm::SIToFPInst(rval, tolltype, "tmp", gIR->scopebb());
}
}
else if (to->ty == Tpointer) {
if (Logger::enabled())
Logger::cout() << "cast pointer: " << *tolltype << '\n';
rval = gIR->ir->CreateIntToPtr(rval, tolltype, "tmp");
}
else {
error(loc, "invalid cast from '%s' to '%s'", val->getType()->toChars(), _to->toChars());
fatal();
}
return new DImValue(_to, rval);
}
DValue* DtoCastPtr(Loc& loc, DValue* val, Type* to)
{
const LLType* tolltype = DtoType(to);
Type* totype = to->toBasetype();
Type* fromtype = val->getType()->toBasetype();
assert(fromtype->ty == Tpointer || fromtype->ty == Tfunction);
LLValue* rval;
if (totype->ty == Tpointer || totype->ty == Tclass) {
LLValue* src = val->getRVal();
if (Logger::enabled())
Logger::cout() << "src: " << *src << "to type: " << *tolltype << '\n';
rval = DtoBitCast(src, tolltype);
}
else if (totype->ty == Tbool) {
LLValue* src = val->getRVal();
LLValue* zero = LLConstant::getNullValue(src->getType());
rval = gIR->ir->CreateICmpNE(src, zero, "tmp");
}
else if (totype->isintegral()) {
rval = new llvm::PtrToIntInst(val->getRVal(), tolltype, "tmp", gIR->scopebb());
}
else {
error(loc, "invalid cast from '%s' to '%s'", val->getType()->toChars(), to->toChars());
fatal();
}
return new DImValue(to, rval);
}
DValue* DtoCastFloat(Loc& loc, DValue* val, Type* to)
{
if (val->getType() == to)
return val;
const LLType* tolltype = DtoType(to);
Type* totype = to->toBasetype();
Type* fromtype = val->getType()->toBasetype();
assert(fromtype->isfloating());
size_t fromsz = fromtype->size();
size_t tosz = totype->size();
LLValue* rval;
if (totype->ty == Tbool) {
rval = val->getRVal();
LLValue* zero = LLConstant::getNullValue(rval->getType());
rval = gIR->ir->CreateFCmpUNE(rval, zero, "tmp");
}
else if (totype->iscomplex()) {
return DtoComplex(loc, to, val);
}
else if (totype->isfloating()) {
if (fromsz == tosz) {
rval = val->getRVal();
assert(rval->getType() == tolltype);
}
else if (fromsz < tosz) {
rval = new llvm::FPExtInst(val->getRVal(), tolltype, "tmp", gIR->scopebb());
}
else if (fromsz > tosz) {
rval = new llvm::FPTruncInst(val->getRVal(), tolltype, "tmp", gIR->scopebb());
}
else {
error(loc, "invalid cast from '%s' to '%s'", val->getType()->toChars(), to->toChars());
fatal();
}
}
else if (totype->isintegral()) {
if (totype->isunsigned()) {
rval = new llvm::FPToUIInst(val->getRVal(), tolltype, "tmp", gIR->scopebb());
}
else {
rval = new llvm::FPToSIInst(val->getRVal(), tolltype, "tmp", gIR->scopebb());
}
}
else {
error(loc, "invalid cast from '%s' to '%s'", val->getType()->toChars(), to->toChars());
fatal();
}
return new DImValue(to, rval);
}
DValue* DtoCastDelegate(Loc& loc, DValue* val, Type* to)
{
if (to->toBasetype()->ty == Tdelegate)
{
return DtoPaintType(loc, val, to);
}
else if (to->toBasetype()->ty == Tbool)
{
return new DImValue(to, DtoDelegateEquals(TOKnotequal, val->getRVal(), NULL));
}
else
{
error(loc, "invalid cast from '%s' to '%s'", val->getType()->toChars(), to->toChars());
fatal();
}
}
DValue* DtoCast(Loc& loc, DValue* val, Type* to)
{
Type* fromtype = val->getType()->toBasetype();
Logger::println("Casting from '%s' to '%s'", fromtype->toChars(), to->toChars());
if (fromtype->isintegral()) {
return DtoCastInt(loc, val, to);
}
else if (fromtype->iscomplex()) {
return DtoCastComplex(loc, val, to);
}
else if (fromtype->isfloating()) {
return DtoCastFloat(loc, val, to);
}
else if (fromtype->ty == Tclass) {
return DtoCastClass(val, to);
}
else if (fromtype->ty == Tarray || fromtype->ty == Tsarray) {
return DtoCastArray(loc, val, to);
}
else if (fromtype->ty == Tpointer || fromtype->ty == Tfunction) {
return DtoCastPtr(loc, val, to);
}
else if (fromtype->ty == Tdelegate) {
return DtoCastDelegate(loc, val, to);
}
else {
error(loc, "invalid cast from '%s' to '%s'", val->getType()->toChars(), to->toChars());
fatal();
}
}
//////////////////////////////////////////////////////////////////////////////////////////
DValue* DtoPaintType(Loc& loc, DValue* val, Type* to)
{
Type* from = val->getType()->toBasetype();
Logger::println("repainting from '%s' to '%s'", from->toChars(), to->toChars());
if (from->ty == Tarray)
{
Type* at = to->toBasetype();
assert(at->ty == Tarray);
Type* elem = at->nextOf()->pointerTo();
if (DSliceValue* slice = val->isSlice())
{
return new DSliceValue(to, slice->len, DtoBitCast(slice->ptr, DtoType(elem)));
}
else if (val->isLVal())
{
LLValue* ptr = val->getLVal();
ptr = DtoBitCast(ptr, DtoType(at->pointerTo()));
return new DVarValue(to, ptr);
}
else
{
LLValue *len, *ptr;
len = DtoArrayLen(val);
ptr = DtoArrayPtr(val);
ptr = DtoBitCast(ptr, DtoType(elem));
return new DImValue(to, DtoAggrPair(len, ptr, "tmp"));
}
}
else if (from->ty == Tdelegate)
{
Type* dgty = to->toBasetype();
assert(dgty->ty == Tdelegate);
if (val->isLVal())
{
LLValue* ptr = val->getLVal();
assert(isaPointer(ptr));
ptr = DtoBitCast(ptr, getPtrToType(DtoType(dgty)));
if (Logger::enabled())
Logger::cout() << "dg ptr: " << *ptr << '\n';
return new DVarValue(to, ptr);
}
else
{
LLValue* dg = val->getRVal();
LLValue* context = gIR->ir->CreateExtractValue(dg, 0, ".context");
LLValue* funcptr = gIR->ir->CreateExtractValue(dg, 1, ".funcptr");
funcptr = DtoBitCast(funcptr, DtoType(dgty)->getContainedType(1));
LLValue* aggr = DtoAggrPair(context, funcptr, "tmp");
if (Logger::enabled())
Logger::cout() << "dg: " << *aggr << '\n';
return new DImValue(to, aggr);
}
}
else if (from->ty == Tpointer || from->ty == Tclass || from->ty == Taarray)
{
Type* b = to->toBasetype();
assert(b->ty == Tpointer || b->ty == Tclass || b->ty == Taarray);
LLValue* ptr = DtoBitCast(val->getRVal(), DtoType(b));
return new DImValue(to, ptr);
}
else
{
assert(!val->isLVal());
assert(DtoType(to) == DtoType(to));
return new DImValue(to, val->getRVal());
}
}
/****************************************************************************************/
/*////////////////////////////////////////////////////////////////////////////////////////
// TEMPLATE HELPERS
////////////////////////////////////////////////////////////////////////////////////////*/
Module* DtoIsTemplateInstance(Dsymbol* s)
{
if (!s) return NULL;
if (s->isTemplateInstance() && !s->isTemplateMixin())
return s->isTemplateInstance()->tmodule;
else if (s->parent)
return DtoIsTemplateInstance(s->parent);
return NULL;
}
/****************************************************************************************/
/*////////////////////////////////////////////////////////////////////////////////////////
// PROCESSING QUEUE HELPERS
////////////////////////////////////////////////////////////////////////////////////////*/
void DtoResolveDsymbol(Dsymbol* dsym)
{
if (StructDeclaration* sd = dsym->isStructDeclaration()) {
DtoResolveStruct(sd);
}
else if (ClassDeclaration* cd = dsym->isClassDeclaration()) {
DtoResolveClass(cd);
}
else if (FuncDeclaration* fd = dsym->isFuncDeclaration()) {
DtoResolveFunction(fd);
}
else if (TypeInfoDeclaration* fd = dsym->isTypeInfoDeclaration()) {
DtoResolveTypeInfo(fd);
}
else {
error(dsym->loc, "unsupported dsymbol: %s", dsym->toChars());
assert(0 && "unsupported dsymbol for DtoResolveDsymbol");
}
}
//////////////////////////////////////////////////////////////////////////////////////////
void DtoDeclareDsymbol(Dsymbol* dsym)
{
if (StructDeclaration* sd = dsym->isStructDeclaration()) {
DtoDeclareStruct(sd);
}
else if (ClassDeclaration* cd = dsym->isClassDeclaration()) {
DtoDeclareClass(cd);
}
else if (FuncDeclaration* fd = dsym->isFuncDeclaration()) {
DtoDeclareFunction(fd);
}
else if (TypeInfoDeclaration* fd = dsym->isTypeInfoDeclaration()) {
DtoDeclareTypeInfo(fd);
}
else {
error(dsym->loc, "unsupported dsymbol: %s", dsym->toChars());
assert(0 && "unsupported dsymbol for DtoDeclareDsymbol");
}
}
//////////////////////////////////////////////////////////////////////////////////////////
void DtoConstInitDsymbol(Dsymbol* dsym)
{
if (StructDeclaration* sd = dsym->isStructDeclaration()) {
DtoConstInitStruct(sd);
}
else if (ClassDeclaration* cd = dsym->isClassDeclaration()) {
DtoConstInitClass(cd);
}
else if (TypeInfoDeclaration* fd = dsym->isTypeInfoDeclaration()) {
DtoConstInitTypeInfo(fd);
}
else if (VarDeclaration* vd = dsym->isVarDeclaration()) {
DtoConstInitGlobal(vd);
}
else {
error(dsym->loc, "unsupported dsymbol: %s", dsym->toChars());
assert(0 && "unsupported dsymbol for DtoConstInitDsymbol");
}
}
//////////////////////////////////////////////////////////////////////////////////////////
void DtoDefineDsymbol(Dsymbol* dsym)
{
if (StructDeclaration* sd = dsym->isStructDeclaration()) {
DtoDefineStruct(sd);
}
else if (ClassDeclaration* cd = dsym->isClassDeclaration()) {
DtoDefineClass(cd);
}
else if (FuncDeclaration* fd = dsym->isFuncDeclaration()) {
DtoDefineFunction(fd);
}
else if (TypeInfoDeclaration* fd = dsym->isTypeInfoDeclaration()) {
DtoDefineTypeInfo(fd);
}
else {
error(dsym->loc, "unsupported dsymbol: %s", dsym->toChars());
assert(0 && "unsupported dsymbol for DtoDefineDsymbol");
}
}
//////////////////////////////////////////////////////////////////////////////////////////
void DtoConstInitGlobal(VarDeclaration* vd)
{
if (vd->ir.initialized) return;
vd->ir.initialized = gIR->dmodule;
Logger::println("DtoConstInitGlobal(%s) @ %s", vd->toChars(), vd->locToChars());
LOG_SCOPE;
Dsymbol* par = vd->toParent();
// build the initializer
LLConstant* initVal = DtoConstInitializer(vd->loc, vd->type, vd->init);
// set the initializer if appropriate
IrGlobal* glob = vd->ir.irGlobal;
llvm::GlobalVariable* gvar = llvm::cast<llvm::GlobalVariable>(glob->value);
// refine the global's opaque type to the type of the initializer
llvm::cast<LLOpaqueType>(glob->type.get())->refineAbstractTypeTo(initVal->getType());
assert(!glob->constInit);
glob->constInit = initVal;
// assign the initializer
llvm::GlobalVariable* globalvar = llvm::cast<llvm::GlobalVariable>(glob->value);
if (!(vd->storage_class & STCextern) && mustDefineSymbol(vd))
{
if (Logger::enabled())
{
Logger::println("setting initializer");
Logger::cout() << "global: " << *gvar << '\n';
Logger::cout() << "init: " << *initVal << '\n';
}
gvar->setInitializer(initVal);
// do debug info
if (global.params.symdebug)
{
LLGlobalVariable* gv = DtoDwarfGlobalVariable(gvar, vd);
// keep a reference so GDCE doesn't delete it !
gIR->usedArray.push_back(llvm::ConstantExpr::getBitCast(gv, getVoidPtrType()));
}
}
}
//////////////////////////////////////////////////////////////////////////////////////////
void DtoEmptyResolveList()
{
//Logger::println("DtoEmptyResolveList()");
Dsymbol* dsym;
while (!gIR->resolveList.empty()) {
dsym = gIR->resolveList.front();
gIR->resolveList.pop_front();
DtoResolveDsymbol(dsym);
}
}
//////////////////////////////////////////////////////////////////////////////////////////
void DtoEmptyDeclareList()
{
//Logger::println("DtoEmptyDeclareList()");
Dsymbol* dsym;
while (!gIR->declareList.empty()) {
dsym = gIR->declareList.front();
gIR->declareList.pop_front();
DtoDeclareDsymbol(dsym);
}
}
//////////////////////////////////////////////////////////////////////////////////////////
void DtoEmptyConstInitList()
{
//Logger::println("DtoEmptyConstInitList()");
Dsymbol* dsym;
while (!gIR->constInitList.empty()) {
dsym = gIR->constInitList.front();
gIR->constInitList.pop_front();
DtoConstInitDsymbol(dsym);
}
}
//////////////////////////////////////////////////////////////////////////////////////////
void DtoEmptyDefineList()
{
//Logger::println("DtoEmptyDefineList()");
Dsymbol* dsym;
while (!gIR->defineList.empty()) {
dsym = gIR->defineList.front();
gIR->defineList.pop_front();
DtoDefineDsymbol(dsym);
}
}
//////////////////////////////////////////////////////////////////////////////////////////
void DtoEmptyAllLists()
{
for(;;)
{
Dsymbol* dsym;
if (!gIR->resolveList.empty()) {
dsym = gIR->resolveList.front();
gIR->resolveList.pop_front();
DtoResolveDsymbol(dsym);
}
else if (!gIR->declareList.empty()) {
dsym = gIR->declareList.front();
gIR->declareList.pop_front();
DtoDeclareDsymbol(dsym);
}
else if (!gIR->constInitList.empty()) {
dsym = gIR->constInitList.front();
gIR->constInitList.pop_front();
DtoConstInitDsymbol(dsym);
}
else if (!gIR->defineList.empty()) {
dsym = gIR->defineList.front();
gIR->defineList.pop_front();
DtoDefineDsymbol(dsym);
}
else {
break;
}
}
}
//////////////////////////////////////////////////////////////////////////////////////////
void DtoForceDeclareDsymbol(Dsymbol* dsym)
{
if (dsym->ir.declared) return;
Logger::println("DtoForceDeclareDsymbol(%s)", dsym->toPrettyChars());
LOG_SCOPE;
DtoResolveDsymbol(dsym);
DtoEmptyResolveList();
DtoDeclareDsymbol(dsym);
}
//////////////////////////////////////////////////////////////////////////////////////////
void DtoForceConstInitDsymbol(Dsymbol* dsym)
{
if (dsym->ir.initialized) return;
Logger::println("DtoForceConstInitDsymbol(%s)", dsym->toPrettyChars());
LOG_SCOPE;
DtoResolveDsymbol(dsym);
DtoEmptyResolveList();
DtoEmptyDeclareList();
DtoConstInitDsymbol(dsym);
}
//////////////////////////////////////////////////////////////////////////////////////////
void DtoForceDefineDsymbol(Dsymbol* dsym)
{
if (dsym->ir.defined) return;
Logger::println("DtoForceDefineDsymbol(%s)", dsym->toPrettyChars());
LOG_SCOPE;
DtoResolveDsymbol(dsym);
DtoEmptyResolveList();
DtoEmptyDeclareList();
DtoEmptyConstInitList();
DtoDefineDsymbol(dsym);
}
/****************************************************************************************/
/*////////////////////////////////////////////////////////////////////////////////////////
// DECLARATION EXP HELPER
////////////////////////////////////////////////////////////////////////////////////////*/
DValue* DtoDeclarationExp(Dsymbol* declaration)
{
Logger::print("DtoDeclarationExp: %s\n", declaration->toChars());
LOG_SCOPE;
// variable declaration
if (VarDeclaration* vd = declaration->isVarDeclaration())
{
Logger::println("VarDeclaration");
// if aliassym is set, this VarDecl is redone as an alias to another symbol
// this seems to be done to rewrite Tuple!(...) v;
// as a TupleDecl that contains a bunch of individual VarDecls
if (vd->aliassym)
return DtoDeclarationExp(vd->aliassym);
// static
if (vd->isDataseg())
{
vd->toObjFile(0); // TODO: multiobj
}
else
{
if (global.params.llvmAnnotate)
DtoAnnotation(declaration->toChars());
Logger::println("vdtype = %s", vd->type->toChars());
// referenced by nested delegate?
#if DMDV2
if (vd->nestedrefs.dim) {
#else
if (vd->nestedref) {
#endif
Logger::println("has nestedref set");
assert(vd->ir.irLocal);
// alloca as usual if no value already
if (!vd->ir.irLocal->value)
{
vd->ir.irLocal->value = DtoAlloca(DtoType(vd->type), vd->toChars());
}
// store the address into the nested vars array
assert(vd->ir.irLocal->nestedIndex >= 0);
LLValue* gep = DtoGEPi(gIR->func()->decl->ir.irFunc->nestedVar, 0, vd->ir.irLocal->nestedIndex);
assert(isaPointer(vd->ir.irLocal->value));
LLValue* val = DtoBitCast(vd->ir.irLocal->value, getVoidPtrType());
DtoStore(val, gep);
}
// normal stack variable, allocate storage on the stack if it has not already been done
else if(!vd->ir.irLocal) {
const LLType* lltype = DtoType(vd->type);
llvm::Value* allocainst;
if(gTargetData->getTypeSizeInBits(lltype) == 0)
allocainst = llvm::ConstantPointerNull::get(getPtrToType(lltype));
else
allocainst = DtoAlloca(lltype, vd->toChars());
//allocainst->setAlignment(vd->type->alignsize()); // TODO
vd->ir.irLocal = new IrLocal(vd);
vd->ir.irLocal->value = allocainst;
if (global.params.symdebug)
{
DtoDwarfLocalVariable(allocainst, vd);
}
}
else
{
assert(vd->ir.irLocal->value);
}
if (Logger::enabled())
Logger::cout() << "llvm value for decl: " << *vd->ir.irLocal->value << '\n';
DValue* ie = DtoInitializer(vd->ir.irLocal->value, vd->init);
}
return new DVarValue(vd->type, vd, vd->ir.getIrValue());
}
// struct declaration
else if (StructDeclaration* s = declaration->isStructDeclaration())
{
Logger::println("StructDeclaration");
DtoForceConstInitDsymbol(s);
}
// function declaration
else if (FuncDeclaration* f = declaration->isFuncDeclaration())
{
Logger::println("FuncDeclaration");
DtoForceDeclareDsymbol(f);
}
// alias declaration
else if (AliasDeclaration* a = declaration->isAliasDeclaration())
{
Logger::println("AliasDeclaration - no work");
// do nothing
}
// enum
else if (EnumDeclaration* e = declaration->isEnumDeclaration())
{
Logger::println("EnumDeclaration - no work");
// do nothing
}
// class
else if (ClassDeclaration* e = declaration->isClassDeclaration())
{
Logger::println("ClassDeclaration");
DtoForceConstInitDsymbol(e);
}
// typedef
else if (TypedefDeclaration* tdef = declaration->isTypedefDeclaration())
{
Logger::println("TypedefDeclaration");
DtoTypeInfoOf(tdef->type, false);
}
// attribute declaration
else if (AttribDeclaration* a = declaration->isAttribDeclaration())
{
Logger::println("AttribDeclaration");
for (int i=0; i < a->decl->dim; ++i)
{
DtoDeclarationExp((Dsymbol*)a->decl->data[i]);
}
}
// mixin declaration
else if (TemplateMixin* m = declaration->isTemplateMixin())
{
Logger::println("TemplateMixin");
for (int i=0; i < m->members->dim; ++i)
{
Dsymbol* mdsym = (Dsymbol*)m->members->data[i];
DtoDeclarationExp(mdsym);
}
}
// tuple declaration
else if (TupleDeclaration* tupled = declaration->isTupleDeclaration())
{
Logger::println("TupleDeclaration");
if(!tupled->isexp) {
error(declaration->loc, "don't know how to handle non-expression tuple decls yet");
assert(0);
}
assert(tupled->objects);
for (int i=0; i < tupled->objects->dim; ++i)
{
DsymbolExp* exp = (DsymbolExp*)tupled->objects->data[i];
DtoDeclarationExp(exp->s);
}
}
// unsupported declaration
else
{
error(declaration->loc, "Unimplemented Declaration type for DeclarationExp. kind: %s", declaration->kind());
assert(0);
}
return NULL;
}
// does pretty much the same as DtoDeclarationExp, except it doesn't initialize, and only handles var declarations
LLValue* DtoRawVarDeclaration(VarDeclaration* var)
{
// we don't handle globals with this one
assert(!var->isDataseg());
// we don't handle aliases either
assert(!var->aliassym);
// if this already has storage, it must've been handled already
if (var->ir.irLocal && var->ir.irLocal->value)
return var->ir.irLocal->value;
// referenced by nested function?
#if DMDV2
if (var->nestedrefs.dim)
#else
if (var->nestedref)
#endif
{
assert(var->ir.irLocal);
assert(!var->ir.irLocal->value);
// alloca
var->ir.irLocal->value = DtoAlloca(DtoType(var->type), var->toChars());
// store the address into the nested vars array
assert(var->ir.irLocal->nestedIndex >= 0);
LLValue* gep = DtoGEPi(gIR->func()->decl->ir.irFunc->nestedVar, 0, var->ir.irLocal->nestedIndex);
assert(isaPointer(var->ir.irLocal->value));
LLValue* val = DtoBitCast(var->ir.irLocal->value, getVoidPtrType());
DtoStore(val, gep);
}
// normal local variable
else
{
assert(!var->ir.isSet());
var->ir.irLocal = new IrLocal(var);
var->ir.irLocal->value = DtoAlloca(DtoType(var->type), var->toChars());
}
// add debug info
if (global.params.symdebug)
DtoDwarfLocalVariable(var->ir.irLocal->value, var);
// return the alloca
return var->ir.irLocal->value;
}
/****************************************************************************************/
/*////////////////////////////////////////////////////////////////////////////////////////
// INITIALIZER HELPERS
////////////////////////////////////////////////////////////////////////////////////////*/
LLConstant* DtoConstInitializer(Loc loc, Type* type, Initializer* init)
{
LLConstant* _init = 0; // may return zero
if (!init)
{
Logger::println("const default initializer for %s", type->toChars());
_init = DtoConstExpInit(loc, type, type->defaultInit());
}
else if (ExpInitializer* ex = init->isExpInitializer())
{
Logger::println("const expression initializer");
_init = DtoConstExpInit(loc, type, ex->exp);;
}
else if (StructInitializer* si = init->isStructInitializer())
{
Logger::println("const struct initializer");
_init = DtoConstStructInitializer(si);
}
else if (ArrayInitializer* ai = init->isArrayInitializer())
{
Logger::println("const array initializer");
_init = DtoConstArrayInitializer(ai);
}
else if (init->isVoidInitializer())
{
Logger::println("const void initializer");
const LLType* ty = DtoType(type);
_init = llvm::Constant::getNullValue(ty);
}
else {
Logger::println("unsupported const initializer: %s", init->toChars());
}
return _init;
}
//////////////////////////////////////////////////////////////////////////////////////////
DValue* DtoInitializer(LLValue* target, Initializer* init)
{
if (!init)
return 0;
else if (ExpInitializer* ex = init->isExpInitializer())
{
Logger::println("expression initializer");
assert(ex->exp);
DValue* res = ex->exp->toElem(gIR);
assert(llvm::isa<llvm::PointerType>(target->getType()) && "init target must be ptr");
const LLType* targetty = target->getType()->getContainedType(0);
if(targetty == LLType::X86_FP80Ty)
{
Logger::println("setting fp80 padding to zero");
LLValue* castv = DtoBitCast(target, getPtrToType(LLType::Int16Ty));
LLValue* padding = DtoGEPi1(castv, 5);
DtoStore(llvm::Constant::getNullValue(LLType::Int16Ty), padding);
}
else if(targetty == DtoComplexType(Type::tcomplex80))
{
Logger::println("setting complex fp80 padding to zero");
LLValue* castv = DtoBitCast(target, getPtrToType(LLType::Int16Ty));
LLValue* padding = DtoGEPi1(castv, 5);
DtoStore(llvm::Constant::getNullValue(LLType::Int16Ty), padding);
padding = DtoGEPi1(castv, 11);
DtoStore(llvm::Constant::getNullValue(LLType::Int16Ty), padding);
}
return res;
}
else if (init->isVoidInitializer())
{
// do nothing
}
else {
Logger::println("unsupported initializer: %s", init->toChars());
assert(0);
}
return 0;
}
//////////////////////////////////////////////////////////////////////////////////////////
static LLConstant* expand_to_sarray(Type *base, Expression* exp)
{
Logger::println("building type %s from expression (%s) of type %s", base->toChars(), exp->toChars(), exp->type->toChars());
const LLType* dstTy = DtoType(base);
if (Logger::enabled())
Logger::cout() << "final llvm type requested: " << *dstTy << '\n';
LLConstant* val = exp->toConstElem(gIR);
Type* expbase = exp->type->toBasetype();
Logger::println("expbase: %s", expbase->toChars());
Type* t = base->toBasetype();
LLSmallVector<size_t, 4> dims;
while(1)
{
Logger::println("t: %s", t->toChars());
if (t->equals(expbase))
break;
assert(t->ty == Tsarray);
TypeSArray* tsa = (TypeSArray*)t;
dims.push_back(tsa->dim->toInteger());
assert(t->nextOf());
t = t->nextOf()->toBasetype();
}
size_t i = dims.size();
assert(i);
std::vector<LLConstant*> inits;
while (i--)
{
const LLArrayType* arrty = LLArrayType::get(val->getType(), dims[i]);
inits.clear();
inits.insert(inits.end(), dims[i], val);
val = LLConstantArray::get(arrty, inits);
}
return val;
}
LLConstant* DtoConstExpInit(Loc loc, Type* type, Expression* exp)
{
Type* expbase = exp->type->toBasetype();
Type* base = type->toBasetype();
// if not the same basetypes, we won't get the same llvm types either
if (!expbase->equals(base))
{
if (base->ty == Tsarray)
{
if (base->nextOf()->toBasetype()->ty == Tvoid) {
error(loc, "static arrays of voids have no default initializer");
fatal();
}
Logger::println("type is a static array, building constant array initializer to single value");
return expand_to_sarray(base, exp);
}
else
{
error("cannot yet convert default initializer %s to type %s to %s", exp->toChars(), exp->type->toChars(), type->toChars());
fatal();
}
assert(0);
}
return exp->toConstElem(gIR);
}
//////////////////////////////////////////////////////////////////////////////////////////
void DtoAnnotation(const char* str)
{
std::string s("CODE: ");
s.append(str);
char* p = &s[0];
while (*p)
{
if (*p == '"')
*p = '\'';
++p;
}
// create a noop with the code as the result name!
// FIXME: this is const folded and eliminated immediately ... :/
gIR->ir->CreateAnd(DtoConstSize_t(0),DtoConstSize_t(0),s.c_str());
}
//////////////////////////////////////////////////////////////////////////////////////////
LLConstant* DtoTypeInfoOf(Type* type, bool base)
{
type = type->merge(); // needed.. getTypeInfo does the same
type->getTypeInfo(NULL);
TypeInfoDeclaration* tidecl = type->vtinfo;
assert(tidecl);
DtoForceDeclareDsymbol(tidecl);
assert(tidecl->ir.irGlobal != NULL);
LLConstant* c = isaConstant(tidecl->ir.irGlobal->value);
assert(c != NULL);
if (base)
return llvm::ConstantExpr::getBitCast(c, DtoType(Type::typeinfo->type));
return c;
}
//////////////////////////////////////////////////////////////////////////////////////////
void DtoOverloadedIntrinsicName(TemplateInstance* ti, TemplateDeclaration* td, std::string& name)
{
Logger::println("DtoOverloadedIntrinsicName");
LOG_SCOPE;
Logger::println("template instance: %s", ti->toChars());
Logger::println("template declaration: %s", td->toChars());
Logger::println("intrinsic name: %s", td->intrinsicName.c_str());
// for now use the size in bits of the first template param in the instance
assert(ti->tdtypes.dim == 1);
Type* T = (Type*)ti->tdtypes.data[0];
char tmp[10];
if (T->toBasetype()->ty == Tbool) // otherwise we'd get a mismatch
sprintf(tmp, "1");
else
sprintf(tmp, "%lu", T->size()*8);
// replace # in name with bitsize
name = td->intrinsicName;
std::string needle("#");
size_t pos;
while(std::string::npos != (pos = name.find(needle)))
name.replace(pos, 1, tmp);
Logger::println("final intrinsic name: %s", name.c_str());
}
//////////////////////////////////////////////////////////////////////////////////////////
bool mustDefineSymbol(Dsymbol* s)
{
#if 1
return s->getModule() == gIR->dmodule || DtoIsTemplateInstance(s) != NULL;
#else
Module* M = DtoIsTemplateInstance(s);
// if it's a template instance, check the instantiating module
// not the module that defines the template
if (M)
return M == gIR->dmodule;
return s->getModule() == gIR->dmodule;
#endif
}
//////////////////////////////////////////////////////////////////////////////////////////
bool needsTemplateLinkage(Dsymbol* s)
{
#if 1
return DtoIsTemplateInstance(s) != NULL;
#else
Module* M = DtoIsTemplateInstance(s);
// only return true if the symbol is a template instances
// and if this instance originated in the current module
if (M)
return M == gIR->dmodule;
return false;
#endif
}