mirror of
https://github.com/xomboverlord/ldc.git
synced 2026-01-19 06:13:14 +01:00
263 lines
6.3 KiB
D
263 lines
6.3 KiB
D
/**
|
|
* This module contains a collection of bit-level operations.
|
|
*
|
|
* Copyright: Copyright (c) 2005-2008, The D Runtime Project
|
|
* License: BSD Style, see LICENSE
|
|
* Authors: Walter Bright, Don Clugston, Sean Kelly
|
|
*/
|
|
module core.bitmanip;
|
|
|
|
|
|
version( DDoc )
|
|
{
|
|
/**
|
|
* Scans the bits in v starting with bit 0, looking
|
|
* for the first set bit.
|
|
* Returns:
|
|
* The bit number of the first bit set.
|
|
* The return value is undefined if v is zero.
|
|
*/
|
|
int bsf( uint v );
|
|
|
|
|
|
/**
|
|
* Scans the bits in v from the most significant bit
|
|
* to the least significant bit, looking
|
|
* for the first set bit.
|
|
* Returns:
|
|
* The bit number of the first bit set.
|
|
* The return value is undefined if v is zero.
|
|
* Example:
|
|
* ---
|
|
* import bitmanip;
|
|
*
|
|
* int main()
|
|
* {
|
|
* uint v;
|
|
* int x;
|
|
*
|
|
* v = 0x21;
|
|
* x = bsf(v);
|
|
* printf("bsf(x%x) = %d\n", v, x);
|
|
* x = bsr(v);
|
|
* printf("bsr(x%x) = %d\n", v, x);
|
|
* return 0;
|
|
* }
|
|
* ---
|
|
* Output:
|
|
* bsf(x21) = 0<br>
|
|
* bsr(x21) = 5
|
|
*/
|
|
int bsr( uint v );
|
|
|
|
|
|
/**
|
|
* Tests the bit.
|
|
*/
|
|
int bt( uint* p, uint bitnum );
|
|
|
|
|
|
/**
|
|
* Tests and complements the bit.
|
|
*/
|
|
int btc( uint* p, uint bitnum );
|
|
|
|
|
|
/**
|
|
* Tests and resets (sets to 0) the bit.
|
|
*/
|
|
int btr( uint* p, uint bitnum );
|
|
|
|
|
|
/**
|
|
* Tests and sets the bit.
|
|
* Params:
|
|
* p = a non-NULL pointer to an array of uints.
|
|
* index = a bit number, starting with bit 0 of p[0],
|
|
* and progressing. It addresses bits like the expression:
|
|
---
|
|
p[index / (uint.sizeof*8)] & (1 << (index & ((uint.sizeof*8) - 1)))
|
|
---
|
|
* Returns:
|
|
* A non-zero value if the bit was set, and a zero
|
|
* if it was clear.
|
|
*
|
|
* Example:
|
|
* ---
|
|
import bitmanip;
|
|
|
|
int main()
|
|
{
|
|
uint array[2];
|
|
|
|
array[0] = 2;
|
|
array[1] = 0x100;
|
|
|
|
printf("btc(array, 35) = %d\n", <b>btc</b>(array, 35));
|
|
printf("array = [0]:x%x, [1]:x%x\n", array[0], array[1]);
|
|
|
|
printf("btc(array, 35) = %d\n", <b>btc</b>(array, 35));
|
|
printf("array = [0]:x%x, [1]:x%x\n", array[0], array[1]);
|
|
|
|
printf("bts(array, 35) = %d\n", <b>bts</b>(array, 35));
|
|
printf("array = [0]:x%x, [1]:x%x\n", array[0], array[1]);
|
|
|
|
printf("btr(array, 35) = %d\n", <b>btr</b>(array, 35));
|
|
printf("array = [0]:x%x, [1]:x%x\n", array[0], array[1]);
|
|
|
|
printf("bt(array, 1) = %d\n", <b>bt</b>(array, 1));
|
|
printf("array = [0]:x%x, [1]:x%x\n", array[0], array[1]);
|
|
|
|
return 0;
|
|
}
|
|
* ---
|
|
* Output:
|
|
<pre>
|
|
btc(array, 35) = 0
|
|
array = [0]:x2, [1]:x108
|
|
btc(array, 35) = -1
|
|
array = [0]:x2, [1]:x100
|
|
bts(array, 35) = 0
|
|
array = [0]:x2, [1]:x108
|
|
btr(array, 35) = -1
|
|
array = [0]:x2, [1]:x100
|
|
bt(array, 1) = -1
|
|
array = [0]:x2, [1]:x100
|
|
</pre>
|
|
*/
|
|
int bts( uint* p, uint bitnum );
|
|
|
|
|
|
/**
|
|
* Swaps bytes in a 4 byte uint end-to-end, i.e. byte 0 becomes
|
|
* byte 3, byte 1 becomes byte 2, byte 2 becomes byte 1, byte 3
|
|
* becomes byte 0.
|
|
*/
|
|
uint bswap( uint v );
|
|
|
|
|
|
/**
|
|
* Reads I/O port at port_address.
|
|
*/
|
|
ubyte inp( uint port_address );
|
|
|
|
|
|
/**
|
|
* ditto
|
|
*/
|
|
ushort inpw( uint port_address );
|
|
|
|
|
|
/**
|
|
* ditto
|
|
*/
|
|
uint inpl( uint port_address );
|
|
|
|
|
|
/**
|
|
* Writes and returns value to I/O port at port_address.
|
|
*/
|
|
ubyte outp( uint port_address, ubyte value );
|
|
|
|
|
|
/**
|
|
* ditto
|
|
*/
|
|
ushort outpw( uint port_address, ushort value );
|
|
|
|
|
|
/**
|
|
* ditto
|
|
*/
|
|
uint outpl( uint port_address, uint value );
|
|
}
|
|
else
|
|
{
|
|
public import std.intrinsic;
|
|
}
|
|
|
|
|
|
/**
|
|
* Calculates the number of set bits in a 32-bit integer.
|
|
*/
|
|
int popcnt( uint x )
|
|
{
|
|
// Avoid branches, and the potential for cache misses which
|
|
// could be incurred with a table lookup.
|
|
|
|
// We need to mask alternate bits to prevent the
|
|
// sum from overflowing.
|
|
// add neighbouring bits. Each bit is 0 or 1.
|
|
x = x - ((x>>1) & 0x5555_5555);
|
|
// now each two bits of x is a number 00,01 or 10.
|
|
// now add neighbouring pairs
|
|
x = ((x&0xCCCC_CCCC)>>2) + (x&0x3333_3333);
|
|
// now each nibble holds 0000-0100. Adding them won't
|
|
// overflow any more, so we don't need to mask any more
|
|
|
|
// Now add the nibbles, then the bytes, then the words
|
|
// We still need to mask to prevent double-counting.
|
|
// Note that if we used a rotate instead of a shift, we
|
|
// wouldn't need the masks, and could just divide the sum
|
|
// by 8 to account for the double-counting.
|
|
// On some CPUs, it may be faster to perform a multiply.
|
|
|
|
x += (x>>4);
|
|
x &= 0x0F0F_0F0F;
|
|
x += (x>>8);
|
|
x &= 0x00FF_00FF;
|
|
x += (x>>16);
|
|
x &= 0xFFFF;
|
|
return x;
|
|
}
|
|
|
|
|
|
/**
|
|
* Reverses the order of bits in a 32-bit integer.
|
|
*/
|
|
uint bitswap( uint x )
|
|
{
|
|
|
|
version( D_InlineAsm_X86 )
|
|
{
|
|
asm
|
|
{
|
|
// Author: Tiago Gasiba.
|
|
mov EDX, EAX;
|
|
shr EAX, 1;
|
|
and EDX, 0x5555_5555;
|
|
and EAX, 0x5555_5555;
|
|
shl EDX, 1;
|
|
or EAX, EDX;
|
|
mov EDX, EAX;
|
|
shr EAX, 2;
|
|
and EDX, 0x3333_3333;
|
|
and EAX, 0x3333_3333;
|
|
shl EDX, 2;
|
|
or EAX, EDX;
|
|
mov EDX, EAX;
|
|
shr EAX, 4;
|
|
and EDX, 0x0f0f_0f0f;
|
|
and EAX, 0x0f0f_0f0f;
|
|
shl EDX, 4;
|
|
or EAX, EDX;
|
|
bswap EAX;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
// swap odd and even bits
|
|
x = ((x >> 1) & 0x5555_5555) | ((x & 0x5555_5555) << 1);
|
|
// swap consecutive pairs
|
|
x = ((x >> 2) & 0x3333_3333) | ((x & 0x3333_3333) << 2);
|
|
// swap nibbles
|
|
x = ((x >> 4) & 0x0F0F_0F0F) | ((x & 0x0F0F_0F0F) << 4);
|
|
// swap bytes
|
|
x = ((x >> 8) & 0x00FF_00FF) | ((x & 0x00FF_00FF) << 8);
|
|
// swap 2-byte long pairs
|
|
x = ( x >> 16 ) | ( x << 16);
|
|
return x;
|
|
|
|
}
|
|
}
|