Files
ldc/druntime/import/core/bitmanip.di
2009-06-02 17:43:06 +01:00

263 lines
6.3 KiB
D

/**
* This module contains a collection of bit-level operations.
*
* Copyright: Copyright (c) 2005-2008, The D Runtime Project
* License: BSD Style, see LICENSE
* Authors: Walter Bright, Don Clugston, Sean Kelly
*/
module core.bitmanip;
version( DDoc )
{
/**
* Scans the bits in v starting with bit 0, looking
* for the first set bit.
* Returns:
* The bit number of the first bit set.
* The return value is undefined if v is zero.
*/
int bsf( uint v );
/**
* Scans the bits in v from the most significant bit
* to the least significant bit, looking
* for the first set bit.
* Returns:
* The bit number of the first bit set.
* The return value is undefined if v is zero.
* Example:
* ---
* import bitmanip;
*
* int main()
* {
* uint v;
* int x;
*
* v = 0x21;
* x = bsf(v);
* printf("bsf(x%x) = %d\n", v, x);
* x = bsr(v);
* printf("bsr(x%x) = %d\n", v, x);
* return 0;
* }
* ---
* Output:
* bsf(x21) = 0<br>
* bsr(x21) = 5
*/
int bsr( uint v );
/**
* Tests the bit.
*/
int bt( uint* p, uint bitnum );
/**
* Tests and complements the bit.
*/
int btc( uint* p, uint bitnum );
/**
* Tests and resets (sets to 0) the bit.
*/
int btr( uint* p, uint bitnum );
/**
* Tests and sets the bit.
* Params:
* p = a non-NULL pointer to an array of uints.
* index = a bit number, starting with bit 0 of p[0],
* and progressing. It addresses bits like the expression:
---
p[index / (uint.sizeof*8)] & (1 << (index & ((uint.sizeof*8) - 1)))
---
* Returns:
* A non-zero value if the bit was set, and a zero
* if it was clear.
*
* Example:
* ---
import bitmanip;
int main()
{
uint array[2];
array[0] = 2;
array[1] = 0x100;
printf("btc(array, 35) = %d\n", <b>btc</b>(array, 35));
printf("array = [0]:x%x, [1]:x%x\n", array[0], array[1]);
printf("btc(array, 35) = %d\n", <b>btc</b>(array, 35));
printf("array = [0]:x%x, [1]:x%x\n", array[0], array[1]);
printf("bts(array, 35) = %d\n", <b>bts</b>(array, 35));
printf("array = [0]:x%x, [1]:x%x\n", array[0], array[1]);
printf("btr(array, 35) = %d\n", <b>btr</b>(array, 35));
printf("array = [0]:x%x, [1]:x%x\n", array[0], array[1]);
printf("bt(array, 1) = %d\n", <b>bt</b>(array, 1));
printf("array = [0]:x%x, [1]:x%x\n", array[0], array[1]);
return 0;
}
* ---
* Output:
<pre>
btc(array, 35) = 0
array = [0]:x2, [1]:x108
btc(array, 35) = -1
array = [0]:x2, [1]:x100
bts(array, 35) = 0
array = [0]:x2, [1]:x108
btr(array, 35) = -1
array = [0]:x2, [1]:x100
bt(array, 1) = -1
array = [0]:x2, [1]:x100
</pre>
*/
int bts( uint* p, uint bitnum );
/**
* Swaps bytes in a 4 byte uint end-to-end, i.e. byte 0 becomes
* byte 3, byte 1 becomes byte 2, byte 2 becomes byte 1, byte 3
* becomes byte 0.
*/
uint bswap( uint v );
/**
* Reads I/O port at port_address.
*/
ubyte inp( uint port_address );
/**
* ditto
*/
ushort inpw( uint port_address );
/**
* ditto
*/
uint inpl( uint port_address );
/**
* Writes and returns value to I/O port at port_address.
*/
ubyte outp( uint port_address, ubyte value );
/**
* ditto
*/
ushort outpw( uint port_address, ushort value );
/**
* ditto
*/
uint outpl( uint port_address, uint value );
}
else
{
public import std.intrinsic;
}
/**
* Calculates the number of set bits in a 32-bit integer.
*/
int popcnt( uint x )
{
// Avoid branches, and the potential for cache misses which
// could be incurred with a table lookup.
// We need to mask alternate bits to prevent the
// sum from overflowing.
// add neighbouring bits. Each bit is 0 or 1.
x = x - ((x>>1) & 0x5555_5555);
// now each two bits of x is a number 00,01 or 10.
// now add neighbouring pairs
x = ((x&0xCCCC_CCCC)>>2) + (x&0x3333_3333);
// now each nibble holds 0000-0100. Adding them won't
// overflow any more, so we don't need to mask any more
// Now add the nibbles, then the bytes, then the words
// We still need to mask to prevent double-counting.
// Note that if we used a rotate instead of a shift, we
// wouldn't need the masks, and could just divide the sum
// by 8 to account for the double-counting.
// On some CPUs, it may be faster to perform a multiply.
x += (x>>4);
x &= 0x0F0F_0F0F;
x += (x>>8);
x &= 0x00FF_00FF;
x += (x>>16);
x &= 0xFFFF;
return x;
}
/**
* Reverses the order of bits in a 32-bit integer.
*/
uint bitswap( uint x )
{
version( D_InlineAsm_X86 )
{
asm
{
// Author: Tiago Gasiba.
mov EDX, EAX;
shr EAX, 1;
and EDX, 0x5555_5555;
and EAX, 0x5555_5555;
shl EDX, 1;
or EAX, EDX;
mov EDX, EAX;
shr EAX, 2;
and EDX, 0x3333_3333;
and EAX, 0x3333_3333;
shl EDX, 2;
or EAX, EDX;
mov EDX, EAX;
shr EAX, 4;
and EDX, 0x0f0f_0f0f;
and EAX, 0x0f0f_0f0f;
shl EDX, 4;
or EAX, EDX;
bswap EAX;
}
}
else
{
// swap odd and even bits
x = ((x >> 1) & 0x5555_5555) | ((x & 0x5555_5555) << 1);
// swap consecutive pairs
x = ((x >> 2) & 0x3333_3333) | ((x & 0x3333_3333) << 2);
// swap nibbles
x = ((x >> 4) & 0x0F0F_0F0F) | ((x & 0x0F0F_0F0F) << 4);
// swap bytes
x = ((x >> 8) & 0x00FF_00FF) | ((x & 0x00FF_00FF) << 8);
// swap 2-byte long pairs
x = ( x >> 16 ) | ( x << 16);
return x;
}
}