/* * precision.d * * This file implements a multiprecision divide function for non 64-bit * systems. This original license for the file used as reference is below. * The file originally was located: * http://fxr.watson.org/fxr/source/libkern/qdivrem.c * It has been updated for the D programming language and for usage * within the XOmB kernel and XOmB Bare Bones packages. * * Author: Dave Wilkinson, The Regents of the University of California. * */ module kernel.runtime.precision; /*- * Copyright (c) 1992, 1993 * The Regents of the University of California. All rights reserved. * * This software was developed by the Computer Systems Engineering group * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and * contributed to Berkeley. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the University of * California, Berkeley and its contributors. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * $FreeBSD: src/sys/libkern/qdivrem.c,v 1.8 1999/08/28 00:46:35 peter Exp $ * $DragonFly: src/sys/libkern/qdivrem.c,v 1.4 2004/01/26 11:09:44 joerg Exp $ */ /* * Multiprecision divide. This algorithm is from Knuth vol. 2 (2nd ed), * section 4.3.1, pp. 257--259. */ //------------- /*#include #include #include #include */ /* * Depending on the desired operation, we view a 64 bit integer (a long) * in these particular ways. */ union uu { long l; ulong ul; int si[2]; uint ui[2]; } // These are architecture specific, and should be defined in the // architecture import as a definition sheet. const size_t LONG_HIGHWORD = 1; const size_t LONG_LOWWORD = 0; const size_t BYTE_BITS = 8; /* * Define high and low longwords. (endian-ness) */ alias LONG_HIGHWORD H; alias LONG_LOWWORD L; /* * Total number of bits in a quad_t and in the pieces that make it up. * These are used for shifting, and also below for halfword extraction * and assembly. */ const uint QUAD_BITS = (8 * BYTE_BITS); const uint LONG_BITS = (4 * BYTE_BITS); const uint HALF_BITS = (4 * BYTE_BITS / 2); /* * Extract high and low shortwords from longword, and move low shortword of * longword to upper half of long, i.e., produce the upper longword of * ((quad_t)(x) << (number_of_bits_in_long/2)). (`x' must actually be u_long.) * * These are used in the multiply code, to split a longword into upper * and lower halves, and to reassemble a product as a quad_t, shifted left * (sizeof(long)*CHAR_BIT/2). */ uint HHALF(uint x) { return x >> HALF_BITS; } int LHALF(uint x) { return x & ((1 << HALF_BITS) - 1); } uint LHUP(uint x) { return x << HALF_BITS; } typedef uint qshift_t; /* quad_t __ashldi3(quad_t, qshift_t); quad_t __ashrdi3(quad_t, qshift_t); int __cmpdi2(quad_t a, quad_t b); quad_t __divdi3(quad_t a, quad_t b); quad_t __lshrdi3(quad_t, qshift_t); quad_t __moddi3(quad_t a, quad_t b); u_quad_t __qdivrem(u_quad_t u, u_quad_t v, u_quad_t *rem); u_quad_t __udivdi3(u_quad_t a, u_quad_t b); u_quad_t __umoddi3(u_quad_t a, u_quad_t b); int __ucmpdi2(u_quad_t a, u_quad_t b); */ // ------------------ // digit base const uint B = (1 << HALF_BITS); /* Combine two `digits' to make a single two-digit number. */ uint COMBINE(uint a, uint b) { return (a << HALF_BITS) | b; } alias uint digit; /* * Shift p[0]..p[len] left `sh' bits, ignoring any bits that * `fall out' the left (there never will be any such anyway). * We may assume len >= 0. NOTE THAT THIS WRITES len+1 DIGITS. */ void shl(digit* p, int len, int sh) { int i; for (i = 0; i < len; i++) { p[i] = LHALF(p[i] << sh) | (p[i + 1] >> (HALF_BITS - sh)); } p[i] = LHALF(p[i] << sh); } /* * qdivrem(u, v, rem) returns u/v and, optionally, sets *rem to u%v. * * We do this in base 2-sup-HALF_BITS, so that all intermediate products * fit within u_long. As a consequence, the maximum length dividend and * divisor are 4 `digits' in this base (they are shorter if they have * leading zeros). */ ulong qdivrem(ulong uq, ulong vq, ulong* arq) { uu tmp; digit* u; digit* v; digit* q; digit v1, v2; uint qhat, rhat, t; int m, n, d, j, i; digit[5] uspace; digit[5] vspace; digit[5] qspace; /* * Take care of special cases: divide by zero, and u < v. */ if (vq == 0) { /* divide by zero. */ volatile uint zero; tmp.ui[H] = tmp.ui[L] = 1 / zero; if (arq) { *arq = uq; } return (tmp.l); } if (uq < vq) { if (arq) { *arq = uq; } return (0); } u = &uspace[0]; v = &vspace[0]; q = &qspace[0]; /* * Break dividend and divisor into digits in base B, then * count leading zeros to determine m and n. When done, we * will have: * u = (u[1]u[2]...u[m+n]) sub B * v = (v[1]v[2]...v[n]) sub B * v[1] != 0 * 1 < n <= 4 (if n = 1, we use a different division algorithm) * m >= 0 (otherwise u < v, which we already checked) * m + n = 4 * and thus * m = 4 - n <= 2 */ tmp.ul = uq; u[0] = 0; u[1] = HHALF(tmp.ui[H]); u[2] = LHALF(tmp.ui[H]); u[3] = HHALF(tmp.ui[L]); u[4] = LHALF(tmp.ui[L]); tmp.ul = vq; v[1] = HHALF(tmp.ui[H]); v[2] = LHALF(tmp.ui[H]); v[3] = HHALF(tmp.ui[L]); v[4] = LHALF(tmp.ui[L]); for (n = 4; v[1] == 0; v++) { if (--n == 1) { uint rbj; /* r*B+u[j] (not root boy jim) */ digit q1, q2, q3, q4; /* * Change of plan, per exercise 16. * r = 0; * for j = 1..4: * q[j] = floor((r*B + u[j]) / v), * r = (r*B + u[j]) % v; * We unroll this completely here. */ t = v[2]; /* nonzero, by definition */ q1 = u[1] / t; rbj = COMBINE(u[1] % t, u[2]); q2 = rbj / t; rbj = COMBINE(rbj % t, u[3]); q3 = rbj / t; rbj = COMBINE(rbj % t, u[4]); q4 = rbj / t; if (arq) *arq = rbj % t; tmp.ui[H] = COMBINE(q1, q2); tmp.ui[L] = COMBINE(q3, q4); return (tmp.l); } } /* * By adjusting q once we determine m, we can guarantee that * there is a complete four-digit quotient at &qspace[1] when * we finally stop. */ for (m = 4 - n; u[1] == 0; u++) { m--; } for (i = 4 - m; --i >= 0;) { q[i] = 0; } q += 4 - m; /* * Here we run Program D, translated from MIX to C and acquiring * a few minor changes. * * D1: choose multiplier 1 << d to ensure v[1] >= B/2. */ d = 0; for (t = v[1]; t < B / 2; t <<= 1) { d++; } if (d > 0) { shl(&u[0], m + n, d); /* u <<= d */ shl(&v[1], n - 1, d); /* v <<= d */ } /* * D2: j = 0. */ j = 0; v1 = v[1]; /* for D3 -- note that v[1..n] are constant */ v2 = v[2]; /* for D3 */ do { digit uj0, uj1, uj2; /* * D3: Calculate qhat (\^q, in TeX notation). * Let qhat = min((u[j]*B + u[j+1])/v[1], B-1), and * let rhat = (u[j]*B + u[j+1]) mod v[1]. * While rhat < B and v[2]*qhat > rhat*B+u[j+2], * decrement qhat and increase rhat correspondingly. * Note that if rhat >= B, v[2]*qhat < rhat*B. */ uj0 = u[j + 0]; /* for D3 only -- note that u[j+...] change */ uj1 = u[j + 1]; /* for D3 only */ uj2 = u[j + 2]; /* for D3 only */ if (uj0 == v1) { qhat = B; rhat = uj1; goto qhat_too_big; } else { uint nn = COMBINE(uj0, uj1); qhat = nn / v1; rhat = nn % v1; } while (v2 * qhat > COMBINE(rhat, uj2)) { qhat_too_big: qhat--; if ((rhat += v1) >= B) { break; } } /* * D4: Multiply and subtract. * The variable `t' holds any borrows across the loop. * We split this up so that we do not require v[0] = 0, * and to eliminate a final special case. */ for (t = 0, i = n; i > 0; i--) { t = u[i + j] - v[i] * qhat - t; u[i + j] = LHALF(t); t = (B - HHALF(t)) & (B - 1); } t = u[j] - t; u[j] = LHALF(t); /* * D5: test remainder. * There is a borrow if and only if HHALF(t) is nonzero; * in that (rare) case, qhat was too large (by exactly 1). * Fix it by adding v[1..n] to u[j..j+n]. */ if (HHALF(t)) { qhat--; for (t = 0, i = n; i > 0; i--) { /* D6: add back. */ t += u[i + j] + v[i]; u[i + j] = LHALF(t); t = HHALF(t); } u[j] = LHALF(u[j] + t); } q[j] = qhat; } while (++j <= m); /* D7: loop on j. */ /* * If caller wants the remainder, we have to calculate it as * u[m..m+n] >> d (this is at most n digits and thus fits in * u[m+1..m+n], but we may need more source digits). */ if (arq) { if (d) { for (i = m + n; i > m; --i) { u[i] = (u[i] >> d) | LHALF(u[i - 1] << (HALF_BITS - d)); } u[i] = 0; } tmp.ui[H] = COMBINE(uspace[1], uspace[2]); tmp.ui[L] = COMBINE(uspace[3], uspace[4]); *arq = tmp.l; } tmp.ui[H] = COMBINE(qspace[1], qspace[2]); tmp.ui[L] = COMBINE(qspace[3], qspace[4]); return (tmp.l); } // Return 0, 1, or 2 as a <, =, > b respectively. // Neither a nor b are considered signed. int ucmpdi2(ulong a, ulong b) { uu aa, bb; aa.ul = a; bb.ul = b; return (aa.ui[H] < bb.ui[H] ? 0 : aa.ui[H] > bb.ui[H] ? 2 : aa.ui[L] < bb.ui[L] ? 0 : aa.ui[L] > bb.ui[L] ? 2 : 1); } extern(C) int __ucmpdi2(ulong a, ulong b) { return ucmpdi2(a,b); } // Divide two unsigned longs ulong udivdi3(ulong a, ulong b) { return qdivrem(a, b, null); } extern(C) ulong __udivdi3(ulong a, ulong b) { return udivdi3(a,b); } // Modulus two unsigned longs ulong umoddi3(ulong a, ulong b) { ulong r; qdivrem(a, b, &r); return r; } extern(C) ulong __umoddi3(ulong a, ulong b) { return umoddi3(a,b); } // Logical shift right of an unsigned long long lshrdi3(long a, qshift_t shift) { uu aa; aa.l = a; if (shift >= LONG_BITS) { aa.ui[L] = shift >= QUAD_BITS ? 0 : aa.ui[H] >> (shift - LONG_BITS); aa.ui[H] = 0; } else if (shift > 0) { aa.ui[L] = (aa.ui[L] >> shift) | (aa.ui[H] << (LONG_BITS - shift)); aa.ui[H] >>= shift; } return aa.l; } extern(C) long __lshrdi3(long a, qshift_t shift) { return lshrdi3(a, shift); } // Arithmetic Shift Left of a signed long // A.K.A. Logical Shift Left long ashldi3(long a, qshift_t shift) { uu aa; aa.l = a; if (shift >= LONG_BITS) { aa.ui[H] = shift >= QUAD_BITS ? 0 : aa.ui[L] << (shift - LONG_BITS); aa.ui[L] = 0; } else if (shift > 0) { aa.ui[H] = (aa.ui[H] << shift) | (aa.ui[L] >> (LONG_BITS - shift)); aa.ui[L] <<= shift; } return aa.l; } extern(C) long __ashldi3(long a, qshift_t shift) { return ashldi3(a, shift); } // Arithmetic Shift Right of a signed long long ashrdi3(long a, qshift_t shift) { uu aa; aa.l = a; if (shift >= LONG_BITS) { int s; /* Smear bits rightward using the machine's right-shift method, whether that is sign extension or zero fill, to get the 'sign word' s. Note that shifting by LONG_BITS is undefined, so we shift (LONG_BITS-1), then 1 more, to get our answer */ s = (aa.si[H] >> (LONG_BITS - 1)) >> 1; aa.ui[L] = shift >= QUAD_BITS ? s : aa.si[H] >> (shift - LONG_BITS); aa.ui[H] = s; } else if (shift > 0) { aa.ui[L] = (aa.ui[L] >> shift) | (aa.ui[H] << (LONG_BITS - shift)); aa.si[H] >>= shift; } return aa.l; } extern(C) long __ashrdi3(long a, qshift_t shift) { return ashrdi3(a,shift); } // Return 0, 1, or 2 as a <, =, > b respectively. // Both a and b are considered signed -- which means only // the high word is signed. int cmpdi2(long a, long b) { uu aa, bb; aa.l = a; bb.l = b; return (aa.si[H] < bb.si[H] ? 0 : aa.si[H] > bb.si[H] ? 2 : aa.ui[L] < bb.ui[L] ? 0 : aa.ui[L] > bb.ui[L] ? 2 : 1); } extern(C) int __cmpdi2(long a, long b) { return cmpdi2(a,b); } // Divide two signed longs long divdi3(long a, long b) { ulong ua, ub, ul; int neg; if (a < 0) { ua = -cast(ulong)a; neg = 1; } else { ua = a; neg = 0; } if (b < 0) { ub = -cast(ulong)b; neg ^= 1; } else { ub = b; } ul = qdivrem(ua, ub, null); return (neg ? -ul : ul); } extern(C) long __divdi3(long a, long b) { return divdi3(a,b); } // Modulus two signed longs long moddi3(long a, long b) { ulong ua, ub, ur; int neg; if (a < 0) { ua = -cast(ulong)a; neg = 1; } else { ua = a; neg = 0; } if (b < 0) { ub = -cast(ulong)b; } else { ub = b; } qdivrem(ua, ub, &ur); return (neg ? -ur : ur); } extern(C) long __moddi3(long a, long b) { return moddi3(a,b); }