Files
netbsd/sys/external/bsd/drm2/linux/linux_work.c
2015-10-15 10:25:28 +02:00

858 lines
19 KiB
C
Raw Permalink Blame History

This file contains invisible Unicode characters
This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.
/* $NetBSD: linux_work.c,v 1.10 2015/01/01 01:15:43 mrg Exp $ */
/*-
* Copyright (c) 2013 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Taylor R. Campbell.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: linux_work.c,v 1.10 2015/01/01 01:15:43 mrg Exp $");
#include <sys/types.h>
#include <sys/param.h>
#include <sys/atomic.h>
#include <sys/callout.h>
#include <sys/condvar.h>
#include <sys/errno.h>
#include <sys/intr.h>
#include <sys/kmem.h>
#include <sys/mutex.h>
#include <sys/queue.h>
#include <sys/systm.h>
#include <sys/workqueue.h>
#include <machine/lock.h>
#include <linux/workqueue.h>
/* XXX Kludge until we sync with HEAD. */
#if DIAGNOSTIC
#define __diagused
#else
#define __diagused __unused
#endif
struct workqueue_struct {
struct workqueue *wq_workqueue;
/* XXX The following should all be per-CPU. */
kmutex_t wq_lock;
/*
* Condvar for when any state related to this workqueue
* changes. XXX Could split this into multiple condvars for
* different purposes, but whatever...
*/
kcondvar_t wq_cv;
TAILQ_HEAD(, delayed_work) wq_delayed;
struct work_struct *wq_current_work;
};
static void linux_work_lock_init(struct work_struct *);
static void linux_work_lock(struct work_struct *);
static void linux_work_unlock(struct work_struct *);
static bool linux_work_locked(struct work_struct *) __diagused;
static void linux_wq_barrier(struct work_struct *);
static void linux_wait_for_cancelled_work(struct work_struct *);
static void linux_wait_for_invoked_work(struct work_struct *);
static void linux_worker(struct work *, void *);
static void linux_cancel_delayed_work_callout(struct delayed_work *, bool);
static void linux_wait_for_delayed_cancelled_work(struct delayed_work *);
static void linux_worker_intr(void *);
struct workqueue_struct *system_wq;
int
linux_workqueue_init(void)
{
system_wq = alloc_ordered_workqueue("lnxsyswq", 0);
if (system_wq == NULL)
return ENOMEM;
return 0;
}
void
linux_workqueue_fini(void)
{
destroy_workqueue(system_wq);
system_wq = NULL;
}
/*
* Workqueues
*/
struct workqueue_struct *
alloc_ordered_workqueue(const char *name, int linux_flags)
{
struct workqueue_struct *wq;
int flags = WQ_MPSAFE;
int error;
KASSERT(linux_flags == 0);
wq = kmem_alloc(sizeof(*wq), KM_SLEEP);
error = workqueue_create(&wq->wq_workqueue, name, &linux_worker,
wq, PRI_NONE, IPL_VM, flags);
if (error) {
kmem_free(wq, sizeof(*wq));
return NULL;
}
mutex_init(&wq->wq_lock, MUTEX_DEFAULT, IPL_VM);
cv_init(&wq->wq_cv, name);
TAILQ_INIT(&wq->wq_delayed);
wq->wq_current_work = NULL;
return wq;
}
void
destroy_workqueue(struct workqueue_struct *wq)
{
/*
* Cancel all delayed work.
*/
for (;;) {
struct delayed_work *dw;
mutex_enter(&wq->wq_lock);
if (TAILQ_EMPTY(&wq->wq_delayed)) {
dw = NULL;
} else {
dw = TAILQ_FIRST(&wq->wq_delayed);
TAILQ_REMOVE(&wq->wq_delayed, dw, dw_entry);
}
mutex_exit(&wq->wq_lock);
if (dw == NULL)
break;
cancel_delayed_work_sync(dw);
}
/*
* workqueue_destroy empties the queue; we need not wait for
* completion explicitly. However, we can't destroy the
* condvar or mutex until this is done.
*/
workqueue_destroy(wq->wq_workqueue);
KASSERT(wq->wq_current_work == NULL);
wq->wq_workqueue = NULL;
cv_destroy(&wq->wq_cv);
mutex_destroy(&wq->wq_lock);
kmem_free(wq, sizeof(*wq));
}
/*
* Flush
*
* Note: This doesn't cancel or wait for delayed work. This seems to
* match what Linux does (or, doesn't do).
*/
void
flush_scheduled_work(void)
{
flush_workqueue(system_wq);
}
struct wq_flush_work {
struct work_struct wqfw_work;
struct wq_flush *wqfw_flush;
};
struct wq_flush {
kmutex_t wqf_lock;
kcondvar_t wqf_cv;
unsigned int wqf_n;
};
void
flush_work(struct work_struct *work)
{
struct workqueue_struct *const wq = work->w_wq;
if (wq != NULL)
flush_workqueue(wq);
}
void
flush_workqueue(struct workqueue_struct *wq)
{
static const struct wq_flush zero_wqf;
struct wq_flush wqf = zero_wqf;
mutex_init(&wqf.wqf_lock, MUTEX_DEFAULT, IPL_NONE);
cv_init(&wqf.wqf_cv, "lnxwflsh");
if (1) {
struct wq_flush_work *const wqfw = kmem_zalloc(sizeof(*wqfw),
KM_SLEEP);
wqf.wqf_n = 1;
wqfw->wqfw_flush = &wqf;
INIT_WORK(&wqfw->wqfw_work, &linux_wq_barrier);
wqfw->wqfw_work.w_wq = wq;
wqfw->wqfw_work.w_state = WORK_PENDING;
workqueue_enqueue(wq->wq_workqueue, &wqfw->wqfw_work.w_wk,
NULL);
} else {
struct cpu_info *ci;
CPU_INFO_ITERATOR cii;
struct wq_flush_work *wqfw;
panic("per-CPU Linux workqueues don't work yet!");
wqf.wqf_n = 0;
for (CPU_INFO_FOREACH(cii, ci)) {
wqfw = kmem_zalloc(sizeof(*wqfw), KM_SLEEP);
mutex_enter(&wqf.wqf_lock);
wqf.wqf_n++;
mutex_exit(&wqf.wqf_lock);
wqfw->wqfw_flush = &wqf;
INIT_WORK(&wqfw->wqfw_work, &linux_wq_barrier);
wqfw->wqfw_work.w_state = WORK_PENDING;
wqfw->wqfw_work.w_wq = wq;
workqueue_enqueue(wq->wq_workqueue,
&wqfw->wqfw_work.w_wk, ci);
}
}
mutex_enter(&wqf.wqf_lock);
while (0 < wqf.wqf_n)
cv_wait(&wqf.wqf_cv, &wqf.wqf_lock);
mutex_exit(&wqf.wqf_lock);
cv_destroy(&wqf.wqf_cv);
mutex_destroy(&wqf.wqf_lock);
}
static void
linux_wq_barrier(struct work_struct *work)
{
struct wq_flush_work *const wqfw = container_of(work,
struct wq_flush_work, wqfw_work);
struct wq_flush *const wqf = wqfw->wqfw_flush;
mutex_enter(&wqf->wqf_lock);
if (--wqf->wqf_n == 0)
cv_broadcast(&wqf->wqf_cv);
mutex_exit(&wqf->wqf_lock);
kmem_free(wqfw, sizeof(*wqfw));
}
/*
* Work locking
*
* We use __cpu_simple_lock(9) rather than mutex(9) because Linux code
* does not destroy work, so there is nowhere to call mutex_destroy.
*
* XXX This is getting out of hand... Really, work items shouldn't
* have locks in them at all; instead the workqueues should.
*/
static void
linux_work_lock_init(struct work_struct *work)
{
__cpu_simple_lock_init(&work->w_lock);
}
static void
linux_work_lock(struct work_struct *work)
{
struct cpu_info *ci;
int cnt, s;
/* XXX Copypasta of MUTEX_SPIN_SPLRAISE. */
s = splvm();
ci = curcpu();
cnt = ci->ci_mtx_count--;
__insn_barrier();
if (cnt == 0)
ci->ci_mtx_oldspl = s;
__cpu_simple_lock(&work->w_lock);
}
static void
linux_work_unlock(struct work_struct *work)
{
struct cpu_info *ci;
int s;
__cpu_simple_unlock(&work->w_lock);
/* XXX Copypasta of MUTEX_SPIN_SPLRESTORE. */
ci = curcpu();
s = ci->ci_mtx_oldspl;
__insn_barrier();
if (++ci->ci_mtx_count == 0)
splx(s);
}
static bool __diagused
linux_work_locked(struct work_struct *work)
{
return __SIMPLELOCK_LOCKED_P(&work->w_lock);
}
/*
* Work
*/
void
INIT_WORK(struct work_struct *work, void (*fn)(struct work_struct *))
{
linux_work_lock_init(work);
work->w_state = WORK_IDLE;
work->w_wq = NULL;
work->w_fn = fn;
}
bool
schedule_work(struct work_struct *work)
{
return queue_work(system_wq, work);
}
bool
queue_work(struct workqueue_struct *wq, struct work_struct *work)
{
/* True if we put it on the queue, false if it was already there. */
bool newly_queued;
KASSERT(wq != NULL);
linux_work_lock(work);
switch (work->w_state) {
case WORK_IDLE:
case WORK_INVOKED:
work->w_state = WORK_PENDING;
work->w_wq = wq;
workqueue_enqueue(wq->wq_workqueue, &work->w_wk, NULL);
newly_queued = true;
break;
case WORK_DELAYED:
panic("queue_work(delayed work %p)", work);
break;
case WORK_PENDING:
KASSERT(work->w_wq == wq);
newly_queued = false;
break;
case WORK_CANCELLED:
newly_queued = false;
break;
case WORK_DELAYED_CANCELLED:
panic("queue_work(delayed work %p)", work);
break;
default:
panic("work %p in bad state: %d", work, (int)work->w_state);
break;
}
linux_work_unlock(work);
return newly_queued;
}
bool
cancel_work_sync(struct work_struct *work)
{
bool cancelled_p = false;
linux_work_lock(work);
switch (work->w_state) {
case WORK_IDLE: /* Nothing to do. */
break;
case WORK_DELAYED:
panic("cancel_work_sync(delayed work %p)", work);
break;
case WORK_PENDING:
work->w_state = WORK_CANCELLED;
linux_wait_for_cancelled_work(work);
cancelled_p = true;
break;
case WORK_INVOKED:
linux_wait_for_invoked_work(work);
break;
case WORK_CANCELLED: /* Already done. */
break;
case WORK_DELAYED_CANCELLED:
panic("cancel_work_sync(delayed work %p)", work);
break;
default:
panic("work %p in bad state: %d", work, (int)work->w_state);
break;
}
linux_work_unlock(work);
return cancelled_p;
}
static void
linux_wait_for_cancelled_work(struct work_struct *work)
{
struct workqueue_struct *wq;
KASSERT(linux_work_locked(work));
KASSERT(work->w_state == WORK_CANCELLED);
wq = work->w_wq;
do {
mutex_enter(&wq->wq_lock);
linux_work_unlock(work);
cv_wait(&wq->wq_cv, &wq->wq_lock);
mutex_exit(&wq->wq_lock);
linux_work_lock(work);
} while ((work->w_state == WORK_CANCELLED) && (work->w_wq == wq));
}
static void
linux_wait_for_invoked_work(struct work_struct *work)
{
struct workqueue_struct *wq;
KASSERT(linux_work_locked(work));
KASSERT(work->w_state == WORK_INVOKED);
wq = work->w_wq;
mutex_enter(&wq->wq_lock);
linux_work_unlock(work);
while (wq->wq_current_work == work)
cv_wait(&wq->wq_cv, &wq->wq_lock);
mutex_exit(&wq->wq_lock);
linux_work_lock(work); /* XXX needless relock */
}
static void
linux_worker(struct work *wk, void *arg)
{
struct work_struct *const work = container_of(wk, struct work_struct,
w_wk);
struct workqueue_struct *const wq = arg;
linux_work_lock(work);
switch (work->w_state) {
case WORK_IDLE:
panic("idle work %p got queued: %p", work, wq);
break;
case WORK_DELAYED:
panic("delayed work %p got queued: %p", work, wq);
break;
case WORK_PENDING:
KASSERT(work->w_wq == wq);
/* Get ready to invoke this one. */
mutex_enter(&wq->wq_lock);
work->w_state = WORK_INVOKED;
KASSERT(wq->wq_current_work == NULL);
wq->wq_current_work = work;
mutex_exit(&wq->wq_lock);
/* Unlock it and do it. Can't use work after this. */
linux_work_unlock(work);
(*work->w_fn)(work);
/* All done. Notify anyone waiting for completion. */
mutex_enter(&wq->wq_lock);
KASSERT(wq->wq_current_work == work);
wq->wq_current_work = NULL;
cv_broadcast(&wq->wq_cv);
mutex_exit(&wq->wq_lock);
return;
case WORK_INVOKED:
panic("invoked work %p got requeued: %p", work, wq);
break;
case WORK_CANCELLED:
KASSERT(work->w_wq == wq);
/* Return to idle; notify anyone waiting for cancellation. */
mutex_enter(&wq->wq_lock);
work->w_state = WORK_IDLE;
work->w_wq = NULL;
cv_broadcast(&wq->wq_cv);
mutex_exit(&wq->wq_lock);
break;
case WORK_DELAYED_CANCELLED:
panic("cancelled delayed work %p got uqeued: %p", work, wq);
break;
default:
panic("work %p in bad state: %d", work, (int)work->w_state);
break;
}
linux_work_unlock(work);
}
/*
* Delayed work
*/
void
INIT_DELAYED_WORK(struct delayed_work *dw, void (*fn)(struct work_struct *))
{
INIT_WORK(&dw->work, fn);
}
bool
schedule_delayed_work(struct delayed_work *dw, unsigned long ticks)
{
return queue_delayed_work(system_wq, dw, ticks);
}
bool
queue_delayed_work(struct workqueue_struct *wq, struct delayed_work *dw,
unsigned long ticks)
{
bool newly_queued;
KASSERT(wq != NULL);
linux_work_lock(&dw->work);
switch (dw->work.w_state) {
case WORK_IDLE:
case WORK_INVOKED:
if (ticks == 0) {
/* Skip the delay and queue it now. */
dw->work.w_state = WORK_PENDING;
dw->work.w_wq = wq;
workqueue_enqueue(wq->wq_workqueue, &dw->work.w_wk,
NULL);
} else {
callout_init(&dw->dw_callout, CALLOUT_MPSAFE);
callout_reset(&dw->dw_callout, ticks,
&linux_worker_intr, dw);
dw->work.w_state = WORK_DELAYED;
dw->work.w_wq = wq;
mutex_enter(&wq->wq_lock);
TAILQ_INSERT_HEAD(&wq->wq_delayed, dw, dw_entry);
mutex_exit(&wq->wq_lock);
}
newly_queued = true;
break;
case WORK_DELAYED:
/*
* Timer is already ticking. Leave it to time out
* whenever it was going to time out, as Linux does --
* neither speed it up nor postpone it.
*/
newly_queued = false;
break;
case WORK_PENDING:
KASSERT(dw->work.w_wq == wq);
newly_queued = false;
break;
case WORK_CANCELLED:
case WORK_DELAYED_CANCELLED:
/* XXX Wait for cancellation and then queue? */
newly_queued = false;
break;
default:
panic("delayed work %p in bad state: %d", dw,
(int)dw->work.w_state);
break;
}
linux_work_unlock(&dw->work);
return newly_queued;
}
bool
mod_delayed_work(struct workqueue_struct *wq, struct delayed_work *dw,
unsigned long ticks)
{
bool timer_modified;
KASSERT(wq != NULL);
linux_work_lock(&dw->work);
switch (dw->work.w_state) {
case WORK_IDLE:
case WORK_INVOKED:
if (ticks == 0) {
/* Skip the delay and queue it now. */
dw->work.w_state = WORK_PENDING;
dw->work.w_wq = wq;
workqueue_enqueue(wq->wq_workqueue, &dw->work.w_wk,
NULL);
} else {
callout_init(&dw->dw_callout, CALLOUT_MPSAFE);
callout_reset(&dw->dw_callout, ticks,
&linux_worker_intr, dw);
dw->work.w_state = WORK_DELAYED;
dw->work.w_wq = wq;
mutex_enter(&wq->wq_lock);
TAILQ_INSERT_HEAD(&wq->wq_delayed, dw, dw_entry);
mutex_exit(&wq->wq_lock);
}
timer_modified = false;
break;
case WORK_DELAYED:
/*
* Timer is already ticking. Reschedule it.
*/
callout_schedule(&dw->dw_callout, ticks);
timer_modified = true;
break;
case WORK_PENDING:
KASSERT(dw->work.w_wq == wq);
timer_modified = false;
break;
case WORK_CANCELLED:
case WORK_DELAYED_CANCELLED:
/* XXX Wait for cancellation and then queue? */
timer_modified = false;
break;
default:
panic("delayed work %p in bad state: %d", dw,
(int)dw->work.w_state);
break;
}
linux_work_unlock(&dw->work);
return timer_modified;
}
bool
cancel_delayed_work(struct delayed_work *dw)
{
bool cancelled_p = false;
linux_work_lock(&dw->work);
switch (dw->work.w_state) {
case WORK_IDLE: /* Nothing to do. */
break;
case WORK_DELAYED:
dw->work.w_state = WORK_DELAYED_CANCELLED;
linux_cancel_delayed_work_callout(dw, false);
cancelled_p = true;
break;
case WORK_PENDING:
dw->work.w_state = WORK_CANCELLED;
cancelled_p = true;
break;
case WORK_INVOKED: /* Don't wait! */
break;
case WORK_CANCELLED: /* Already done. */
case WORK_DELAYED_CANCELLED:
break;
default:
panic("delayed work %p in bad state: %d", dw,
(int)dw->work.w_state);
break;
}
linux_work_unlock(&dw->work);
return cancelled_p;
}
bool
cancel_delayed_work_sync(struct delayed_work *dw)
{
bool cancelled_p = false;
linux_work_lock(&dw->work);
switch (dw->work.w_state) {
case WORK_IDLE: /* Nothing to do. */
break;
case WORK_DELAYED:
dw->work.w_state = WORK_DELAYED_CANCELLED;
linux_cancel_delayed_work_callout(dw, true);
cancelled_p = true;
break;
case WORK_PENDING:
dw->work.w_state = WORK_CANCELLED;
linux_wait_for_cancelled_work(&dw->work);
cancelled_p = true;
break;
case WORK_INVOKED:
linux_wait_for_invoked_work(&dw->work);
break;
case WORK_CANCELLED: /* Already done. */
break;
case WORK_DELAYED_CANCELLED:
linux_wait_for_delayed_cancelled_work(dw);
break;
default:
panic("delayed work %p in bad state: %d", dw,
(int)dw->work.w_state);
break;
}
linux_work_unlock(&dw->work);
return cancelled_p;
}
static void
linux_cancel_delayed_work_callout(struct delayed_work *dw, bool wait)
{
bool fired_p;
KASSERT(linux_work_locked(&dw->work));
KASSERT(dw->work.w_state == WORK_DELAYED_CANCELLED);
if (wait) {
/*
* We unlock, halt, and then relock, rather than
* passing an interlock to callout_halt, for two
* reasons:
*
* (1) The work lock is not a mutex(9), so we can't use it.
* (2) The WORK_DELAYED_CANCELLED state serves as an interlock.
*/
linux_work_unlock(&dw->work);
fired_p = callout_halt(&dw->dw_callout, NULL);
linux_work_lock(&dw->work);
} else {
fired_p = callout_stop(&dw->dw_callout);
}
/*
* fired_p means we didn't cancel the callout, so it must have
* already begun and will clean up after itself.
*
* !fired_p means we cancelled it so we have to clean up after
* it. Nobody else should have changed the state in that case.
*/
if (!fired_p) {
struct workqueue_struct *wq;
KASSERT(linux_work_locked(&dw->work));
KASSERT(dw->work.w_state == WORK_DELAYED_CANCELLED);
wq = dw->work.w_wq;
mutex_enter(&wq->wq_lock);
TAILQ_REMOVE(&wq->wq_delayed, dw, dw_entry);
callout_destroy(&dw->dw_callout);
dw->work.w_state = WORK_IDLE;
dw->work.w_wq = NULL;
cv_broadcast(&wq->wq_cv);
mutex_exit(&wq->wq_lock);
}
}
static void
linux_wait_for_delayed_cancelled_work(struct delayed_work *dw)
{
struct workqueue_struct *wq;
KASSERT(linux_work_locked(&dw->work));
KASSERT(dw->work.w_state == WORK_DELAYED_CANCELLED);
wq = dw->work.w_wq;
do {
mutex_enter(&wq->wq_lock);
linux_work_unlock(&dw->work);
cv_wait(&wq->wq_cv, &wq->wq_lock);
mutex_exit(&wq->wq_lock);
linux_work_lock(&dw->work);
} while ((dw->work.w_state == WORK_DELAYED_CANCELLED) &&
(dw->work.w_wq == wq));
}
static void
linux_worker_intr(void *arg)
{
struct delayed_work *dw = arg;
struct workqueue_struct *wq;
linux_work_lock(&dw->work);
KASSERT((dw->work.w_state == WORK_DELAYED) ||
(dw->work.w_state == WORK_DELAYED_CANCELLED));
wq = dw->work.w_wq;
mutex_enter(&wq->wq_lock);
/* Queue the work, or return it to idle and alert any cancellers. */
if (__predict_true(dw->work.w_state == WORK_DELAYED)) {
dw->work.w_state = WORK_PENDING;
workqueue_enqueue(dw->work.w_wq->wq_workqueue, &dw->work.w_wk,
NULL);
} else {
KASSERT(dw->work.w_state == WORK_DELAYED_CANCELLED);
dw->work.w_state = WORK_IDLE;
dw->work.w_wq = NULL;
cv_broadcast(&wq->wq_cv);
}
/* Either way, the callout is done. */
TAILQ_REMOVE(&dw->work.w_wq->wq_delayed, dw, dw_entry);
callout_destroy(&dw->dw_callout);
mutex_exit(&wq->wq_lock);
linux_work_unlock(&dw->work);
}