mirror of
https://github.com/kelvinlawson/atomthreads.git
synced 2026-02-13 18:33:14 +01:00
522 lines
24 KiB
Plaintext
522 lines
24 KiB
Plaintext
---------------------------------------------------------------------------
|
|
|
|
Library: Atomthreads
|
|
Author: Kelvin Lawson <info@atomthreads.com>
|
|
Website: http://atomthreads.com
|
|
License: BSD Revised
|
|
|
|
---------------------------------------------------------------------------
|
|
|
|
STM8 PORT - COSMIC COMPILER
|
|
|
|
This folder contains a port of the Atomthreads real time kernel for the
|
|
STM8 processor architecture. These instructions cover usage of Atomthreads
|
|
with the Cosmic compiler (CXSTM8).
|
|
|
|
All of the cross-platform kernel code is contained in the top-level
|
|
'kernel' folder, while ports to specific CPU architectures are contained in
|
|
the 'ports' folder tree. A port to a CPU architecture can comprise just one
|
|
or two modules which provide the architecture-specific functionality, such
|
|
as the context-switch routine which saves and restores processor registers
|
|
on a thread switch. In this case, the kernel port is split into two files:
|
|
|
|
* atomport.c: Those functions which can be written in C
|
|
* atomport-asm-cosmic.s: The main register save/restore assembler routines
|
|
|
|
Each Atomthreads port requires also a header file which describes various
|
|
architecture-specific details such as appropriate types for 8-bit, 16-bit
|
|
etc variables, the port's system tick frequency, and macros for performing
|
|
interrupt lockouts / critical sections:
|
|
|
|
* atomuser.h: Port-specific header required by the kernel for each port
|
|
|
|
A few additional source files are also included here:
|
|
|
|
* tests-main.c: Main application file (used for launching automated tests)
|
|
* stm8_interrupt_vector.c: List of interrupt handlers for vector table
|
|
* uart.c: UART wrapper to allow use of stdio/printf()
|
|
* stm8s-periphs/*.*: Peripheral drivers as delivered by ST (no changes
|
|
to distributed code).
|
|
|
|
Atomthreads includes a suite of automated tests which prove the key OS
|
|
functionality, and can be used with any architecture ports. This port
|
|
provides an easy mechanism for building, downloading and running the test
|
|
suite to prove the OS on your target.
|
|
|
|
The port was carried out and tested on an STM8S105C6 running within an
|
|
STM8S-Discovery board, and supports the Cosmic, Raisonance and IAR compiler
|
|
tools. It is possible to use it with other processors in the STM8 range, as
|
|
well as other hardware platforms and compilers, with minimal changes.
|
|
Platform and compiler specific code has been kept to an absolute minimum.
|
|
This README covers usage of Atomthreads with the Cosmic compiler.
|
|
Instructions for users of the other compilers are available in README-IAR
|
|
and README-RAISONANCE.
|
|
|
|
|
|
---------------------------------------------------------------------------
|
|
|
|
PREREQUISITES
|
|
|
|
The port works out-of-the-box with the Cosmic compiler tools for building.
|
|
Applications are generated in .s19 form and can be programmed with any
|
|
supporting programming software, including the free STVP (visual
|
|
programmer tool). At this time there does not appear to be a command-line
|
|
programmer application suitable for use with STM8.
|
|
|
|
The Cosmic compiler and STVP are currently Windows-only applications. For
|
|
users of other operating systems the Cosmic compiler may work in
|
|
environments like Wine, but the USB programming tools are less likely to
|
|
be supported. Both the compiler and the USB programming tool for
|
|
STM8S-Discovery (STVP) can, however, be run successfully within a VM such
|
|
as VirtualBox.
|
|
|
|
The core software prerequisites are therefore:
|
|
* Cosmic STM8 compiler
|
|
* Programming software (e.g. ST's STVP tool)
|
|
|
|
Optionally, application build, program and debug can be carried out
|
|
using ST's visual debug tool, STVD.
|
|
|
|
Use with alternative compiler tools may require some modification, but you
|
|
can easily replace STVP by your own favourite programmer if required.
|
|
|
|
|
|
---------------------------------------------------------------------------
|
|
|
|
MEMORY MODEL
|
|
|
|
The sample build configurations use the Cosmic modsl0 memory model. This
|
|
places all data outside of the short 0x0-0x255 page0 area, which allows
|
|
large data blocks such as thread stacks to fit. You could instead use the
|
|
more efficient mods0 memory model which places data in the short page0
|
|
area, and force large data areas like thread stacks outside of page0 by
|
|
adding @near modifiers or specifying data areas by the linker file etc.
|
|
|
|
The default configuration is modsl0 (place outside of page0) to allow for
|
|
the most portable application compilation, with the option of optimising
|
|
this by placing data in page0 if desired. There is no requirement that you
|
|
compile your applications using the modsl0 memory model.
|
|
|
|
|
|
---------------------------------------------------------------------------
|
|
|
|
BUILDING THE SOURCE
|
|
|
|
You may build Atomthreads using whichever build environment you desire. For
|
|
your convenience we provide both a ready-rolled Makefile-based build system
|
|
and an STVD visual debugger project. The STVD project permits easy
|
|
building, programming and debugging, but does not easily support building
|
|
a wide range of application builds within the same project, which is
|
|
useful for building the numerous automated tests. For the automated tests
|
|
you may find it easier to use the Makefile which automatically builds all
|
|
automated tests.
|
|
|
|
|
|
---------------------------------------------------------------------------
|
|
|
|
BUILD VIA STVD PROJECT
|
|
|
|
For building applications using STVD you can use the sample workspace
|
|
atomthreads-sample-stvd.stw which contains both Cosmic compiler and
|
|
Raisonance compiler based projects. You can also import the Cosmic-only
|
|
project file atomthreads-sample-cosmic.stp directly. This builds a sample
|
|
full application which runs the "sem1" automated test. Applications can be
|
|
downloaded directly to the target hardware (e.g. STM8S-Discovery) and run
|
|
via the integrated debugger. Press the exclamation button to run, and
|
|
confirm that the LED flashes once per second (if running on an
|
|
STM8S-Discovery) to ensure that the test has passed.
|
|
|
|
This is also a good starting point for building your own applications:
|
|
simply modify the file tests-main.c which starts the test application.
|
|
You can run any of the other automated tests by replacing the file sem1.c
|
|
within the project by another of the tests within the atomthreads tests
|
|
folder. This is rather painful using a GUI interface due to the large
|
|
number of test files, and you may prefer to use the Makefile-based system
|
|
instead which builds all automated tests in one command.
|
|
|
|
|
|
---------------------------------------------------------------------------
|
|
|
|
BUILD VIA MAKEFILE
|
|
|
|
A Makefile is also provided for building the kernel, port and automated
|
|
tests. This is particularly useful for building the automated tests
|
|
because many different independent applications need to be built which is
|
|
not easily achieved within the STVD environment.
|
|
|
|
For a Windows system you can obtain a Make application suitable for use
|
|
with the Cosmic compiler from:
|
|
|
|
* http://www.cosmic-software.com/comp_utils/GNU_Make.zip
|
|
|
|
Assuming you install the above into C:\Program Files\GNU_MAKE, you
|
|
should set up your environment variables as follows:
|
|
|
|
* set PATH=%PATH%;C:\Program Files\GNU_MAKE;C:\Program Files\COSMIC\CXSTM8_16K
|
|
* set MAKE_MODE=DOS
|
|
|
|
|
|
The full build is carried out using simply:
|
|
|
|
* make -f cosmic.mak
|
|
|
|
All objects are built into the 'build-cosmic' folder under ports/stm8. The
|
|
build process builds separate target applications for each automated test,
|
|
and appropriate .stm8 or .s19 files can be found in the build folder ready
|
|
for downloading to and running on the target. Because of the limited
|
|
resources on the STM8, and the large amount of automated tests, each test
|
|
is built and run as a separate application.
|
|
|
|
|
|
All built objects etc can be cleaned using:
|
|
|
|
* make -f cosmic.mak clean
|
|
|
|
|
|
The Atomthreads sources are documented using Doxygen markup. You can build
|
|
both the kernel and STM8 port documentation from this folder using:
|
|
|
|
* make -f cosmic.mak doxygen
|
|
|
|
|
|
---------------------------------------------------------------------------
|
|
|
|
PROGRAMMING MAKEFILE-BUILT APPLICATIONS TO THE TARGET DEVICE
|
|
|
|
When developing within STVD, programs can be downloaded directly to the
|
|
target. If, however, you are building applications separately using a
|
|
Makefile or similar, then you are not able to program the application
|
|
using STVD. None of the tools delivered by ST appear to be designed to
|
|
cater for those who build applications externally, but it is possible using
|
|
STVP.
|
|
|
|
The following development workflow can be used (note that these settings
|
|
apply to the STM8S-Discovery):
|
|
|
|
* Build app using Makefile.
|
|
* Open STVP and configure to use Swim ST-Link for CPU STM8105C6.
|
|
* Open application .s19 file and program using "Program All Tabs".
|
|
|
|
Unfortunately STVP does not have a command to reset and start the CPU
|
|
running, but it can be forced into doing so by reconfiguring the
|
|
programmer:
|
|
|
|
* Select "Configure ST Visual Programmer" from the Configure menu.
|
|
|
|
Your application should now be programmed and running.
|
|
|
|
If you wish to program and run another application then you can open and
|
|
program it in STVP, then use the Configure menu again to reset the
|
|
device and start it running.
|
|
|
|
Other programming tools may exist but are not apparent in the toolset
|
|
delivered for use the STM8S Discovery platform.
|
|
|
|
|
|
---------------------------------------------------------------------------
|
|
|
|
STM8S-DISCOVERY SPECIFICS
|
|
|
|
There are very minimal board-specific aspects to the STM8 port so it is
|
|
trivial to run Atomthreads on other STM8 platforms.
|
|
|
|
The test applications make use of a LED to indicate test pass/fail status.
|
|
This is currently configured to use a bit in GPIOD, which on the Discovery
|
|
board maps to the board's only LED. You may change the port and register
|
|
bit in tests-main.c to utilise a different pin on other hardware platforms.
|
|
You may also completely omit the LED flashing in the test application if
|
|
you prefer to use the UART for monitoring test status.
|
|
|
|
The test applications also make use of the UART to print out pass/fail
|
|
indications and other information. For this you should connect a serial
|
|
cable to the Discovery board via the external pin connectors. Use of
|
|
a UART is not required if you prefer to use the LED or some other method
|
|
of notifying test pass/fail status.
|
|
|
|
To connect a serial cable to the Discovery you will need to connect to
|
|
the following pins on the external connectors:
|
|
Vcc: CN2 pin 8
|
|
GND: CN2 pin 7
|
|
UART TX: CN4 pin 10 (connect to RX at the PC end)
|
|
UART RX: CN4 pin 9 (connect to TX at the PC end)
|
|
Note that the board uses TTL levels so you may need to use a level
|
|
converter. External level converters may need to be powered using
|
|
a Vdd of 5v, which can be achieved by positioning JP1 on the Discovery.
|
|
|
|
The STM8 device on the Discovery only offers UART2. If you are using a
|
|
different device or wish to use an alternative UART then you must change
|
|
the stm8s_conf.h file.
|
|
|
|
If you are using a CPU other than the STM8S105C6 you should change the
|
|
PART macro from "STM8S105" to your target CPU. This can be changed in the
|
|
cosmic.mak Makefile. If you are using the STVD project it should be
|
|
changed in the project preprocessor settings for both Debug and Release
|
|
builds. You may also wish to enable any CPU peripherals which you wish to
|
|
use in the stm8s_conf.h file.
|
|
|
|
|
|
---------------------------------------------------------------------------
|
|
|
|
RUNNING THE AUTOMATED TESTS
|
|
|
|
Atomthreads contains a set of generic kernel tests which can be run on any
|
|
port to prove that all core functionality is working on your target.
|
|
|
|
The full set of tests can be found in the top-level 'tests' folder. The
|
|
Makefile builds each of these tests as independent applications in the
|
|
'build' folder. Run them individually using the STVP process described
|
|
above. For example to run the 'kern1.c' test use STVP to program and run
|
|
it.
|
|
|
|
You may also build the tests using the STVD project, but to run each
|
|
different test you must manually remove the previous test module (e.g.
|
|
kern1.c) and replace it with one of other tests, which can be quite time
|
|
consuming compared to building all tests in one command via the Makefile.
|
|
|
|
To view the test results, watch the LED on the STM8S-Discovery. This will
|
|
flash once per second if the test passed, and once every 1/8 second if the
|
|
test failed.
|
|
|
|
If you wish to use the UART, connect a serial debug cable to your target
|
|
platform (defaults to 9600bps 8N1). On starting, the test applications
|
|
print out "Go" on the UART. Once the test is complete they will print
|
|
out "Pass" or "Fail", along with other information if the test failed.
|
|
|
|
Most of the tests complete within a few seconds, but some (particularly
|
|
the stress tests) can take several seconds, so be patient.
|
|
|
|
The full suite of tests endeavours to exercise as much of the kernel code
|
|
as possible, and can be used for quick confirmation of core OS
|
|
functionality if you ever need to make a change to the kernel or port.
|
|
|
|
The test application main() is contained in tests-main.c. This initialises
|
|
the OS, creates a main thread, and calls out to the test modules. It also
|
|
initialises the UART driver for use by stdout.
|
|
|
|
|
|
---------------------------------------------------------------------------
|
|
|
|
WRITING APPLICATIONS
|
|
|
|
The easiest way to start a new application which utilises the Atomthreads
|
|
scheduler is to base your main application startup on tests-main.c. This
|
|
initialises the OS, sets up a UART and calls out to the test module entry
|
|
functions. You can generally simply replace the call to the test modules by
|
|
a call to your own application startup code.
|
|
|
|
Projects developed within STVD can be started using the sample project
|
|
atomthreads-sample-cosmic.stp. If you wish to create your own STVD project
|
|
from scratch, then you should ensure you change the project settings for
|
|
both Debug and Release builds as follows:
|
|
|
|
* Toolset: "STM8 Cosmic"
|
|
* MCU Selection: Appropriate for your platform (STM8S10C56 for Discovery)
|
|
* C Compiler Memory Model: "+modsl0"
|
|
* C Compiler Preprocessor Definitions: CPU part (e.g. "STM8S105")
|
|
* C Compiler Preprocessor Definitions: Enable thread stack checking if
|
|
desired by adding "ATOM_STACK_CHECKING", for example the full
|
|
preprocessor line for Discovery might be: "STM8S105 ATOM_STACK_CHECKING"
|
|
* Linker Input: Zero Page from 0x2 to 0xFF (allows NULL-pointer checks by
|
|
preventing the linker from using address 0x0.
|
|
* Linker Input: Ram from 0x100 to 0x7BF (if you wish to allow 0x100 to
|
|
0x7BF for application usage, and 0x7C0 to 0x7FF for startup stack.
|
|
|
|
|
|
---------------------------------------------------------------------------
|
|
|
|
RAM FOOTPRINT & STACK USAGE
|
|
|
|
The Atomthreads kernel is written in well-structured pure C which is highly
|
|
portable and not targeted at any particular compiler or CPU architecture.
|
|
For this reason it is not highly optimised for the STM8 architecture, and
|
|
by its nature will likely have a higher text and data footprint than an
|
|
RTOS targeted at the STM8 architecture only. The emphasis here is on
|
|
C-based portable, readable and maintainable code which can run on any CPU
|
|
architecture, from the 8-bitters up.
|
|
|
|
A good rule of thumb when using Atomthreads on the STM8 architecture is
|
|
that a minimum of 1KB RAM is required in order to support an application
|
|
with 4 or 5 threads and the idle thread. If a minimum of approximately
|
|
128 bytes per thread stack is acceptable then you will benefit from the
|
|
easy-to-read, portable implementation of an RTOS herein.
|
|
|
|
The major consumer of RAM when using Atomthreads is your thread stacks.
|
|
Functionality that is shared between several kernel modules is farmed out
|
|
to separate functions, resulting in readable and maintainable code but
|
|
with some associated stack cost of calling out to subroutines. Further,
|
|
each thread stack is used for saving its own registers on a context
|
|
switch, and there is no separate interrupt stack which means that each
|
|
thread stack has to be able to cope with the maximum stack usage of the
|
|
kernel (and application) interrupt handlers.
|
|
|
|
Clearly the stack requirement for each thread depends on what your
|
|
application code does, and what memory model is used etc, but generally
|
|
you should find that 128 bytes is enough to allow for the thread to be
|
|
switched out (and thus save its registers) while deep within a kernel
|
|
or application call stack, and similarly enough to provide stack for
|
|
interrupt handlers interrupting while the thread is deep within a kernel
|
|
or application call stack. You will need to increase this depending on
|
|
what level of stack the application code in question requires.
|
|
|
|
At this time the maximum stack consumed by the test threads within the
|
|
automated test modules is 95 bytes of stack, and the main test thread has
|
|
been seen to consume 163 bytes of stack. At this time the timer2 test is
|
|
the largest consumer of test thread stack (95 bytes) and the sem3 test
|
|
consumes the largest main thread stack (163 bytes). If your applications
|
|
have large amounts of local data or call several subroutines then you may
|
|
find that you need larger than 128 bytes.
|
|
|
|
You may monitor the stack usage of your application threads during runtime
|
|
by defining the macro ATOM_STACK_CHECKING and calling
|
|
atomThreadStackCheck(). This macro is defined by default in the Makefile
|
|
so that the automated test modules can check for stack overflows, but you
|
|
may wish to undefine this in your application Makefiles when you are happy
|
|
that the stack usage is acceptable. Enabling ATOM_STACK_CHECKING will
|
|
increase the size of your threads' TCBs slightly, and will incur a minor
|
|
CPU cycles overhead whenever threads are created due to prefilling the
|
|
thread stack with a known value.
|
|
|
|
With careful consideration and few threads it would be possible to use
|
|
a platform with 512 bytes RAM, but not all of the automated test suite
|
|
would run on such a platform (some of the test modules use 6 threads: a
|
|
main thread together with 4 test threads and the idle thread).
|
|
|
|
The RAM layout used for the automated test applications is as follows:
|
|
|
|
RAM Top:
|
|
* Startup Stack (64 bytes)
|
|
* Data & BSS area (thread stacks, other application data)
|
|
RAM Bottom.
|
|
|
|
This is not prescribed, you may use whichever layout you wish for your
|
|
applications.
|
|
|
|
The startup stack area starts at the top of RAM and is only used for first
|
|
initialisation of the OS and main thread. This uses 64 bytes and could be
|
|
reused once the OS is started, but for the purposes of the automated test
|
|
applications it is not reused. Generally you would ensure that this is
|
|
reused in your own application code.
|
|
|
|
The application's data starts at the bottom of RAM, and this includes all
|
|
of the thread stacks which are statically allocated arrays. The idle
|
|
thread, main thread, and automated test thread stacks are allocated here.
|
|
|
|
The default layout provided with Atomthreads matches the STM8S-Discovery
|
|
with 2KB RAM. The linker file reserves the first 0x7C0 bytes for data
|
|
areas. The region from here up to the end of RAM (0x800) is used for the
|
|
the 64 byte startup stack.
|
|
|
|
As mentioned previously, this RAM layout is only the one utilised by the
|
|
test applications. You may choose whatever layout you like.
|
|
|
|
Note that on this platform data can be placed at address 0x0, but the
|
|
Atomthreads kernel performs validity checks on pointers to ensure they
|
|
are not NULL pointers (point to address 0x0). For this reason the
|
|
example projects (STVD and Makefile) force the linker to not use address
|
|
0x0 and instead start the page0 space at 0x2. This ensures that the
|
|
linker does not place any data at address 0x0, and hence all NULL-ptr
|
|
checks are still suitable checks for valid pointers. This does, however,
|
|
waste 2 bytes. For your own projects you can force this within STVD by
|
|
editing the project linker settings (Input -> Zero Page start at 0x2)
|
|
or by editing the linker .LKF file as can be seen in atomthreads.lkf.
|
|
|
|
|
|
---------------------------------------------------------------------------
|
|
|
|
INTERRUPT HANDLING
|
|
|
|
Interrupt handlers use the stack of the thread which was running when the
|
|
interrupt occurred. If no thread rescheduling occurs during the ISR then
|
|
on exit from the ISR any data stacked by the ISR on the thread's stack is
|
|
popped off the stack and execution of the thread resumes. If a reschedule
|
|
during the ISR causes a context switch to a new thread, then the ISR's
|
|
data will remain on the thread's stack until the thread is scheduled back
|
|
in.
|
|
|
|
Interrupt priorities (via the ITC_SPRx registers) are left in their
|
|
default power-on state, which disables interrupt nesting. Kernel changes
|
|
may be required to support interrupt nesting.
|
|
|
|
Note that the STM8 programming manual currently describes the following
|
|
feature:
|
|
|
|
"Fast interrupt handling through alternate register files (up to 4
|
|
contexts) with standard stack compatible mode (for real time OS
|
|
kernels)"
|
|
|
|
This feature was implemented by ST in the core but has to date never been
|
|
included in any STM8 products. If it is included in future products then
|
|
you will need to put the device in the stack compatible mode described.
|
|
|
|
|
|
---------------------------------------------------------------------------
|
|
|
|
WRITING NEW INTERRUPT HANDLERS
|
|
|
|
All interrupt handlers which will call out to the OS kernel and potentially
|
|
cause a thread switch must call atomIntEnter() and atomIntExit(). An
|
|
example of this can be seen in the timer tick ISR in atomport.c.
|
|
|
|
With the Cosmic compiler port it is also necessary to add the @svlreg
|
|
modifier to any interrupt handlers which call out to the OS kernel.
|
|
Alternatively you may use the INTERRUPT macro from atomport-private.h which
|
|
always adds the @svlreg modifier. This modifier ensures that the c_lreg
|
|
virtual register is saved on the interrupted thread's stack for any
|
|
preemptive context switches. It also ensures that longs are available for
|
|
use within any OS kernel code called as part of the interrupt handling.
|
|
|
|
You may also implement fast interrupt handlers in the system which do not
|
|
call atomIntEnter()/atomIntExit() and which do not need the @svlreg
|
|
modifier, however these ISRs cannot perform OS functions such as posting
|
|
semaphores or effecting a thread switch.
|
|
|
|
|
|
---------------------------------------------------------------------------
|
|
|
|
COSMIC COMPILER VIRTUAL REGISTERS
|
|
|
|
The STM8 has only very few CPU registers, so the Cosmic compiler augments
|
|
them with three "virtual" registers, which are simply locations in fast
|
|
memory. These registers are called c_x, c_y and c_lreg.
|
|
|
|
The Atomthreads context switch for Cosmic/STM8 takes advantage of the fact
|
|
that all CPU and virtual registers are automatically saved on the stack by
|
|
the compiler when calling out to C functions (and even then only if
|
|
necessary).
|
|
|
|
For cooperative context switches (where a thread calls an OS kernel
|
|
function to schedule itself out), any of these registers which should be
|
|
preserved across the function call are automatically saved on the stack by
|
|
the compiler before the context switch is even called. This means that no
|
|
CPU or virtual registers actually have to be saved in the context switch
|
|
routine, making cooperative switches potentially very cheap if few
|
|
registers must be preserved.
|
|
|
|
For preemptive switches (where an ISR has interrupted a thread and wishes
|
|
to switch to a new thread), the interrupt handler prologue automatically
|
|
saves all CPU registers (actually done automatically by the CPU) and all
|
|
of the virtual registers. In this case all registers must always be saved
|
|
because the ISR has no knowledge of what registers the interrupted thread
|
|
was using, so we cannot take advantage of the potential for saving fewer
|
|
than the full set of registers that we achieve with cooperative switches.
|
|
With the Cosmic compiler, interrupt handlers that call out to C functions
|
|
(as would happen on a thread switch) always save the CPU registers (done by
|
|
the CPU in fact) and the virtual registers c_x and c_y. For the Atomthreads
|
|
port we force interrupt handlers to also save the virtual register c_lreg.
|
|
This is to ensure that the interrupted thread's c_lreg value is preserved
|
|
across a thread switch, but also ensures that longs can be used within the
|
|
OS kernel code called by interrupt handlers (c_lreg is used by the compiler
|
|
for handling longs and floats).
|
|
|
|
An alternative scheme would be to not save c_lreg in all interrupt
|
|
handlers and instead save it in the context-switch function. This would
|
|
allow interrupt handlers to avoid saving the 4-byte c_lreg on the stack,
|
|
but it would mean that any OS kernel code called by interrupt handlers
|
|
could not deal with longs, which would be an unfortunate burden on the
|
|
core portable OS code just for the benefit of this one architecture and
|
|
compiler. It would also mean that c_lreg is always saved unnecessarily
|
|
for every cooperative context switch.
|
|
|
|
|
|
---------------------------------------------------------------------------
|