Greatly simplified page allocator.

Made most changes for alloc_page()
This commit is contained in:
Bahadir Balban
2008-09-06 12:55:47 +03:00
parent 6c1da12fec
commit 68a4e78e66
2 changed files with 107 additions and 152 deletions

View File

@@ -18,77 +18,44 @@
struct page_allocator allocator; struct page_allocator allocator;
static struct mem_cache *new_dcache();
static int find_and_free_page_area(void *addr, struct page_allocator *p);
/* /*
* Allocate a new page area from @area_sources_start. If no areas left, * Allocate a new page area from the page area cache
* allocate a new cache first, allocate page area from the new cache.
*/ */
static struct page_area *new_page_area(struct page_allocator *p, static struct page_area *new_page_area(struct page_allocator *p)
struct list_head *ccache)
{ {
struct mem_cache *cache; struct mem_cache *cache;
struct page_area *new_area; struct page_area *new_area;
struct list_head *cache_list;
if (ccache) list_for_each_entry(cache, &p->pga_cache_list, list) {
cache_list = ccache;
else
cache_list = &p->dcache_list;
list_for_each_entry(cache, cache_list, list)
if ((new_area = mem_cache_alloc(cache)) != 0) { if ((new_area = mem_cache_alloc(cache)) != 0) {
new_area->cache = cache; new_area->cache = cache;
p->pga_free--;
return new_area; return new_area;
} }
}
/* Must not reach here if a ccache is already used. */ return 0;
BUG_ON(ccache);
if ((cache = new_dcache(p)) == 0)
return 0; /* Denotes out of memory */
new_area = mem_cache_alloc(cache);
new_area->cache = cache;
return new_area;
} }
/* Given the page @quantity, finds a free region, divides and returns new area. */ /* Given the page @quantity, finds a free region, divides and returns new area. */
static struct page_area * static struct page_area *
get_free_page_area(int quantity, struct page_allocator *p, get_free_page_area(int quantity, struct page_allocator *p)
struct list_head *cache_list)
{ {
struct page_area *new, *area; struct page_area *new, *area;
if (quantity <= 0) if (quantity <= 0)
return 0; return 0;
/*
* First, allocate a new area, which may involve recursion.
* If we call this while we touch the global area list, we will
* corrupt it so we call it first.
*/
if (!(new = new_page_area(p, cache_list)))
return 0; /* No more pages */
list_for_each_entry(area, &p->page_area_list, list) { list_for_each_entry(area, &p->page_area_list, list) {
/* Check for exact size match */ /* Check for exact size match */
if (area->numpages == quantity && !area->used) { if (area->numpages == quantity && !area->used) {
/* Mark it as used */
area->used = 1; area->used = 1;
/*
* We don't need the area we allocated
* earlier, just free it.
*/
BUG_ON(find_and_free_page_area(
(void *)__pfn_to_addr(new->pfn), p) < 0);
return area; return area;
} }
/* Divide a bigger area */
if (area->numpages > quantity && !area->used) { if (area->numpages > quantity && !area->used) {
new = new_page_area(p);
area->numpages -= quantity; area->numpages -= quantity;
new->pfn = area->pfn + area->numpages; new->pfn = area->pfn + area->numpages;
new->numpages = quantity; new->numpages = quantity;
@@ -99,92 +66,10 @@ get_free_page_area(int quantity, struct page_allocator *p,
} }
} }
/* /* No more pages */
* No more pages. We could not use the area
* we allocated earlier, just free it.
*/
find_and_free_page_area((void *)__pfn_to_addr(new->pfn), p);
return 0; return 0;
} }
void *alloc_page(int quantity)
{
struct page_area *p = get_free_page_area(quantity, &allocator, 0);
if (p)
return (void *)__pfn_to_addr(p->pfn);
else
return 0;
}
/*
* Helper to allocate a page using an internal page area cache. Returns
* a virtual address because these allocations are always internally referenced.
*/
void *alloc_page_using_cache(struct page_allocator *a, struct list_head *c)
{
struct page_area *p = get_free_page_area(1, a, c);
if (p)
return l4_map_helper((void *)__pfn_to_addr(p->pfn), 1);
else
return 0;
}
/*
* There's still free memory, but allocator ran out of page areas stored in
* dcaches. In this case, the ccache supplies a new page area, which is used to
* describe a page that stores a new dcache. If ccache is also out of page areas
* it adds the spare cache to ccache_list, uses that for the current allocation,
* and allocates a new spare cache for future use
*/
static struct mem_cache *new_dcache(struct page_allocator *p)
{
void *dpage; /* Page that keeps data cache */
void *spage; /* Page that keeps spare cache */
if((dpage = alloc_page_using_cache(p, &p->ccache_list)))
return mem_cache_init(dpage, PAGE_SIZE,
sizeof(struct page_area), 0);
/* If ccache is also full, add the spare page_area cache to ccache */
list_add(&p->spare->list, &p->ccache_list);
/* This must not fail now, and satisfy at least two page requests. */
BUG_ON(mem_cache_total_empty(p->spare) < 2);
BUG_ON(!(dpage = alloc_page_using_cache(p, &p->ccache_list)));
BUG_ON(!(spage = alloc_page_using_cache(p, &p->ccache_list)));
/* Initialise the new spare and return the new dcache. */
p->spare = mem_cache_init(spage, PAGE_SIZE, sizeof(struct page_area),0);
return mem_cache_init(dpage, PAGE_SIZE, sizeof(struct page_area), 0);
}
/*
* Only to be used at initialisation. Allocates memory caches that contain
* page_area elements by incrementing the free physical memory mark by
* PAGE_SIZE.
*/
static struct mem_cache *new_allocator_startup_cache(unsigned long *start)
{
struct page_area *area;
struct mem_cache *cache;
cache = mem_cache_init(l4_map_helper((void *)*start, 1), PAGE_SIZE,
sizeof(struct page_area), 0);
area = mem_cache_alloc(cache);
/* Initialising the dummy just for illustration */
area->pfn = __pfn(*start);
area->numpages = 1;
area->cache = cache;
INIT_LIST_HEAD(&area->list);
/* FIXME: Should I add this to the page area list? */
*start += PAGE_SIZE;
return cache;
}
/* /*
* All physical memory is tracked by a simple linked list implementation. A * All physical memory is tracked by a simple linked list implementation. A
@@ -199,40 +84,113 @@ static struct mem_cache *new_allocator_startup_cache(unsigned long *start)
* Also other memory regions like IO are not tracked by alloc_page() but by * Also other memory regions like IO are not tracked by alloc_page() but by
* other means. * other means.
*/ */
void init_page_allocator(unsigned long start, unsigned long end) void init_page_allocator(unsigned long start, unsigned long end)
{ {
struct page_area *freemem; /* Initialise a page area cache in the first page */
struct mem_cache *dcache, *ccache; struct page_area *freemem, *area;
struct mem_cache *cache;
INIT_LIST_HEAD(&allocator.dcache_list);
INIT_LIST_HEAD(&allocator.ccache_list);
INIT_LIST_HEAD(&allocator.page_area_list); INIT_LIST_HEAD(&allocator.page_area_list);
INIT_LIST_HEAD(&allocator.pga_cache_list);
/* Primary cache list that stores page areas of regular data. */ /* Initialise the first page area cache */
dcache = new_allocator_startup_cache(&start); cache = mem_cache_init(l4_map_helper((void *)start, 1), PAGE_SIZE,
list_add(&dcache->list, &allocator.dcache_list); sizeof(struct page_area), 0);
list_add(&cache->list, &allocator.pga_cache_list);
/* The secondary cache list that stores page areas of caches */ /* Initialise the first area that describes the page just allocated */
ccache = new_allocator_startup_cache(&start); area = mem_cache_alloc(cache);
list_add(&ccache->list, &allocator.ccache_list); INIT_LIST_HEAD(&area->list);
area->pfn = __pfn(start);
area->used = 1;
area->numpages = 1;
area->cache = cache;
list_add(&area->list, &allocator.page_area_list);
/* Update freemem start address */
start += PAGE_SIZE;
/* Initialise first area that describes all of free physical memory */ /* Initialise first area that describes all of free physical memory */
freemem = mem_cache_alloc(dcache); freemem = mem_cache_alloc(cache);
INIT_LIST_HEAD(&freemem->list); INIT_LIST_HEAD(&freemem->list);
freemem->pfn = __pfn(start); freemem->pfn = __pfn(start);
freemem->numpages = __pfn(end) - freemem->pfn; freemem->numpages = __pfn(end) - freemem->pfn;
freemem->cache = dcache; freemem->cache = cache;
freemem->used = 0; freemem->used = 0;
/* Add it as the first unused page area */ /* Add it as the first unused page area */
list_add(&freemem->list, &allocator.page_area_list); list_add(&freemem->list, &allocator.page_area_list);
/* Allocate and add the spare page area cache */ /* Initialise free page area counter */
allocator.spare = mem_cache_init(l4_map_helper(alloc_page(1), 1), allocator.pga_free = mem_cache_total_empty(cache);
PAGE_SIZE, sizeof(struct page_area),
0);
} }
/*
* Check if we're about to run out of free page area structures.
* If so, allocate a new cache of page areas.
*/
int check_page_areas(struct page_allocator *p)
{
struct page_area *new;
struct mem_cache *newcache;
void *newpage;
/* If only one free area left */
if (p->pga_free == 1) {
/* Use that area to allocate a new page */
if (!(new = get_free_page_area(1, p)))
return -1; /* Out of memory */
/* Free page areas must now be reduced to 0 */
BUG_ON(p->pga_free != 0);
/* Map the new page into virtual memory */
newpage = l4_map_helper((void *)__pfn_to_addr(new->pfn), 1);
/* Initialise it as a new source of page area structures */
newcache = mem_cache_init(newpage, PAGE_SIZE,
sizeof(struct page_area), 0);
/*
* Update the free page area counter
* NOTE: need to lock the allocator here
*/
p->pga_free += mem_cache_total_empty(newcache);
/*
* Add the new cache to available
* list of free page area caches
*/
list_add(&newcache->list, &p->pga_cache_list);
/* Unlock here */
}
return 0;
}
void *alloc_page(int quantity)
{
struct page_area *new;
/*
* First make sure we have enough page
* area structures in the cache
*/
if (check_page_areas(&allocator) < 0)
return 0; /* Out of memory */
/*
* Now allocate the actual pages, using the available
* page area structures to describe the allocation
*/
new = get_free_page_area(quantity, &allocator);
/* Return physical address */
return (void *)__pfn_to_addr(new->pfn);
}
/* Merges two page areas, frees area cache if empty, returns the merged area. */ /* Merges two page areas, frees area cache if empty, returns the merged area. */
struct page_area *merge_free_areas(struct page_area *before, struct page_area *merge_free_areas(struct page_area *before,
struct page_area *after) struct page_area *after)
@@ -249,8 +207,10 @@ struct page_area *merge_free_areas(struct page_area *before,
mem_cache_free(c, after); mem_cache_free(c, after);
/* Recursively free the cache page */ /* Recursively free the cache page */
if (mem_cache_is_empty(c)) if (mem_cache_is_empty(c)) {
list_del(&c->list);
BUG_ON(free_page(l4_unmap_helper(c, 1)) < 0) BUG_ON(free_page(l4_unmap_helper(c, 1)) < 0)
}
return before; return before;
} }
@@ -259,7 +219,7 @@ static int find_and_free_page_area(void *addr, struct page_allocator *p)
struct page_area *area, *prev, *next; struct page_area *area, *prev, *next;
/* First find the page area to be freed. */ /* First find the page area to be freed. */
list_for_each_entry(area, &p->dcache_list, list) list_for_each_entry(area, &p->page_area_list, list)
if (__pfn_to_addr(area->pfn) == (unsigned long)addr && if (__pfn_to_addr(area->pfn) == (unsigned long)addr &&
area->used) { /* Found it */ area->used) { /* Found it */
area->used = 0; area->used = 0;
@@ -269,12 +229,12 @@ static int find_and_free_page_area(void *addr, struct page_allocator *p)
found: found:
/* Now merge with adjacent areas, if possible */ /* Now merge with adjacent areas, if possible */
if (area->list.prev != &p->dcache_list) { if (area->list.prev != &p->page_area_list) {
prev = list_entry(area->list.prev, struct page_area, list); prev = list_entry(area->list.prev, struct page_area, list);
if (!prev->used) if (!prev->used)
area = merge_free_areas(prev, area); area = merge_free_areas(prev, area);
} }
if (area->list.next != &p->dcache_list) { if (area->list.next != &p->page_area_list) {
next = list_entry(area->list.next, struct page_area, list); next = list_entry(area->list.next, struct page_area, list);
if (!next->used) if (!next->used)
area = merge_free_areas(area, next); area = merge_free_areas(area, next);

View File

@@ -15,14 +15,9 @@ struct page_area {
}; };
struct page_allocator { struct page_allocator {
/* Keep track of page area lists and allocated caches for page areas. */
struct list_head page_area_list; struct list_head page_area_list;
/* Caches of page areas that refer to any kind of data */ struct list_head pga_cache_list;
struct list_head dcache_list; int pga_free;
/* Caches of page areas that refer to cache pages */
struct list_head ccache_list;
/* A spare cache to aid when both caches are full */
struct mem_cache *spare;
}; };
/* Initialises the page allocator */ /* Initialises the page allocator */