exchange_registers(), modified thread_control calls seem to work

- Fixed do_mmap() so that it returns mapped address, and various bugs.
- A child seems to fork with new setup, but with incorrect return value.
  Need to use and test exregs() for fork + clone.
- Shmat searches an unmapped area if input arg is invalid, do_mmap()
  should do this.
This commit is contained in:
Bahadir Balban
2008-09-15 15:59:44 +03:00
parent 4fb5277123
commit df2317e7aa
17 changed files with 196 additions and 284 deletions

View File

@@ -28,148 +28,55 @@ void print_syscall_context(struct ktcb *t)
r->r5, r->r6, r->r7, r->r8, r->sp_usr, r->lr_usr);
}
/*
* Bigger, slower but typed, i.e. if task_context_t or syscall_context_t
* fields are reordered in the future, this would not break.
*/
void do_exchange_registers_bigslow(struct tcb *task, struct exregs_data *exregs)
/* Copy each register to task's context if its valid bit is set */
void do_exchange_registers(struct ktcb *task, struct exregs_data *exregs)
{
unsigned int create_flags = task->flags;
task_context_t *context = &task->context;
syscall_context_t *sysregs = task->syscall_regs;
/*
* NOTE:
* We don't care if register values point at invalid addresses
* since memory protection would prevent any kernel corruption.
* We do however, make sure spsr is not modified, and pc is
* modified only for the userspace.
* We do however, make sure spsr is not modified
*/
/*
* If the thread is returning from a syscall,
* we modify the register state pushed to syscall stack.
*/
if ((create_flags == THREAD_COPY_SPACE) ||
(create_flags == THREAD_SAME_SPACE)) {
/* Check register valid bit and copy registers */
if (exregs.valid_vect & FIELD_TO_BIT(syscall_regs_t, r0))
syscall_regs->r0 = exregs->context.r0;
if (exregs.valid_vect & FIELD_TO_BIT(syscall_regs_t, r1))
syscall_regs->r1 = exregs->context.r1;
if (exregs.valid_vect & FIELD_TO_BIT(syscall_regs_t, r2))
syscall_regs->r2 = exregs->context.r2;
if (exregs.valid_vect & FIELD_TO_BIT(syscall_regs_t, r3))
syscall_regs->r3 = exregs->context.r3;
if (exregs.valid_vect & FIELD_TO_BIT(syscall_regs_t, r4))
syscall_regs->r4 = exregs->context.r4;
if (exregs.valid_vect & FIELD_TO_BIT(syscall_regs_t, r5))
syscall_regs->r5 = exregs->context.r5;
if (exregs.valid_vect & FIELD_TO_BIT(syscall_regs_t, r6))
syscall_regs->r6 = exregs->context.r6;
if (exregs.valid_vect & FIELD_TO_BIT(syscall_regs_t, r7))
syscall_regs->r7 = exregs->context.r7;
if (exregs.valid_vect & FIELD_TO_BIT(syscall_regs_t, r8))
syscall_regs->r8 = exregs->context.r8;
if (exregs.valid_vect & FIELD_TO_BIT(syscall_regs_t, r9))
syscall_regs->r9 = exregs->context.r9;
if (exregs.valid_vect & FIELD_TO_BIT(syscall_regs_t, r10))
syscall_regs->r10 = exregs->context.r10;
if (exregs.valid_vect & FIELD_TO_BIT(syscall_regs_t, r11))
syscall_regs->r11 = exregs->context.r11;
if (exregs.valid_vect & FIELD_TO_BIT(syscall_regs_t, r12))
syscall_regs->r12 = exregs->context.r12;
if (exregs.valid_vect & FIELD_TO_BIT(syscall_regs_t, sp_usr))
syscall_regs->sp_usr = exregs->context.sp;
if (exregs.valid_vect & FIELD_TO_BIT(syscall_regs_t, sp_lr))
syscall_regs->sp_lr = exregs->context.lr;
/* Cannot modify program counter of a thread in kernel */
/* Check register valid bit and copy registers */
if (exregs->valid_vect & FIELD_TO_BIT(task_context_t, r0))
context->r0 = exregs->context.r0;
if (exregs->valid_vect & FIELD_TO_BIT(task_context_t, r1))
context->r1 = exregs->context.r1;
if (exregs->valid_vect & FIELD_TO_BIT(task_context_t, r2))
context->r2 = exregs->context.r2;
if (exregs->valid_vect & FIELD_TO_BIT(task_context_t, r3))
context->r3 = exregs->context.r3;
if (exregs->valid_vect & FIELD_TO_BIT(task_context_t, r4))
context->r4 = exregs->context.r4;
if (exregs->valid_vect & FIELD_TO_BIT(task_context_t, r5))
context->r5 = exregs->context.r5;
if (exregs->valid_vect & FIELD_TO_BIT(task_context_t, r6))
context->r6 = exregs->context.r6;
if (exregs->valid_vect & FIELD_TO_BIT(task_context_t, r7))
context->r7 = exregs->context.r7;
if (exregs->valid_vect & FIELD_TO_BIT(task_context_t, r8))
context->r8 = exregs->context.r8;
if (exregs->valid_vect & FIELD_TO_BIT(task_context_t, r9))
context->r9 = exregs->context.r9;
if (exregs->valid_vect & FIELD_TO_BIT(task_context_t, r10))
context->r10 = exregs->context.r10;
if (exregs->valid_vect & FIELD_TO_BIT(task_context_t, r11))
context->r11 = exregs->context.r11;
if (exregs->valid_vect & FIELD_TO_BIT(task_context_t, r12))
context->r12 = exregs->context.r12;
if (exregs->valid_vect & FIELD_TO_BIT(task_context_t, sp))
context->sp = exregs->context.sp;
if (exregs->valid_vect & FIELD_TO_BIT(task_context_t, lr))
context->lr = exregs->context.lr;
if (exregs->valid_vect & FIELD_TO_BIT(task_context_t, pc))
context->pc = exregs->context.pc;
/* If it's a new thread or it's in userspace, modify actual context */
} else if ((create_flags == THREAD_NEW_SPACE) ||
(!create_flags && task_in_user(task))) {
/* Copy registers */
if (exregs.valid_vect & FIELD_TO_BIT(task_context_t, r0))
context->r0 = exregs->context.r0;
if (exregs.valid_vect & FIELD_TO_BIT(task_context_t, r1))
context->r1 = exregs->context.r1;
if (exregs.valid_vect & FIELD_TO_BIT(task_context_t, r2))
context->r2 = exregs->context.r2;
if (exregs.valid_vect & FIELD_TO_BIT(task_context_t, r3))
context->r3 = exregs->context.r3;
if (exregs.valid_vect & FIELD_TO_BIT(task_context_t, r4))
context->r4 = exregs->context.r4;
if (exregs.valid_vect & FIELD_TO_BIT(task_context_t, r5))
context->r5 = exregs->context.r5;
if (exregs.valid_vect & FIELD_TO_BIT(task_context_t, r6))
context->r6 = exregs->context.r6;
if (exregs.valid_vect & FIELD_TO_BIT(task_context_t, r7))
context->r7 = exregs->context.r7;
if (exregs.valid_vect & FIELD_TO_BIT(task_context_t, r8))
context->r8 = exregs->context.r8;
if (exregs.valid_vect & FIELD_TO_BIT(task_context_t, r9))
context->r9 = exregs->context.r9;
if (exregs.valid_vect & FIELD_TO_BIT(task_context_t, r10))
context->r10 = exregs->context.r10;
if (exregs.valid_vect & FIELD_TO_BIT(task_context_t, r11))
context->r11 = exregs->context.r11;
if (exregs.valid_vect & FIELD_TO_BIT(task_context_t, r12))
context->r12 = exregs->context.r12;
if (exregs.valid_vect & FIELD_TO_BIT(task_context_t, sp))
context->sp = exregs->context.sp;
if (exregs.valid_vect & FIELD_TO_BIT(task_context_t, lr))
context->lr = exregs->context.lr;
if (exregs.valid_vect & FIELD_TO_BIT(task_context_t, pc))
context->pc = exregs->context.pc;
/* Set spsr as user mode if thread is new */
if (create_flags == THREAD_NEW_SPACE)
task->context.spsr = ARM_MODE_USR;
} else
BUG();
}
/*
* This is smaller and faster but would break if task_context_t or
* syscall_regs_t types change, i.e. if their fields are reordered.
*/
void do_exchange_registers(struct tcb *task, struct exregs_data *exregs)
{
unsigned int create_flags = task->flags;
u32 *context_ptr, *exregs_ptr = (u32 *)&exregs.context;
/*
* NOTE:
* We don't care if register values point at invalid addresses
* since memory protection would prevent any kernel corruption.
*/
/*
* If the thread is returning from a syscall,
* we modify the register state pushed to syscall stack.
*/
if ((create_flags == THREAD_COPY_SPACE) ||
(create_flags == THREAD_SAME_SPACE)) {
context_ptr = (u32 *)&task->syscall_regs->r0;
} else if (create_flags == THREAD_NEW_SPACE) {
context_ptr = (u32 *)&task->context.r0;
task->context.spsr = ARM_MODE_USR;
} else
BUG();
/* Traverse the validity bit vector and copy exregs to task context */
for (int i = 0; i < (sizeof(exregs->context) / sizeof(u32)); i++) {
if (exregs.valid_vect & (1 << i)) {
/* NOTE: If structures change, this may break. */
context_ptr[i] = exregs_ptr[i];
}
}
if (create_flags == THREAD_NEW_SPACE)
/* Set its registers */
task->context.pc = pc;
task->context.sp = sp;
task->context.spsr = ARM_MODE_USR;
/* Set thread's pager if one is supplied */
if (exregs->flags & EXREGS_SET_PAGER)
task->pagerid = exregs->pagerid;
}
@@ -178,34 +85,22 @@ void do_exchange_registers(struct tcb *task, struct exregs_data *exregs)
*
* This call is used by the pagers to set (and in the future read)
* the register context of a thread. The thread's registers can be
* set in 2 thread states:
*
* 1) The thread is executing in userspace:
* i. A newly created thread with a new address space.
* ii. An existing thread that is in userspace.
*
* 2) The thread is executing in the kernel, but suspended when it
* is about to execute "return_from_syscall":
* i. A thread that is just created in an existing address space.
* ii. A thread that is just created copying an existing address space.
*
* These conditions are detected and accordingly the task context is
* modified. A thread executing in the kernel cannot be modified
* since this would compromise the kernel. Also the thread must be
* in suspended condition so that it does not start to execute as we
* modify its context.
*
* TODO: This is an arch-specific call, can move it to ARM
* set only when the thread is in user mode. A newly created thread
* that is the copy of another thread (forked or cloned) will also
* be given its user mode context so such threads can also be
* modified by this call before execution.
*
* A thread executing in the kernel cannot be modified since this
* would compromise the kernel. Also the thread must be in suspended
* condition so that the scheduler does not execute it as we modify
* its context.
*/
int sys_exchange_registers(syscall_context_t *regs)
{
int err = 0;
struct ktcb *task;
struct exregs_data *exregs = regs->r0;
unsigned int pagerid = regs->r1;
l4id_t tid = regs->r2;
unsigned int create_flags = task->flags & TASK_CREATE_FLAGS;
int err;
struct exregs_data *exregs = (struct exregs_data *)regs->r0;
l4id_t tid = regs->r1;
/* Find tcb from its list */
if (!(task = find_task(tid)))
@@ -220,46 +115,26 @@ int sys_exchange_registers(syscall_context_t *regs)
/* Now check that the task is suspended */
if (task->state != TASK_INACTIVE) {
mutex_unlock(&task->thread_control_lock);
return -EACTIVE;
err = -EACTIVE;
goto out;
}
/*
* Check that it is legitimate to modify
* the task registers state
* The thread must be in user mode for its context
* to be modified.
*/
if (!create_flags) {
/*
* Task is not new. We only allow such tasks
* to be modified in userspace.
*/
if (!task_in_user(task))
return -EPERM;
} else { /* TODO: Simplify it here. */
/* New threads with new address space */
if (create_flags == THREAD_NEW_SPACE)
do_exchange_registers_bigslow(task, exregs);
else if ((create_flags == THREAD_COPY_SPACE) ||
(create_flags == THREAD_SAME_SPACE)) {
/*
* Further check that the task is in
* the kernel but about to exit.
*/
if (task->context.pc != &return_from_syscall ||
!task_in_kernel(task)) {
/* Actually its a bug if not true */
BUG();
return -EPERM;
}
do_exchange_registers_bigslow(task, exregs);
}
if (!TASK_IN_USER(task)) {
err = -EPERM;
goto out;
}
/* Set its pager if one is supplied */
if (pagerid != THREAD_ID_INVALID)
task->pagerid = pagerid;
/* Copy registers */
do_exchange_registers(task, exregs);
return 0;
out:
/* Unlock and return */
mutex_unlock(&task->thread_control_lock);
return err;
}
int sys_schedule(syscall_context_t *regs)

View File

@@ -66,10 +66,6 @@ int thread_start(struct task_ids *ids)
if (!mutex_trylock(&task->thread_control_lock))
return -EAGAIN;
/* Clear creation flags if thread is new */
if (task->flags & THREAD_CREATE_FLAGS)
task->flags &= ~THREAD_CREATE_FLAGS;
/* Notify scheduler of task resume */
sched_notify_resume(task);
@@ -78,6 +74,50 @@ int thread_start(struct task_ids *ids)
return 0;
}
int arch_setup_new_thread(struct ktcb *new, struct ktcb *orig, unsigned int flags)
{
/* New threads just need their mode set up */
if (flags == THREAD_NEW_SPACE) {
BUG_ON(orig);
new->context.spsr = ARM_MODE_USR;
return 0;
}
/*
* For duplicated threads pre-syscall context is saved on
* the kernel stack. We copy this context of original
* into the duplicate thread's current context structure
*
* We don't lock for context modification because the
* thread is not known to the system yet.
*/
new->context.spsr = orig->syscall_regs->spsr; /* User mode */
new->context.r0 = orig->syscall_regs->r0;
new->context.r1 = orig->syscall_regs->r1;
new->context.r2 = orig->syscall_regs->r2;
new->context.r3 = orig->syscall_regs->r3;
new->context.r4 = orig->syscall_regs->r4;
new->context.r5 = orig->syscall_regs->r5;
new->context.r6 = orig->syscall_regs->r6;
new->context.r7 = orig->syscall_regs->r7;
new->context.r8 = orig->syscall_regs->r8;
new->context.r9 = orig->syscall_regs->r9;
new->context.r10 = orig->syscall_regs->r10;
new->context.r11 = orig->syscall_regs->r11;
new->context.r12 = orig->syscall_regs->r12;
new->context.sp = orig->syscall_regs->sp_usr;
/* Skip lr_svc since it's not going to be used */
new->context.pc = orig->syscall_regs->lr_usr;
/* Copy other relevant fields from original ktcb */
new->pagerid = orig->pagerid;
/* Distribute original thread's ticks into two threads */
new->ticks_left = orig->ticks_left / 2;
orig->ticks_left /= 2;
return 0;
}
extern unsigned int return_from_syscall;
@@ -89,7 +129,7 @@ extern unsigned int return_from_syscall;
* stack is restored. It also modifies r0 to ensure POSIX child return
* semantics.
*/
int arch_setup_new_thread(struct ktcb *new, struct ktcb *orig)
int arch_setup_new_thread_orig(struct ktcb *new, struct ktcb *orig)
{
/*
* Pre-syscall context is saved on the kernel stack upon
@@ -230,20 +270,7 @@ out:
waitqueue_head_init(&new->wqh_send);
waitqueue_head_init(&new->wqh_recv);
/*
* When space is copied this restores the new thread's
* system call return environment so that it can safely
* return as a copy of its original thread.
*/
if (flags == THREAD_COPY_SPACE ||
flags == THREAD_SAME_SPACE)
arch_setup_new_thread(new, task);
/*
* Set thread's creation flags. They will clear
* when the thread is run for the first time
*/
new->flags = THREAD_CREATE_MASK & flags;
arch_setup_new_thread(new, task, flags);
/* Add task to global hlist of tasks */
add_task_global(new);

View File

@@ -155,7 +155,7 @@ static inline void sched_rq_remove_task(struct ktcb *task)
task->rq = 0;
}
static inline void sched_init_task(struct ktcb *task)
void sched_init_task(struct ktcb *task)
{
INIT_LIST_HEAD(&task->rq_list);
task->ticks_left = TASK_TIMESLICE_DEFAULT;
@@ -226,7 +226,7 @@ void sched_notify_resume(struct ktcb *task)
/* NOTE: Might as well just set need_resched instead of full yield.
* This would work on irq context as well. */
/* Same as resume, but also yields. */
int sched_resume_task(struct ktcb *task)
void sched_resume_task(struct ktcb *task)
{
sched_notify_resume(task);
sched_yield();