Initial commit

This commit is contained in:
Bahadir Balban
2008-01-13 13:53:52 +00:00
commit e2b791a3d8
789 changed files with 95825 additions and 0 deletions

10
src/generic/SConscript Normal file
View File

@@ -0,0 +1,10 @@
# Inherit global environment
Import('env')
# The set of source files associated with this SConscript file.
src_local = ['physmem.c', 'irq.c', 'scheduler.c', 'time.c', 'tcb.c', 'pgalloc.c', 'kmalloc.c']
obj = env.Object(src_local)
Return('obj')

77
src/generic/irq.c Normal file
View File

@@ -0,0 +1,77 @@
/*
* Kernel irq handling (core irqs like timer). Also hope to add thread-level
* irq handling in the future.
*
* Copyright (C) 2007 Bahadir Balban
*
*/
#include <l4/config.h>
#include <l4/macros.h>
#include <l4/generic/platform.h>
#include <l4/generic/irq.h>
#include <l4/lib/mutex.h>
#include <l4/generic/scheduler.h>
#include <l4/lib/printk.h>
#include INC_PLAT(irq.h)
#include INC_ARCH(exception.h)
/* This enables the lower chip on the current chip, if such chaining exists. */
static inline void cascade_irq_chip(struct irq_chip *this_chip)
{
if (this_chip->cascade >= 0) {
BUG_ON(IRQ_CHIPS_MAX == 1);
this_chip->ops.unmask(this_chip->cascade);
}
}
void irq_controllers_init(void)
{
struct irq_chip *this_chip;
for (int i = 0; i < IRQ_CHIPS_MAX; i++) {
this_chip = irq_chip_array + i;
/* Initialise the irq chips (e.g. reset all registers) */
this_chip->ops.init();
/* Enable cascaded irqs if needed */
cascade_irq_chip(this_chip);
}
}
int global_irq_index(void)
{
struct irq_chip *this_chip;
int irq_index = 0;
/* Loop over irq chips from top to bottom until
* the actual irq on the lowest chip is found */
for (int i = 0; i < IRQ_CHIPS_MAX; i++) {
this_chip = irq_chip_array + i;
BUG_ON((irq_index = this_chip->ops.read_irq()) < 0);
if (irq_index != this_chip->cascade) {
irq_index += this_chip->offset;
/* Found the real irq, return */
break;
}
/* Hit the cascading irq. Continue on next irq chip. */
}
return irq_index;
}
void do_irq(void)
{
int irq_index = global_irq_index();
struct irq_desc *this_irq = irq_desc_array + irq_index;
/* TODO: This can be easily done few instructions quicker by some
* immediate read/disable/enable_all(). We stick with this clear
* implementation for now. */
irq_disable(irq_index);
enable_irqs();
/* TODO: Call irq_thread_notify(irq_index) for threaded irqs. */
BUG_ON(!this_irq->handler);
if (this_irq->handler() != IRQ_HANDLED) {
printk("Spurious or broken irq\n"); BUG();
}
irq_enable(irq_index);
}

101
src/generic/kmalloc.c Normal file
View File

@@ -0,0 +1,101 @@
/*
* Memory pool based kmalloc.
*
* Copyright (C) 2007 Bahadir Balban
*/
#include <l4/lib/list.h>
#include <l4/lib/memcache.h>
#include <l4/generic/pgalloc.h>
#include INC_GLUE(memory.h)
/* Supports this many different kmalloc sizes */
#define KMALLOC_POOLS_MAX 5
struct kmalloc_mempool {
int total;
struct list_head pool_head[KMALLOC_POOLS_MAX];
};
struct kmalloc_mempool km_pool;
void init_kmalloc()
{
for (int i = 0; i < KMALLOC_POOLS_MAX; i++)
INIT_LIST_HEAD(&km_pool.pool_head[i]);
}
/*
* Allocates memory from mem_caches that it generates on-the-fly,
* for up to KMALLOC_POOLS_MAX different sizes.
*/
void *kmalloc(int size)
{
struct mem_cache *cache, *n;
int right_sized_pool_idx = -1;
int index;
/* Search all existing pools for this size, and if found, free bufs */
for (int i = 0; i < km_pool.total; i++) {
list_for_each_entry_safe(cache, n, &km_pool.pool_head[i], list) {
if (cache->struct_size == size) {
right_sized_pool_idx = i;
if (cache->free)
return mem_cache_alloc(cache);
else
continue;
} else
break;
}
}
/*
* No such pool list already available at hand, and we don't have room
* for new pool lists.
*/
if ((right_sized_pool_idx < 0) &&
(km_pool.total == KMALLOC_POOLS_MAX - 1)) {
printk("kmalloc: Too many types of pool sizes requested. "
"Giving up.\n");
BUG();
}
if (right_sized_pool_idx >= 0)
index = right_sized_pool_idx;
else
index = km_pool.total++;
/* Only allow up to page size */
BUG_ON(size >= PAGE_SIZE);
BUG_ON(!(cache = mem_cache_init(alloc_page(), PAGE_SIZE,
size, 0)));
list_add(&cache->list, &km_pool.pool_head[index]);
return mem_cache_alloc(cache);
}
/* FIXME:
* Horrible complexity O(n^2) because we don't know which cache
* we're freeing from!!! But its simple. ;-)
*/
int kfree(void *p)
{
struct mem_cache *cache, *tmp;
for (int i = 0; i < km_pool.total; i++)
list_for_each_entry_safe(cache, tmp, &km_pool.pool_head[i], list)
if (!mem_cache_free(cache, p)) {
if (mem_cache_is_empty(cache)) {
list_del(&cache->list);
free_page(cache);
/* Total remains the same. */
}
return 0;
}
return -1;
}
void *kzalloc(int size)
{
void *p = kmalloc(size);
memset(p, 0, size);
return p;
}

172
src/generic/pgalloc.c Normal file
View File

@@ -0,0 +1,172 @@
/*
* Simple kernel memory allocator built on top of memcache
* implementation.
*
* Copyright (C) 2007 Bahadir Balban
*/
#include <l4/lib/memcache.h>
#include <l4/lib/list.h>
#include <l4/generic/space.h>
#include <l4/generic/kmalloc.h>
#include <l4/generic/pgalloc.h>
#include <l4/generic/physmem.h>
#include INC_GLUE(memory.h)
#define PGALLOC_PGD_CACHE 0
#define PGALLOC_PMD_CACHE 1
#define PGALLOC_PG_CACHE 2
#define PGALLOC_CACHE_TOTAL 3
/* The initial chunk of physical memory allocated before any pagers. */
#define PGALLOC_INIT_GRANT SZ_1MB
/* Covers 3 main types of memory needed by the kernel. */
struct pgalloc {
struct list_head cache_list[3];
};
static struct pgalloc pgalloc;
void pgalloc_add_new_cache(struct mem_cache *cache, int cidx)
{
INIT_LIST_HEAD(&cache->list);
BUG_ON(cidx >= PGALLOC_CACHE_TOTAL || cidx < 0);
list_add(&cache->list, &pgalloc.cache_list[cidx]);
}
void calc_kmem_usage_per_grant(kmem_usage_per_grant_t *params)
{
/* Pmds, pgds, pages in numbers, per grant */
int pmds_per_task_avg = params->task_size_avg / PMD_MAP_SIZE;
int pmds_per_kmem_grant = params->tasks_per_kmem_grant * pmds_per_task_avg;
int pgds_per_kmem_grant = params->tasks_per_kmem_grant * 1;
int pgs_per_kmem_grant = params->tasks_per_kmem_grant * 1;
/* Now everything in Kbs */
params->pmd_total = pmds_per_kmem_grant * PMD_SIZE;
params->pgd_total = pgds_per_kmem_grant * PGD_SIZE;
params->pg_total = pgs_per_kmem_grant * PAGE_SIZE;
params->extra = params->grant_size -
(params->pgd_total + params->pmd_total +
params->pg_total);
}
int pgalloc_add_new_grant(unsigned long pfn, int npages)
{
unsigned long physical = __pfn_to_addr(pfn);
void *virtual = (void *)phys_to_virt(physical);
struct mem_cache *pgd_cache, *pmd_cache, *pg_cache;
kmem_usage_per_grant_t params;
/* First map the whole grant */
add_mapping(physical, phys_to_virt(physical), __pfn_to_addr(npages),
MAP_SVC_RW_FLAGS);
/* Calculate how to divide buffer into different caches */
params.task_size_avg = TASK_AVERAGE_SIZE;
params.grant_size = npages * PAGE_SIZE;
/* Calculate pools for how many tasks from this much grant */
params.tasks_per_kmem_grant = (__pfn(SZ_1MB) * TASKS_PER_1MB_GRANT) /
__pfn(params.grant_size);
calc_kmem_usage_per_grant(&params);
/* Create the caches, least alignment-needing, most, then others. */
pmd_cache = mem_cache_init(virtual, params.pmd_total, PMD_SIZE, 1);
virtual += params.pmd_total;
pgd_cache = mem_cache_init(virtual, params.pgd_total, PGD_SIZE, 1);
virtual += params.pgd_total;
pg_cache = mem_cache_init(virtual, params.pg_total + params.extra,
PAGE_SIZE, 1);
/* Add the caches */
pgalloc_add_new_cache(pgd_cache, PGALLOC_PGD_CACHE);
pgalloc_add_new_cache(pmd_cache, PGALLOC_PMD_CACHE);
pgalloc_add_new_cache(pg_cache, PGALLOC_PG_CACHE);
return 0;
}
void init_pgalloc(void)
{
int initial_grant = PGALLOC_INIT_GRANT;
for (int i = 0; i < PGALLOC_CACHE_TOTAL; i++)
INIT_LIST_HEAD(&pgalloc.cache_list[i]);
/* Grant ourselves with an initial chunk of physical memory */
physmem.free_cur = page_align_up(physmem.free_cur);
set_page_map(physmem.free_cur, __pfn(initial_grant), 1);
pgalloc_add_new_grant(__pfn(physmem.free_cur), __pfn(initial_grant));
physmem.free_cur += initial_grant;
/* Activate kmalloc */
init_kmalloc();
}
void pgalloc_remove_cache(struct mem_cache *cache)
{
list_del_init(&cache->list);
}
static inline void *pgalloc_from_cache(int cidx)
{
struct mem_cache *cache, *n;
list_for_each_entry_safe(cache, n, &pgalloc.cache_list[cidx], list)
if (mem_cache_total_empty(cache))
return mem_cache_zalloc(cache);
return 0;
}
int kfree_to_cache(int cidx, void *virtual)
{
struct mem_cache *cache, *n;
list_for_each_entry_safe(cache, n, &pgalloc.cache_list[cidx], list)
if (mem_cache_free(cache, virtual) == 0)
return 0;
return -1;
}
void *alloc_page(void)
{
return pgalloc_from_cache(PGALLOC_PG_CACHE);
}
void *alloc_pmd(void)
{
pmd_table_t *pmd;
if (!(pmd = alloc_boot_pmd()))
pmd = pgalloc_from_cache(PGALLOC_PMD_CACHE);
return pmd;
}
void *alloc_pgd(void)
{
return pgalloc_from_cache(PGALLOC_PGD_CACHE);
}
int free_page(void *v)
{
return kfree_to_cache(PGALLOC_PG_CACHE, v);
}
int free_pmd(void *v)
{
return kfree_to_cache(PGALLOC_PMD_CACHE, v);
}
int free_pgd(void *v)
{
return kfree_to_cache(PGALLOC_PGD_CACHE, v);
}
void *zalloc_page(void)
{
void *p = alloc_page();
memset(p, 0, PAGE_SIZE);
return p;
}

94
src/generic/physmem.c Normal file
View File

@@ -0,0 +1,94 @@
/*
* Global physical memory descriptions.
*
* Copyright (C) 2007 Bahadir Balban
*/
#include <l4/generic/physmem.h>
#include <l4/generic/pgalloc.h>
#include <l4/generic/tcb.h>
#include <l4/lib/list.h>
#include <l4/lib/spinlock.h>
#include INC_SUBARCH(mm.h)
#include INC_GLUE(memlayout.h)
#include INC_GLUE(memory.h)
#include INC_PLAT(offsets.h)
#include INC_PLAT(printascii.h)
#include INC_ARCH(linker.h)
struct page_bitmap page_map;
static void init_page_map(unsigned long start, unsigned long end)
{
page_map.pfn_start = __pfn(start);
page_map.pfn_end = __pfn(end);
set_page_map(start, __pfn(end - start), 0);
}
/*
* Marks pages in the global page_map as used or unused.
*
* @start = start page address to set, inclusive.
* @numpages = number of pages to set.
*/
int set_page_map(unsigned long start, int numpages, int val)
{
unsigned long pfn_start = __pfn(start);
unsigned long pfn_end = __pfn(start) + numpages;
unsigned long pfn_err = 0;
if (page_map.pfn_start > pfn_start || page_map.pfn_end < pfn_start) {
pfn_err = pfn_start;
goto error;
}
if (page_map.pfn_end < pfn_end || page_map.pfn_start > pfn_end) {
pfn_err = pfn_end;
goto error;
}
if (val)
for (int i = pfn_start; i < pfn_end; i++)
page_map.map[BITWISE_GETWORD(i)] |= BITWISE_GETBIT(i);
else
for (int i = pfn_start; i < pfn_end; i++)
page_map.map[BITWISE_GETWORD(i)] &= ~BITWISE_GETBIT(i);
return 0;
error:
BUG_MSG("Given page area is out of system page_map range: 0x%lx\n",
pfn_err << PAGE_BITS);
return -1;
}
/* Describes physical memory boundaries of the system. */
struct memdesc physmem;
/* Fills in the physmem structure with free physical memory information */
void physmem_init()
{
unsigned long start = (unsigned long)_start_kernel;
unsigned long end = (unsigned long)_end_kernel;
/* Initialise page map */
init_page_map(PHYS_MEM_START, PHYS_MEM_END);
/* Mark kernel areas as used */
set_page_map(virt_to_phys(start), __pfn(end - start), 1);
/* Map initial pgd area as used */
start = (unsigned long)__pt_start;
end = (unsigned long)__pt_end;
set_page_map(virt_to_phys(current->pgd), __pfn(end - start), 1);
physmem.start = PHYS_MEM_START;
physmem.end = PHYS_MEM_END;
physmem.free_cur = __svc_images_end;
physmem.free_end = PHYS_MEM_END;
physmem.numpages = (PHYS_MEM_START - PHYS_MEM_END) / PAGE_SIZE;
}
void memory_init()
{
printascii("Initialising kernel memory allocator.\n");
init_pgalloc();
}

371
src/generic/scheduler.c Normal file
View File

@@ -0,0 +1,371 @@
/*
* A basic scheduler that does the job for now.
*
* Copyright (C) 2007 Bahadir Balban
*/
#include <l4/lib/list.h>
#include <l4/lib/printk.h>
#include <l4/lib/string.h>
#include <l4/lib/mutex.h>
#include <l4/lib/bit.h>
#include <l4/lib/spinlock.h>
#include <l4/generic/scheduler.h>
#include <l4/generic/preempt.h>
#include <l4/generic/irq.h>
#include <l4/generic/tcb.h>
#include <l4/api/errno.h>
#include <l4/api/kip.h>
#include INC_SUBARCH(mm.h)
#include INC_SUBARCH(mmu_ops.h)
#include INC_GLUE(init.h)
#include INC_PLAT(platform.h)
#include INC_ARCH(exception.h)
/* A very basic runqueue */
struct runqueue {
struct spinlock lock;
struct list_head task_list;
unsigned int total;
};
static struct runqueue sched_rq[3];
static struct runqueue *rq_runnable, *rq_expired, *rq_pending;
/* This is incremented on each irq or voluntarily by preempt_disable() */
extern unsigned int current_irq_nest_count;
/* This ensures no scheduling occurs after voluntary preempt_disable() */
static int voluntary_preempt = 0;
int preemptive()
{
return current_irq_nest_count == 0;
}
int preempt_count()
{
return current_irq_nest_count;
}
void preempt_enable(void)
{
voluntary_preempt--;
current_irq_nest_count--;
/*
* Even if count increases after we check it, it will come back to zero.
* This test really is asking "is this the outmost explicit
* preempt_enable() that will really enable context switching?"
*/
if (current_irq_nest_count == 0) {
/* Then, give scheduler a chance to check need_resched == 1 */
schedule();
}
}
/* A positive irq nest count implies current context cannot be preempted. */
void preempt_disable(void)
{
current_irq_nest_count++;
voluntary_preempt++;
}
void sched_runqueue_init(void)
{
for (int i = 0; i < 3; i++) {
memset(&sched_rq[i], 0, sizeof(struct runqueue));
INIT_LIST_HEAD(&sched_rq[i].task_list);
spin_lock_init(&sched_rq[i].lock);
}
rq_runnable = &sched_rq[0];
rq_expired = &sched_rq[1];
rq_pending = &sched_rq[2];
}
/* Lock scheduler. Should only be used when scheduling. */
static inline void sched_lock(void)
{
preempt_disable();
}
/* Sched unlock */
static inline void sched_unlock(void)
{
/*
* This is to make sure preempt_enable() does not
* try to schedule since we're already scheduling.
*/
need_resched = 0;
preempt_enable();
}
/* Swaps runnable and expired queues *if* runnable queue is empty. */
static void sched_rq_swap_expired_runnable(void)
{
struct runqueue *temp;
if (list_empty(&rq_runnable->task_list) &&
!list_empty(&rq_expired->task_list)) {
/* Queues are swapped and expired list becomes runnable */
temp = rq_runnable;
rq_runnable = rq_expired;
rq_expired = temp;
}
}
/* Helper for adding a new task to a runqueue */
static void sched_rq_add_task(struct ktcb *task, struct runqueue *rq, int front)
{
BUG_ON(task->rq);
/*
* If the task is sinfully in a runqueue, this may still keep silent
* upon a racing condition, since its rq can't be locked in advance.
*/
BUG_ON(!list_empty(&task->rq_list));
if (front)
list_add(&task->rq_list, &rq->task_list);
else
list_add_tail(&task->rq_list, &rq->task_list);
rq->total++;
task->rq = rq;
}
static inline void
sched_rq_add_task_front(struct ktcb *task, struct runqueue *rq)
{
sched_rq_add_task(task, rq, 1);
}
static inline void
sched_rq_add_task_behind(struct ktcb *task, struct runqueue *rq)
{
sched_rq_add_task(task, rq, 0);
}
/* Helper for removing a task from its runqueue. */
static inline void sched_rq_remove_task(struct ktcb *task)
{
list_del_init(&task->rq_list);
task->rq->total--;
task->rq = 0;
}
static inline void sched_init_task(struct ktcb *task)
{
INIT_LIST_HEAD(&task->rq_list);
task->ticks_left = TASK_TIMESLICE_DEFAULT;
task->state = TASK_INACTIVE;
task->ts_need_resched = 0;
}
void sched_tell(struct ktcb *task, unsigned int fl)
{
BUG_ON(!(SCHED_FL_MASK & fl));
/* The last flag overrrides all existing flags. */
task->schedfl = fl;
}
void sched_yield()
{
need_resched = 1;
schedule();
}
/*
* Any task that wants the scheduler's attention and not in its any one of
* its currently runnable realms, would call this. E.g. dormant tasks
* sleeping tasks, newly created tasks. But not currently runnable tasks.
*/
void sched_add_pending_task(struct ktcb *task)
{
BUG_ON(task->rq);
spin_lock(&rq_pending->lock);
sched_rq_add_task_behind(task, rq_pending);
spin_unlock(&rq_pending->lock);
}
/* Tells scheduler to remove given runnable task from runqueues */
void sched_notify_sleep(struct ktcb *task)
{
sched_tell(task, SCHED_FL_SLEEP);
}
void sched_sleep_task(struct ktcb *task)
{
sched_notify_sleep(task);
if (task == current)
sched_yield();
}
/* Tells scheduler to remove given runnable task from runqueues */
void sched_notify_suspend(struct ktcb *task)
{
sched_tell(task, SCHED_FL_SUSPEND);
}
void sched_suspend_task(struct ktcb *task)
{
sched_notify_suspend(task);
if (task == current)
sched_yield();
}
/* Tells scheduler to add given task into runqueues whenever possible */
void sched_notify_resume(struct ktcb *task)
{
BUG_ON(current == task);
sched_tell(task, SCHED_FL_RESUME);
sched_add_pending_task(task);
}
/* NOTE: Might as well just set need_resched instead of full yield.
* This would work on irq context as well. */
/* Same as resume, but also yields. */
void sched_resume_task(struct ktcb *task)
{
sched_notify_resume(task);
sched_yield();
}
void sched_start_task(struct ktcb *task)
{
sched_init_task(task);
sched_resume_task(task);
}
/*
* Checks currently pending scheduling flags on the task and does two things:
* 1) Modify their state.
* 2) Modify their runqueues.
*
* An inactive/sleeping task that is pending-runnable would change state here.
* A runnable task that is pending-inactive would also change state here.
* Returns 1 if it has changed anything, e.g. task state, runqueues, and
* 0 otherwise.
*/
static int sched_next_state(struct ktcb *task)
{
unsigned int flags = task->schedfl;
int ret = 0;
switch(flags) {
case 0:
ret = 0;
break;
case SCHED_FL_SUSPEND:
task->state = TASK_INACTIVE;
ret = 1;
break;
case SCHED_FL_RESUME:
task->state = TASK_RUNNABLE;
ret = 1;
break;
case SCHED_FL_SLEEP:
task->state = TASK_SLEEPING;
ret = 1;
break;
default:
BUG();
}
task->schedfl = 0;
return ret;
}
extern void switch_to(struct ktcb *cur, struct ktcb *next);
static inline void context_switch(struct ktcb *next)
{
struct ktcb *cur = current;
// printk("(%d) to (%d)\n", cur->tid, next->tid);
/* Flush caches and everything */
arm_clean_invalidate_cache();
arm_invalidate_tlb();
arm_set_ttb(virt_to_phys(next->pgd));
arm_invalidate_tlb();
switch_to(cur, next);
// printk("Returning from yield. Tid: (%d)\n", cur->tid);
}
void scheduler()
{
struct ktcb *next = 0, *pending = 0, *n = 0;
sched_lock();
need_resched = 0;
BUG_ON(current->tid < MIN_PREDEFINED_TID ||
current->tid > MAX_PREDEFINED_TID);
BUG_ON(current->rq != rq_runnable);
/* Current task */
sched_rq_remove_task(current);
sched_next_state(current);
if (current->state == TASK_RUNNABLE) {
current->ticks_left += TASK_TIMESLICE_DEFAULT;
BUG_ON(current->ticks_left <= 0);
sched_rq_add_task_behind(current, rq_expired);
}
sched_rq_swap_expired_runnable();
/* Runnable-pending tasks */
spin_lock(&rq_pending->lock);
list_for_each_entry_safe(pending, n, &rq_pending->task_list, rq_list) {
sched_next_state(pending);
sched_rq_remove_task(pending);
if (pending->state == TASK_RUNNABLE)
sched_rq_add_task_front(pending, rq_runnable);
}
spin_unlock(&rq_pending->lock);
/* Next task */
retry_next:
if (rq_runnable->total > 0) {
next = list_entry(rq_runnable->task_list.next, struct ktcb, rq_list);
sched_next_state(next);
if (next->state != TASK_RUNNABLE) {
sched_rq_remove_task(next);
sched_rq_swap_expired_runnable();
goto retry_next;
}
} else {
printk("Idle task.\n");
while (1);
}
disable_irqs();
sched_unlock();
context_switch(next);
}
void schedule(void)
{
/* It's a royal bug to call schedule when preemption is disabled */
BUG_ON(voluntary_preempt);
if (need_resched)
scheduler();
}
void scheduler_start()
{
/* Initialise runqueues */
sched_runqueue_init();
/* Initialse inittask as runnable for first-ever scheduling */
sched_init_task(current);
current->state = TASK_RUNNABLE;
sched_rq_add_task_front(current, rq_runnable);
/* Start the timer */
timer_start();
switch_to_user(current);
}

36
src/generic/tcb.c Normal file
View File

@@ -0,0 +1,36 @@
/*
* Some ktcb related data
*
* Copyright (C) 2007 Bahadir Balban
*/
#include <l4/generic/tcb.h>
#include <l4/generic/space.h>
#include <l4/lib/idpool.h>
/* ID pools for threads and spaces. */
struct id_pool *thread_id_pool;
struct id_pool *space_id_pool;
/* Hash table for all existing tasks */
struct list_head global_task_list;
/* Offsets for ktcb fields that are accessed from assembler */
unsigned int need_resched_offset = offsetof(struct ktcb, ts_need_resched);
unsigned int syscall_regs_offset = offsetof(struct ktcb, syscall_regs);
#if 0
int task_suspend(struct ktcb *task)
{
task->flags |= SCHED_FLAG_SUSPEND;
return 0;
}
int task_resume(struct ktcb *task)
{
task->flags &= ~SCHED_FLAG_SUSPEND;
return sched_enqueue_task(task);
}
#endif

96
src/generic/time.c Normal file
View File

@@ -0,0 +1,96 @@
/*
* Time.
*
* Copyright (C) 2007 Bahadir Balban
*
*/
#include <l4/types.h>
#include <l4/lib/mutex.h>
#include <l4/lib/printk.h>
#include <l4/generic/irq.h>
#include <l4/generic/scheduler.h>
#include <l4/generic/time.h>
#include INC_ARCH(exception.h)
/* TODO:
* 1) Add RTC support.
* 2) Need to calculate time since EPOCH,
* 3) Jiffies must be initialised to a reasonable value.
*/
volatile u32 jiffies;
static inline void increase_jiffies(void)
{
jiffies++;
}
static int noticks_noresched = 0;
/*
* Check preemption anomalies:
*
* This checks how many times no rescheduling has occured even though ticks
* reached zero. This suggests that preemption was enabled for more than a timer
* interval. Normally, even if a preemption irq occured during a non-preemptive
* state, preemption is *guaranteed* to occur before the next irq, provided that
* the non-preemptive period is less than a timer irq interval (and it must be).
*
* Time:
*
* |-|---------------------|-|-------------------->
* | V | V
* | Preemption irq() | Next irq.
* V V
* preempt_disabled() preempt_enabled() && preemption;
*/
void check_noticks_noresched(void)
{
if (!current->ticks_left)
noticks_noresched++;
if (noticks_noresched >= 2) {
printk("Warning, no ticks and yet no rescheduling "
"for %d times.\n", noticks_noresched);
printk("Spending more than a timer period"
" as nonpreemptive!!!\n");
}
}
void update_process_times(void)
{
struct ktcb *cur = current;
BUG_ON(cur->ticks_left < 0);
/*
* If preemption is disabled we stop reducing ticks when it reaches 0
* but set need_resched so that as soon as preempt-enabled, scheduling
* occurs.
*/
if (cur->ticks_left == 0) {
need_resched = 1;
// check_noticks_noresched();
return;
}
// noticks_noresched = 0;
if (in_kernel())
cur->kernel_time++;
else
cur->user_time++;
cur->ticks_left--;
if (!cur->ticks_left)
need_resched = 1;
}
int do_timer_irq(void)
{
increase_jiffies();
update_process_times();
return IRQ_HANDLED;
}