mirror of
https://github.com/drasko/codezero.git
synced 2026-01-14 20:03:16 +01:00
New scheduler and interruptible blocking.
A new scheduler replaces the old one. - There are no sched_xxx_notify() calls that ask scheduler to change task state. - Tasks now have priorities and different timeslices. - One second interval is distributed among processes. - There are just runnable and expired queues. - SCHED_GRANULARITY determines a maximum running boundary for tasks. - Scheduler can now detect a safe point and suspend a task. Interruptible blocking is implemented. - Mutexes, waitqueues and ipc are modified to have an interruptible nature. - Sleep information is stored on the ktcb. (which waitqueue? etc.)
This commit is contained in:
@@ -12,6 +12,12 @@
|
||||
#include <l4/generic/physmem.h>
|
||||
#include INC_GLUE(memory.h)
|
||||
|
||||
/* FIXME:
|
||||
*
|
||||
* mem_cache_alloc() now has an interruptible mutex.
|
||||
* All routines defined here should check returned errors.
|
||||
*/
|
||||
|
||||
#define PGALLOC_PGD_CACHE 0
|
||||
#define PGALLOC_PMD_CACHE 1
|
||||
#define PGALLOC_PG_CACHE 2
|
||||
|
||||
@@ -1,12 +1,13 @@
|
||||
/*
|
||||
* A basic scheduler that does the job for now.
|
||||
* A basic priority-based scheduler.
|
||||
*
|
||||
* Copyright (C) 2007 Bahadir Balban
|
||||
* Copyright (C) 2007, 2008 Bahadir Balban
|
||||
*/
|
||||
#include <l4/lib/list.h>
|
||||
#include <l4/lib/printk.h>
|
||||
#include <l4/lib/string.h>
|
||||
#include <l4/lib/mutex.h>
|
||||
#include <l4/lib/math.h>
|
||||
#include <l4/lib/bit.h>
|
||||
#include <l4/lib/spinlock.h>
|
||||
#include <l4/generic/scheduler.h>
|
||||
@@ -21,16 +22,19 @@
|
||||
#include INC_PLAT(platform.h)
|
||||
#include INC_ARCH(exception.h)
|
||||
|
||||
/* A very basic runqueue */
|
||||
|
||||
/* A basic runqueue */
|
||||
struct runqueue {
|
||||
struct spinlock lock;
|
||||
struct list_head task_list;
|
||||
unsigned int total;
|
||||
struct spinlock lock; /* Lock */
|
||||
struct list_head task_list; /* List of tasks in rq */
|
||||
unsigned int total; /* Total tasks */
|
||||
int recalc_timeslice; /* Need timeslice redistribution */
|
||||
};
|
||||
|
||||
static struct runqueue sched_rq[3];
|
||||
static struct runqueue *rq_runnable, *rq_expired, *rq_pending;
|
||||
|
||||
#define SCHED_RQ_TOTAL 2
|
||||
static struct runqueue sched_rq[SCHED_RQ_TOTAL];
|
||||
static struct runqueue *rq_runnable, *rq_expired;
|
||||
static int prio_total; /* Total priority of all tasks */
|
||||
|
||||
/* This is incremented on each irq or voluntarily by preempt_disable() */
|
||||
extern unsigned int current_irq_nest_count;
|
||||
@@ -52,16 +56,6 @@ void preempt_enable(void)
|
||||
{
|
||||
voluntary_preempt--;
|
||||
current_irq_nest_count--;
|
||||
|
||||
/*
|
||||
* Even if count increases after we check it, it will come back to zero.
|
||||
* This test really is asking "is this the outmost explicit
|
||||
* preempt_enable() that will really enable context switching?"
|
||||
*/
|
||||
if (current_irq_nest_count == 0) {
|
||||
/* Then, give scheduler a chance to check need_resched == 1 */
|
||||
schedule();
|
||||
}
|
||||
}
|
||||
|
||||
/* A positive irq nest count implies current context cannot be preempted. */
|
||||
@@ -71,9 +65,30 @@ void preempt_disable(void)
|
||||
voluntary_preempt++;
|
||||
}
|
||||
|
||||
void sched_runqueue_init(void)
|
||||
int in_irq_context(void)
|
||||
{
|
||||
for (int i = 0; i < 3; i++) {
|
||||
/*
|
||||
* If there was a real irq, irq nest count must be
|
||||
* one more than all preempt_disable()'s which are
|
||||
* counted by voluntary_preempt.
|
||||
*/
|
||||
return (current_irq_nest_count == (voluntary_preempt + 1));
|
||||
}
|
||||
|
||||
int in_nested_irq_context(void)
|
||||
{
|
||||
/* Deducing voluntary preemptions we get real irq nesting */
|
||||
return (current_irq_nest_count - voluntary_preempt) > 1;
|
||||
}
|
||||
|
||||
int in_task_context(void)
|
||||
{
|
||||
return !in_irq_context();
|
||||
}
|
||||
|
||||
void sched_init_runqueues(void)
|
||||
{
|
||||
for (int i = 0; i < SCHED_RQ_TOTAL; i++) {
|
||||
memset(&sched_rq[i], 0, sizeof(struct runqueue));
|
||||
INIT_LIST_HEAD(&sched_rq[i].task_list);
|
||||
spin_lock_init(&sched_rq[i].lock);
|
||||
@@ -81,203 +96,93 @@ void sched_runqueue_init(void)
|
||||
|
||||
rq_runnable = &sched_rq[0];
|
||||
rq_expired = &sched_rq[1];
|
||||
rq_pending = &sched_rq[2];
|
||||
prio_total = 0;
|
||||
}
|
||||
|
||||
/* Lock scheduler. Should only be used when scheduling. */
|
||||
static inline void sched_lock(void)
|
||||
{
|
||||
preempt_disable();
|
||||
}
|
||||
|
||||
/* Sched unlock */
|
||||
static inline void sched_unlock(void)
|
||||
{
|
||||
/*
|
||||
* This is to make sure preempt_enable() does not
|
||||
* try to schedule since we're already scheduling.
|
||||
*/
|
||||
need_resched = 0;
|
||||
preempt_enable();
|
||||
}
|
||||
|
||||
/* Swaps runnable and expired queues *if* runnable queue is empty. */
|
||||
static void sched_rq_swap_expired_runnable(void)
|
||||
/* Swap runnable and expired runqueues. */
|
||||
static void sched_rq_swap_runqueues(void)
|
||||
{
|
||||
struct runqueue *temp;
|
||||
|
||||
if (list_empty(&rq_runnable->task_list) &&
|
||||
!list_empty(&rq_expired->task_list)) {
|
||||
BUG_ON(list_empty(&rq_expired->task_list));
|
||||
BUG_ON(rq_expired->total == 0);
|
||||
|
||||
/* Queues are swapped and expired list becomes runnable */
|
||||
temp = rq_runnable;
|
||||
rq_runnable = rq_expired;
|
||||
rq_expired = temp;
|
||||
}
|
||||
/* Queues are swapped and expired list becomes runnable */
|
||||
temp = rq_runnable;
|
||||
rq_runnable = rq_expired;
|
||||
rq_expired = temp;
|
||||
}
|
||||
|
||||
/* FIXME:
|
||||
* Sleepers should not affect runqueue priority.
|
||||
* Suspended tasks should affect runqueue priority.
|
||||
*
|
||||
* Also make sure that if sleepers get suspended,
|
||||
* they do affect runqueue priority.
|
||||
*/
|
||||
|
||||
/* Set policy on where to add tasks in the runqueue */
|
||||
#define RQ_ADD_BEHIND 0
|
||||
#define RQ_ADD_FRONT 1
|
||||
|
||||
/* Helper for adding a new task to a runqueue */
|
||||
static void sched_rq_add_task(struct ktcb *task, struct runqueue *rq, int front)
|
||||
{
|
||||
BUG_ON(task->rq);
|
||||
|
||||
/*
|
||||
* If the task is sinfully in a runqueue, this may still keep silent
|
||||
* upon a racing condition, since its rq can't be locked in advance.
|
||||
*/
|
||||
BUG_ON(!list_empty(&task->rq_list));
|
||||
|
||||
spin_lock(&rq->lock);
|
||||
if (front)
|
||||
list_add(&task->rq_list, &rq->task_list);
|
||||
else
|
||||
list_add_tail(&task->rq_list, &rq->task_list);
|
||||
rq->total++;
|
||||
task->rq = rq;
|
||||
}
|
||||
|
||||
static inline void
|
||||
sched_rq_add_task_front(struct ktcb *task, struct runqueue *rq)
|
||||
{
|
||||
sched_rq_add_task(task, rq, 1);
|
||||
}
|
||||
|
||||
static inline void
|
||||
sched_rq_add_task_behind(struct ktcb *task, struct runqueue *rq)
|
||||
{
|
||||
sched_rq_add_task(task, rq, 0);
|
||||
spin_unlock(&rq->lock);
|
||||
}
|
||||
|
||||
/* Helper for removing a task from its runqueue. */
|
||||
static inline void sched_rq_remove_task(struct ktcb *task)
|
||||
static inline void sched_rq_remove_task(struct ktcb *task, struct runqueue *rq)
|
||||
{
|
||||
spin_lock(&rq->lock);
|
||||
list_del_init(&task->rq_list);
|
||||
task->rq->total--;
|
||||
task->rq = 0;
|
||||
rq->total--;
|
||||
|
||||
BUG_ON(rq->total < 0);
|
||||
spin_unlock(&rq->lock);
|
||||
}
|
||||
|
||||
void sched_init_task(struct ktcb *task)
|
||||
|
||||
void sched_init_task(struct ktcb *task, int prio)
|
||||
{
|
||||
INIT_LIST_HEAD(&task->rq_list);
|
||||
task->ticks_left = TASK_TIMESLICE_DEFAULT;
|
||||
task->priority = prio;
|
||||
task->ticks_left = 0;
|
||||
task->state = TASK_INACTIVE;
|
||||
task->ts_need_resched = 0;
|
||||
task->flags |= TASK_RESUMING;
|
||||
}
|
||||
|
||||
void sched_tell(struct ktcb *task, unsigned int fl)
|
||||
/* Synchronously resumes a task */
|
||||
void sched_resume_sync(struct ktcb *task)
|
||||
{
|
||||
BUG_ON(!(SCHED_FL_MASK & fl));
|
||||
/* The last flag overrrides all existing flags. */
|
||||
task->schedfl = fl;
|
||||
}
|
||||
task->state = TASK_RUNNABLE;
|
||||
|
||||
void sched_yield()
|
||||
{
|
||||
need_resched = 1;
|
||||
sched_rq_add_task(task, rq_runnable, RQ_ADD_FRONT);
|
||||
schedule();
|
||||
}
|
||||
|
||||
/*
|
||||
* Any task that wants the scheduler's attention and not in its any one of
|
||||
* its currently runnable realms, would call this. E.g. dormant tasks
|
||||
* sleeping tasks, newly created tasks. But not currently runnable tasks.
|
||||
* Asynchronously resumes a task.
|
||||
* The task will run in the future, but at
|
||||
* the scheduler's discretion.
|
||||
*/
|
||||
void sched_add_pending_task(struct ktcb *task)
|
||||
void sched_resume_async(struct ktcb *task)
|
||||
{
|
||||
BUG_ON(task->rq);
|
||||
spin_lock(&rq_pending->lock);
|
||||
sched_rq_add_task_behind(task, rq_pending);
|
||||
spin_unlock(&rq_pending->lock);
|
||||
task->state = TASK_RUNNABLE;
|
||||
|
||||
sched_rq_add_task(task, rq_runnable, RQ_ADD_FRONT);
|
||||
}
|
||||
|
||||
/* Tells scheduler to remove given runnable task from runqueues */
|
||||
void sched_notify_sleep(struct ktcb *task)
|
||||
{
|
||||
sched_tell(task, SCHED_FL_SLEEP);
|
||||
}
|
||||
|
||||
void sched_sleep_task(struct ktcb *task)
|
||||
{
|
||||
sched_notify_sleep(task);
|
||||
if (task == current)
|
||||
sched_yield();
|
||||
}
|
||||
|
||||
/* Tells scheduler to remove given runnable task from runqueues */
|
||||
void sched_notify_suspend(struct ktcb *task)
|
||||
{
|
||||
sched_tell(task, SCHED_FL_SUSPEND);
|
||||
}
|
||||
|
||||
void sched_suspend_task(struct ktcb *task)
|
||||
{
|
||||
sched_notify_suspend(task);
|
||||
if (task == current)
|
||||
sched_yield();
|
||||
}
|
||||
|
||||
/* Tells scheduler to add given task into runqueues whenever possible */
|
||||
void sched_notify_resume(struct ktcb *task)
|
||||
{
|
||||
BUG_ON(current == task);
|
||||
sched_tell(task, SCHED_FL_RESUME);
|
||||
sched_add_pending_task(task);
|
||||
}
|
||||
|
||||
/* NOTE: Might as well just set need_resched instead of full yield.
|
||||
* This would work on irq context as well. */
|
||||
/* Same as resume, but also yields. */
|
||||
void sched_resume_task(struct ktcb *task)
|
||||
{
|
||||
sched_notify_resume(task);
|
||||
sched_yield();
|
||||
}
|
||||
|
||||
void sched_start_task(struct ktcb *task)
|
||||
{
|
||||
sched_init_task(task);
|
||||
sched_resume_task(task);
|
||||
}
|
||||
|
||||
/*
|
||||
* Checks currently pending scheduling flags on the task and does two things:
|
||||
* 1) Modify their state.
|
||||
* 2) Modify their runqueues.
|
||||
*
|
||||
* An inactive/sleeping task that is pending-runnable would change state here.
|
||||
* A runnable task that is pending-inactive would also change state here.
|
||||
* Returns 1 if it has changed anything, e.g. task state, runqueues, and
|
||||
* 0 otherwise.
|
||||
*/
|
||||
static int sched_next_state(struct ktcb *task)
|
||||
{
|
||||
unsigned int flags = task->schedfl;
|
||||
int ret = 0;
|
||||
|
||||
switch(flags) {
|
||||
case 0:
|
||||
ret = 0;
|
||||
break;
|
||||
case SCHED_FL_SUSPEND:
|
||||
task->state = TASK_INACTIVE;
|
||||
ret = 1;
|
||||
break;
|
||||
case SCHED_FL_RESUME:
|
||||
task->state = TASK_RUNNABLE;
|
||||
ret = 1;
|
||||
break;
|
||||
case SCHED_FL_SLEEP:
|
||||
task->state = TASK_SLEEPING;
|
||||
ret = 1;
|
||||
break;
|
||||
default:
|
||||
BUG();
|
||||
}
|
||||
task->schedfl = 0;
|
||||
return ret;
|
||||
}
|
||||
|
||||
|
||||
extern void switch_to(struct ktcb *cur, struct ktcb *next);
|
||||
extern void arch_switch(struct ktcb *cur, struct ktcb *next);
|
||||
|
||||
static inline void context_switch(struct ktcb *next)
|
||||
{
|
||||
@@ -286,84 +191,179 @@ static inline void context_switch(struct ktcb *next)
|
||||
// printk("(%d) to (%d)\n", cur->tid, next->tid);
|
||||
|
||||
/* Flush caches and everything */
|
||||
arm_clean_invalidate_cache();
|
||||
arm_invalidate_tlb();
|
||||
arm_set_ttb(virt_to_phys(next->pgd));
|
||||
arm_invalidate_tlb();
|
||||
switch_to(cur, next);
|
||||
arch_hardware_flush(next->pgd);
|
||||
|
||||
/* Switch context */
|
||||
arch_switch(cur, next);
|
||||
|
||||
// printk("Returning from yield. Tid: (%d)\n", cur->tid);
|
||||
}
|
||||
|
||||
void scheduler()
|
||||
/*
|
||||
* Priority calculation is so simple it is inlined. The task gets
|
||||
* the ratio of its priority to total priority of all runnable tasks.
|
||||
*/
|
||||
static inline int sched_recalc_ticks(struct ktcb *task, int prio_total)
|
||||
{
|
||||
struct ktcb *next = 0, *pending = 0, *n = 0;
|
||||
return task->ticks_assigned =
|
||||
SCHED_TICKS * task->priority / prio_total;
|
||||
}
|
||||
|
||||
sched_lock();
|
||||
/*
|
||||
* Tasks come here, either by setting need_resched (via next irq),
|
||||
* or by directly calling it (in process context).
|
||||
*
|
||||
* The scheduler is similar to Linux's so called O(1) scheduler,
|
||||
* although a lot simpler. Task priorities determine task timeslices.
|
||||
* Each task gets a ratio of its priority to the total priority of
|
||||
* all runnable tasks. When this total changes, (e.g. threads die or
|
||||
* are created, or a thread's priority is changed) the timeslices are
|
||||
* recalculated on a per-task basis as each thread becomes runnable.
|
||||
* Once all runnable tasks expire, runqueues are swapped. Sleeping
|
||||
* tasks are removed from the runnable queue, and added back later
|
||||
* without affecting the timeslices. Suspended tasks however,
|
||||
* necessitate a timeslice recalculation as they are considered to go
|
||||
* inactive indefinitely or for a very long time. They are put back
|
||||
* to the expired queue if they want to run again.
|
||||
*
|
||||
* A task is rescheduled either when it hits a SCHED_GRANULARITY
|
||||
* boundary, or when its timeslice has expired. SCHED_GRANULARITY
|
||||
* ensures context switches do occur at a maximum boundary even if a
|
||||
* task's timeslice is very long. In the future, real-time tasks will
|
||||
* be added, and they will be able to ignore SCHED_GRANULARITY.
|
||||
*
|
||||
* In the future, the tasks will be sorted by priority in their
|
||||
* runqueue, as well as having an adjusted timeslice.
|
||||
*
|
||||
* Runqueues are swapped at a single second's interval. This implies
|
||||
* the timeslice recalculations would also occur at this interval.
|
||||
*/
|
||||
void schedule()
|
||||
{
|
||||
struct ktcb *next;
|
||||
|
||||
/* Should not schedule with preemption disabled */
|
||||
BUG_ON(voluntary_preempt);
|
||||
|
||||
/* Should not have more ticks than SCHED_TICKS */
|
||||
BUG_ON(current->ticks_left > SCHED_TICKS);
|
||||
|
||||
/* Cannot have any irqs that schedule after this */
|
||||
preempt_disable();
|
||||
|
||||
/* NOTE:
|
||||
* We could avoid double-scheduling by detecting a task
|
||||
* that's about to schedule voluntarily and skipping the
|
||||
* schedule() call in irq mode.
|
||||
*/
|
||||
|
||||
/* Reset schedule flag */
|
||||
need_resched = 0;
|
||||
BUG_ON(current->rq != rq_runnable);
|
||||
|
||||
/* Current task */
|
||||
sched_rq_remove_task(current);
|
||||
sched_next_state(current);
|
||||
/* Remove from runnable queue */
|
||||
sched_rq_remove_task(current, rq_runnable);
|
||||
|
||||
/* Put it into appropriate runqueue */
|
||||
if (current->state == TASK_RUNNABLE) {
|
||||
BUG_ON(current->ticks_left < 0);
|
||||
if (current->ticks_left == 0)
|
||||
current->ticks_left = TASK_TIMESLICE_DEFAULT;
|
||||
sched_rq_add_task_behind(current, rq_expired);
|
||||
if (current->ticks_left)
|
||||
sched_rq_add_task(current, rq_runnable, RQ_ADD_BEHIND);
|
||||
else
|
||||
sched_rq_add_task(current, rq_expired, RQ_ADD_BEHIND);
|
||||
}
|
||||
sched_rq_swap_expired_runnable();
|
||||
|
||||
/* Runnable-pending tasks */
|
||||
spin_lock(&rq_pending->lock);
|
||||
list_for_each_entry_safe(pending, n, &rq_pending->task_list, rq_list) {
|
||||
sched_next_state(pending);
|
||||
sched_rq_remove_task(pending);
|
||||
if (pending->state == TASK_RUNNABLE)
|
||||
sched_rq_add_task_front(pending, rq_runnable);
|
||||
}
|
||||
spin_unlock(&rq_pending->lock);
|
||||
/* Check if there's a pending suspend for thread */
|
||||
if (current->flags & TASK_SUSPENDING) {
|
||||
/*
|
||||
* The task should have no locks and be in a runnable state.
|
||||
* (e.g. properly woken up by the suspender)
|
||||
*/
|
||||
if (current->nlocks == 0 && current->state == TASK_RUNNABLE) {
|
||||
/* Suspend it if suitable */
|
||||
current->state = TASK_INACTIVE;
|
||||
current->flags &= ~TASK_SUSPENDING;
|
||||
|
||||
/* Next task */
|
||||
retry_next:
|
||||
if (rq_runnable->total > 0) {
|
||||
next = list_entry(rq_runnable->task_list.next, struct ktcb, rq_list);
|
||||
sched_next_state(next);
|
||||
if (next->state != TASK_RUNNABLE) {
|
||||
sched_rq_remove_task(next);
|
||||
sched_rq_swap_expired_runnable();
|
||||
goto retry_next;
|
||||
/*
|
||||
* The task has been made inactive here.
|
||||
* A suspended task affects timeslices whereas
|
||||
* a sleeping task doesn't as it is believed
|
||||
* sleepers would become runnable soon.
|
||||
*/
|
||||
prio_total -= current->priority;
|
||||
BUG_ON(prio_total <= 0);
|
||||
} else {
|
||||
/*
|
||||
* Top up task's ticks temporarily, and
|
||||
* wait for it to release its locks.
|
||||
*/
|
||||
current->state = TASK_RUNNABLE;
|
||||
current->ticks_left = max(current->ticks_left,
|
||||
SCHED_GRANULARITY);
|
||||
sched_rq_add_task(current, rq_runnable, RQ_ADD_FRONT);
|
||||
}
|
||||
} else {
|
||||
printk("Idle task.\n");
|
||||
while (1);
|
||||
}
|
||||
|
||||
/* Determine the next task to be run */
|
||||
if (rq_runnable->total > 0) {
|
||||
next = list_entry(rq_runnable->task_list.next,
|
||||
struct ktcb, rq_list);
|
||||
} else {
|
||||
if (rq_expired->total > 0) {
|
||||
sched_rq_swap_runqueues();
|
||||
next = list_entry(rq_runnable->task_list.next,
|
||||
struct ktcb, rq_list);
|
||||
} else {
|
||||
printk("Idle task.\n");
|
||||
while(1);
|
||||
}
|
||||
}
|
||||
|
||||
/* Zero ticks indicates task hasn't ran since last rq swap */
|
||||
if (next->ticks_left == 0) {
|
||||
|
||||
/* New tasks affect runqueue total priority. */
|
||||
if (next->flags & TASK_RESUMING) {
|
||||
prio_total += next->priority;
|
||||
next->flags &= ~TASK_RESUMING;
|
||||
}
|
||||
|
||||
/*
|
||||
* Redistribute timeslice. We do this as each task
|
||||
* becomes runnable rather than all at once. It's also
|
||||
* done only upon a runqueue swap.
|
||||
*/
|
||||
sched_recalc_ticks(next, prio_total);
|
||||
next->ticks_left = next->ticks_assigned;
|
||||
}
|
||||
|
||||
/* Reinitialise task's schedule granularity boundary */
|
||||
next->sched_granule = SCHED_GRANULARITY;
|
||||
|
||||
/* Finish */
|
||||
disable_irqs();
|
||||
sched_unlock();
|
||||
preempt_enable();
|
||||
context_switch(next);
|
||||
}
|
||||
|
||||
void schedule(void)
|
||||
{
|
||||
/* It's a royal bug to call schedule when preemption is disabled */
|
||||
BUG_ON(voluntary_preempt);
|
||||
|
||||
if (need_resched)
|
||||
scheduler();
|
||||
}
|
||||
|
||||
/*
|
||||
* Initialise pager as runnable for first-ever scheduling,
|
||||
* and start the scheduler.
|
||||
*/
|
||||
void scheduler_start()
|
||||
{
|
||||
/* Initialise runqueues */
|
||||
sched_runqueue_init();
|
||||
sched_init_runqueues();
|
||||
|
||||
/* Initialse inittask as runnable for first-ever scheduling */
|
||||
sched_init_task(current);
|
||||
/* Initialise scheduler fields of pager */
|
||||
sched_init_task(current, TASK_PRIO_PAGER);
|
||||
|
||||
/* Add task to runqueue first */
|
||||
sched_rq_add_task(current, rq_runnable, RQ_ADD_FRONT);
|
||||
|
||||
/* Give it a kick-start tick and make runnable */
|
||||
current->ticks_left = 1;
|
||||
current->state = TASK_RUNNABLE;
|
||||
sched_rq_add_task_front(current, rq_runnable);
|
||||
|
||||
/* Start the timer */
|
||||
/* Start the timer and switch */
|
||||
timer_start();
|
||||
switch_to_user(current);
|
||||
}
|
||||
|
||||
@@ -10,6 +10,7 @@
|
||||
#include <l4/generic/irq.h>
|
||||
#include <l4/generic/scheduler.h>
|
||||
#include <l4/generic/time.h>
|
||||
#include <l4/generic/preempt.h>
|
||||
#include <l4/generic/space.h>
|
||||
#include INC_ARCH(exception.h)
|
||||
#include <l4/api/syscall.h>
|
||||
@@ -54,11 +55,16 @@ void update_system_time(void)
|
||||
if (systime.reader)
|
||||
systime.reader = 0;
|
||||
|
||||
/* Increase just like jiffies, but reset every HZ */
|
||||
/* Increase just like jiffies, but reset every second */
|
||||
systime.thz++;
|
||||
|
||||
/* On every HZ increase seconds */
|
||||
if (systime.thz == HZ) {
|
||||
/*
|
||||
* On every 1 second of timer ticks, increase seconds
|
||||
*
|
||||
* TODO: Investigate: how do we make sure timer_irq is
|
||||
* called SCHED_TICKS times per second?
|
||||
*/
|
||||
if (systime.thz == SCHED_TICKS) {
|
||||
systime.thz = 0;
|
||||
systime.sec++;
|
||||
}
|
||||
@@ -79,7 +85,7 @@ int sys_time(syscall_context_t *args)
|
||||
while(retries > 0) {
|
||||
systime.reader = 1;
|
||||
tv->tv_sec = systime.sec;
|
||||
tv->tv_usec = 1000000 * systime.thz / HZ;
|
||||
tv->tv_usec = 1000000 * systime.thz / SCHED_TICKS;
|
||||
|
||||
retries--;
|
||||
if (systime.reader)
|
||||
@@ -108,21 +114,37 @@ void update_process_times(void)
|
||||
{
|
||||
struct ktcb *cur = current;
|
||||
|
||||
BUG_ON(cur->ticks_left < 0);
|
||||
|
||||
if (cur->ticks_left == 0) {
|
||||
need_resched = 1;
|
||||
return;
|
||||
/*
|
||||
* Nested irqs and irqs during non-preemptive
|
||||
* times could try to deduct ticks below zero.
|
||||
* We ignore such states and return.
|
||||
*/
|
||||
if (in_nested_irq_context() || !preemptive())
|
||||
return;
|
||||
else /* Otherwise its a bug. */
|
||||
BUG();
|
||||
}
|
||||
|
||||
/*
|
||||
* These are TASK_RUNNABLE times, i.e. exludes sleeps
|
||||
* In the future we may use timestamps for accuracy
|
||||
*/
|
||||
if (in_kernel())
|
||||
cur->kernel_time++;
|
||||
else
|
||||
cur->user_time++;
|
||||
|
||||
cur->ticks_left--;
|
||||
cur->sched_granule--;
|
||||
|
||||
/* Task has expired its timeslice */
|
||||
if (!cur->ticks_left)
|
||||
need_resched = 1;
|
||||
|
||||
/* Task has expired its schedule granularity */
|
||||
if (!cur->sched_granule)
|
||||
need_resched = 1;
|
||||
}
|
||||
|
||||
|
||||
|
||||
Reference in New Issue
Block a user