This malloc is a very simple first-fit sort of allocator. Now, it builds
without any problem but because we havent fixed include paths and added
it to the referenced libraries in the posix container yet, POSIX doesnt
build. So take it with caution.
(cherry picked from commit 65523743e86268eddd3bd2aab58476003f71c2c2)
We moved initial list of a pager's caps from ktcb to task's space
since the task is expected to trust its space.
Most references to task->cap_list had to change. Although a single
cap list only tells part of the story about the task's caps, the
TASK_CAP_LIST macro works for us to get the first private set of
caps that a task has.
Pagers can now share their own private capabilities with their
paged children, or their siblings with whom they have a common pager
ancestor.
Added flags CAP_SHARE_CHILD and CAP_SHARE_SIBLINGS for that.
Capabilities will be shared among collection of threads. A pager
will have a right to share its own capabilities with its space,
its thread group and its container.
Currently sharing is possible with only all of the caps. Next,
it will be support for cap splitting, granting, and partial sharing
and granting.
Issues:
- A page-faulting thread suspends if receives -1 from pager page fault ipc.
This is fine if pager is about to delete the thread, but it is not if
it is a buggy pager.
- Need to find a way to completely get rid of suspended pager.
- A method of deleting suspended tasks could remedy both cases above.
Removed dependency on hard-coded pager id. Pager id is now passed
as an environment string `pagerid' to tasks. Alternatively, this
could take space in the utcb of each task.
- Need to remove old versions
- Need to merge the two.
- Need to investigate occasional page fault on NMOP sequence. (resembles an error ipc_extended test)
Could be related to new page cache read/write routines.
Any thread that touches a utcb inside the kernel now properly checks
whether the utcb is mapped on its owner, and whether the mapped physical
address matches that of the current thread's tables. If not the tables
are updated.
This way, even though page tables become incoherent on utcb address
change situations (such as fork() exit(), execve()) they get updated
as they are referenced.
Since mappings are added only conditionally, caches are flushed only
when an update is necessary.
Added UTCB functions for full ipc that copy buffer or string payloads
in secondary message registers.
Some posix syscalls now use these utcb functions to copy pathnames.
test0 now successfully runs its beginning.
test0 SConscript has a dependency problem.
Issues to be investigated:
- vm_file and vnodes need to be merged fully in all functions.
- libposix shared page references need to be removed.
- Any references to VFS_TID, PAGER_TID need to be removed.
Changes:
It is now possible to use do_mmap() from within mm0.
- pager_new_virtual()/delete_virtual() return addresses that are
disjoint from find_unmapped_area() used by mmap() interface for
anonymous or not-fixed areas.
- find_unmapped_area() now uses task->map_start task->map_end instead
of task->start and task->end. task->start/end are still valid task
space addresses for mmap(), but finding a new address is limited to
map_start/map_end.
- We have both interfaces because mmap() is only useful for backed-files.
When the pager needs to access a user memory range for example, that is
not backed by a file and thus we need to use pager_new_virtual() instead
of mmap() for mapping.
It might be a good idea to simply use mmap() from inside the pager and prefault it
as a conventional way of mapping internal buffers. Will be investigated.
- This would open the way that all internal buffer mapping is
done in a standard way
- Standard syscalls would be possible to use from within the pager.