/* * Main initialisation code for the ARM kernel * * Copyright (C) 2007 Bahadir Balban */ #include #include #include #include #include #include #include #include #include #include #include INC_ARCH(linker.h) #include INC_ARCH(asm.h) #include INC_ARCH(bootdesc.h) #include INC_SUBARCH(mm.h) #include INC_SUBARCH(mmu_ops.h) #include INC_GLUE(memlayout.h) #include INC_GLUE(memory.h) #include INC_GLUE(message.h) #include INC_GLUE(syscall.h) #include INC_PLAT(platform.h) #include INC_PLAT(printascii.h) #include INC_API(syscall.h) #include INC_API(kip.h) unsigned int kernel_mapping_end; void init_locks(void) { } /* Maps the early memory regions needed to bootstrap the system */ void init_kernel_mappings(void) { init_clear_ptab(); /* Map kernel area to its virtual region */ add_section_mapping_init(virt_to_phys(_start_text), (unsigned int)_start_text, 1, cacheable | bufferable); /* Map kernel one-to-one to its physical region */ add_section_mapping_init(virt_to_phys(_start_text), virt_to_phys(_start_text), 1, 0); /* Map page table to its virtual region */ add_section_mapping_init(virt_to_phys(_start_kspace), (unsigned int)_start_kspace, 1, 0); /* Clean current before first time access. */ memset(current, 0, sizeof(struct ktcb)); /* * Setup a dummy current ktcb over the bootstack, so that generic * mapping functions can use this as the pgd source. */ current->pgd = &kspace; } void print_sections(void) { dprintk("_start_kernel: ",(unsigned int)_start_kernel); dprintk("_start_text: ",(unsigned int)_start_text); dprintk("_end_text: ", (unsigned int)_end_text); dprintk("_start_data: ", (unsigned int)_start_data); dprintk("_end_data: ", (unsigned int)_end_data); dprintk("_start_vectors: ",(unsigned int)_start_vectors); dprintk("arm_high_vector: ",(unsigned int)arm_high_vector); dprintk("_end_vectors: ",(unsigned int)_end_vectors); dprintk("_start_kip: ", (unsigned int) _start_kip); dprintk("_end_kip: ", (unsigned int) _end_kip); dprintk("_bootstack: ", (unsigned int)_bootstack); dprintk("_end_kernel: ", (unsigned int)_end_kernel); dprintk("_start_kspace: ", (unsigned int)_start_kspace); dprintk("_start_pmd: ", (unsigned int)_start_pmd); dprintk("_end_pmd: ", (unsigned int)_end_pmd); dprintk("_end_kspace: ", (unsigned int)_end_kspace); dprintk("_end: ", (unsigned int)_end); } /* Enable virtual memory using kernel's first level table * and continue execution on virtual addresses.*/ void start_vm() { /* * TTB must be 16K aligned. This is because first level tables are * sized 16K. */ if ((unsigned int)&kspace & 0x3FFF) dprintk("kspace not properly aligned for ttb:", (u32)&kspace); memset((void *)&kspace, 0, sizeof(pgd_table_t)); arm_set_ttb(virt_to_phys(&kspace)); /* * This sets all 16 domains to zero and domain 0 to 1. The outcome * is that page table access permissions are in effect for domain 0. * All other domains have no access whatsoever. */ arm_set_domain(1); /* Enable everything before mmu permissions are in place */ arm_enable_caches(); arm_enable_wbuffer(); /* * Leave the past behind. Tlbs are invalidated, write buffer is drained. * The whole of I + D caches are invalidated unconditionally. This is * important to ensure that the cache is free of previously loaded * values. Otherwise unpredictable data aborts may occur at arbitrary * times, each time a load/store operation hits one of the invalid * entries and those entries are cleaned to main memory. */ arm_invalidate_cache(); arm_drain_writebuffer(); arm_invalidate_tlb(); arm_enable_mmu(); /* Jump to virtual memory addresses */ __asm__ __volatile__ ( "add sp, sp, %0 \n" /* Update stack pointer */ #ifndef __OPTIMIZED_FP__ /* If fp not optimised away */ "add fp, fp, %0 \n" /* Update frame pointer */ #endif /* On the next instruction below, r0 gets * current PC + KOFFSET + 2 instructions after itself. */ "add r0, pc, %0 \n" /* Special symbol that is extracted and included in the loader. * Debuggers can break on it to load the virtual symbol table */ ".global break_virtual;\n" "break_virtual:\n" "mov pc, r0 \n" /* (r0 has next instruction) */ : : "r" (KERNEL_OFFSET) : "r0" ); /* At this point, execution is on virtual addresses. */ remove_section_mapping(virt_to_phys(_start_kernel)); /* * Restore link register (LR) for this function. * * NOTE: LR values are pushed onto the stack at each function call, * which means the restored return values will be physical for all * functions in the call stack except this function. So the caller * of this function must never return but initiate scheduling etc. */ __asm__ __volatile__ ( "add %0, %0, %1 \n" "mov pc, %0 \n" :: "r" (__builtin_return_address(0)), "r" (KERNEL_OFFSET) ); while(1); } /* This calculates what address the kip field would have in userspace. */ #define KIP_USR_OFFSETOF(kip, field) ((void *)(((unsigned long)&kip.field - \ (unsigned long)&kip) + USER_KIP_PAGE)) /* The kip is non-standard, using 0xBB to indicate mine for now ;-) */ void kip_init() { struct utcb **utcb_ref; memset(&kip, 0, PAGE_SIZE); memcpy(&kip, "L4\230K", 4); /* Name field = l4uK */ kip.api_version = 0xBB; kip.api_subversion = 1; kip.api_flags = 0; /* LE, 32-bit architecture */ kip.kdesc.subid = 0x1; kip.kdesc.id = 0xBB; kip.kdesc.gendate = (__YEAR__ << 9)|(__MONTH__ << 5)|(__DAY__); kip.kdesc.subsubver = 0x00000001; /* Consider as .00000001 */ kip.kdesc.ver = 0; memcpy(&kip.kdesc.supplier, "BBB", 3); kip_init_syscalls(); /* KIP + 0xFF0 is pointer to UTCB segment start address */ utcb_ref = (struct utcb **)((unsigned long)&kip + UTCB_KIP_OFFSET); /* All thread utcbs are allocated starting from UTCB_AREA_START */ *utcb_ref = (struct utcb *)UTCB_AREA_START; add_mapping(virt_to_phys(&kip), USER_KIP_PAGE, PAGE_SIZE, MAP_USR_RO_FLAGS); } void vectors_init() { unsigned int size = ((u32)_end_vectors - (u32)arm_high_vector); /* Map the vectors in high vector page */ add_mapping(virt_to_phys(arm_high_vector), ARM_HIGH_VECTOR, size, 0); arm_enable_high_vectors(); /* Kernel memory trapping is enabled at this point. */ } void abort() { printk("Aborting on purpose to halt system.\n"); #if 0 /* Prefetch abort */ __asm__ __volatile__ ( "mov pc, #0x0\n" :: ); #endif /* Data abort */ __asm__ __volatile__ ( "mov r0, #0 \n" "ldr r0, [r0] \n" :: ); } void jump(struct ktcb *task) { __asm__ __volatile__ ( "mov lr, %0\n" /* Load pointer to context area */ "ldr r0, [lr]\n" /* Load spsr value to r0 */ "msr spsr, r0\n" /* Set SPSR as ARM_MODE_USR */ "ldmib lr, {r0-r14}^\n" /* Load all USR registers */ "nop \n" /* Spec says dont touch banked registers * right after LDM {no-pc}^ for one instruction */ "add lr, lr, #64\n" /* Manually move to PC location. */ "ldr lr, [lr]\n" /* Load the PC_USR to LR */ "movs pc, lr\n" /* Jump to userspace, also switching SPSR/CPSR */ : : "r" (task) ); } void switch_to_user(struct ktcb *task) { arm_clean_invalidate_cache(); arm_invalidate_tlb(); arm_set_ttb(virt_to_phys(task->pgd)); arm_invalidate_tlb(); jump(task); } void init_pager(char *name, struct task_ids *ids) { struct svc_image *taskimg = 0; struct ktcb *task; int task_pages; /* * NOTE: Inittask uses the kernel bootstack as its PAGE_SIZE'd kernel * stack. There is no problem with this as the inittask always exists. * This also solves the problem of freeing the bootstack and making use * of the initial kspace pgd. */ if (!strcmp(name, __PAGERNAME__)) task = current; /* mm0 is the mockup current during init */ else task = (struct ktcb *)zalloc_page(); /* * Search the compile-time generated boot descriptor for information on * available task images. */ for (int i = 0; i < bootdesc->total_images; i++) { if (!strcmp(name, bootdesc->images[i].name)) { taskimg = &bootdesc->images[i]; break; } } BUG_ON(!taskimg); printk("\nInitialising %s.\n", name); if (taskimg->phys_start & PAGE_MASK) printk("Warning, image start address not page aligned.\n"); /* Calculate the number of pages the task sections occupy. */ task_pages = __pfn((page_align_up(taskimg->phys_end) - page_align(taskimg->phys_start))); task->context.pc = INITTASK_AREA_START; /* Stack starts one page above the end of image. */ task->context.sp = INITTASK_AREA_END - 8; task->context.spsr = ARM_MODE_USR; set_task_ids(task, ids); if (!task->pgd) { BUG(); /* Inittask won't come here */ task->pgd = alloc_pgd(); /* Tasks with no pgd copy from the inittask's pgd. */ memcpy(task->pgd, current->pgd, sizeof(pgd_table_t)); } /* * This task's userspace mapping. This should allocate a new pmd, if not * existing, and a new page entry on its private pgd. */ add_mapping_pgd(taskimg->phys_start, INITTASK_AREA_START, task_pages * PAGE_SIZE, MAP_USR_DEFAULT_FLAGS, task->pgd); printk("Mapping %d pages from 0x%x to 0x%x for %s\n", task_pages, taskimg->phys_start, INITTASK_AREA_START, name); /* Add the physical pages used by the task to the page map */ set_page_map(taskimg->phys_start, task_pages, 1); /* Task's rendezvous point */ waitqueue_head_init(&task->wqh_send); waitqueue_head_init(&task->wqh_recv); /* Global hashlist that keeps all existing tasks */ add_task_global(task); /* Scheduler initialises the very first task itself */ } void init_tasks() { struct task_ids ids; /* Initialise thread and space id pools */ thread_id_pool = id_pool_new_init(THREAD_IDS_MAX); space_id_pool = id_pool_new_init(SPACE_IDS_MAX); ids.tid = id_new(thread_id_pool); ids.spid = id_new(space_id_pool); /* Initialise the global task list head */ INIT_LIST_HEAD(&global_task_list); /* * This must come last so that other tasks can copy its pgd before it * modifies it for its own specifics. */ init_pager(__PAGERNAME__, &ids); } void start_kernel(void) { printascii("\nstart_kernel...\n"); /* Print section boundaries for kernel image */ //print_sections(); /* Initialise section mappings for the kernel area */ init_kernel_mappings(); /* Enable virtual memory and jump to virtual addresses */ start_vm(); /* PMD tables initialised */ init_pmd_tables(); /* Initialise platform-specific page mappings, and peripherals */ platform_init(); /* Map and enable high vector page. Faults can be handled after here. */ vectors_init(); /* Remap 1MB kernel sections as 4Kb pages. */ remap_as_pages(_start_kernel, _end_kernel); /* Move the initial pgd into a more convenient place, mapped as pages. */ relocate_page_tables(); /* Initialise memory allocators */ paging_init(); /* Initialise kip and map for userspace access */ kip_init(); /* Initialise system call page */ syscall_init(); /* Initialise everything else, e.g. locks, lists... */ init_locks(); /* Setup inittask's ktcb and push it to scheduler runqueue */ init_tasks(); /* Start the scheduler with available tasks in the runqueue */ scheduler_start(); BUG(); }