mirror of
https://github.com/drasko/codezero.git
synced 2026-01-12 02:43:15 +01:00
411 lines
10 KiB
C
411 lines
10 KiB
C
/*
|
|
* A basic priority-based scheduler.
|
|
*
|
|
* Copyright (C) 2007, 2008 Bahadir Balban
|
|
*/
|
|
#include <l4/lib/list.h>
|
|
#include <l4/lib/printk.h>
|
|
#include <l4/lib/string.h>
|
|
#include <l4/lib/mutex.h>
|
|
#include <l4/lib/math.h>
|
|
#include <l4/lib/bit.h>
|
|
#include <l4/lib/spinlock.h>
|
|
#include <l4/generic/scheduler.h>
|
|
#include <l4/generic/preempt.h>
|
|
#include <l4/generic/irq.h>
|
|
#include <l4/generic/tcb.h>
|
|
#include <l4/api/errno.h>
|
|
#include <l4/api/kip.h>
|
|
#include INC_SUBARCH(mm.h)
|
|
#include INC_SUBARCH(mmu_ops.h)
|
|
#include INC_GLUE(init.h)
|
|
#include INC_PLAT(platform.h)
|
|
#include INC_ARCH(exception.h)
|
|
|
|
|
|
/* A basic runqueue */
|
|
struct runqueue {
|
|
struct spinlock lock; /* Lock */
|
|
struct link task_list; /* List of tasks in rq */
|
|
unsigned int total; /* Total tasks */
|
|
};
|
|
|
|
#define SCHED_RQ_TOTAL 2
|
|
static struct runqueue sched_rq[SCHED_RQ_TOTAL];
|
|
static struct runqueue *rq_runnable, *rq_expired;
|
|
static int prio_total; /* Total priority of all tasks */
|
|
|
|
/* This is incremented on each irq or voluntarily by preempt_disable() */
|
|
extern unsigned int current_irq_nest_count;
|
|
|
|
/* This ensures no scheduling occurs after voluntary preempt_disable() */
|
|
static int voluntary_preempt = 0;
|
|
|
|
void sched_lock_runqueues(void)
|
|
{
|
|
spin_lock(&sched_rq[0].lock);
|
|
spin_lock(&sched_rq[1].lock);
|
|
}
|
|
|
|
void sched_unlock_runqueues(void)
|
|
{
|
|
spin_unlock(&sched_rq[0].lock);
|
|
spin_unlock(&sched_rq[1].lock);
|
|
}
|
|
|
|
int preemptive()
|
|
{
|
|
return current_irq_nest_count == 0;
|
|
}
|
|
|
|
int preempt_count()
|
|
{
|
|
return current_irq_nest_count;
|
|
}
|
|
|
|
void preempt_enable(void)
|
|
{
|
|
voluntary_preempt--;
|
|
current_irq_nest_count--;
|
|
}
|
|
|
|
/* A positive irq nest count implies current context cannot be preempted. */
|
|
void preempt_disable(void)
|
|
{
|
|
current_irq_nest_count++;
|
|
voluntary_preempt++;
|
|
}
|
|
|
|
int in_irq_context(void)
|
|
{
|
|
/*
|
|
* If there was a real irq, irq nest count must be
|
|
* one more than all preempt_disable()'s which are
|
|
* counted by voluntary_preempt.
|
|
*/
|
|
return (current_irq_nest_count == (voluntary_preempt + 1));
|
|
}
|
|
|
|
int in_nested_irq_context(void)
|
|
{
|
|
/* Deducing voluntary preemptions we get real irq nesting */
|
|
return (current_irq_nest_count - voluntary_preempt) > 1;
|
|
}
|
|
|
|
int in_task_context(void)
|
|
{
|
|
return !in_irq_context();
|
|
}
|
|
|
|
void sched_init_runqueues(void)
|
|
{
|
|
for (int i = 0; i < SCHED_RQ_TOTAL; i++) {
|
|
memset(&sched_rq[i], 0, sizeof(struct runqueue));
|
|
link_init(&sched_rq[i].task_list);
|
|
spin_lock_init(&sched_rq[i].lock);
|
|
}
|
|
|
|
rq_runnable = &sched_rq[0];
|
|
rq_expired = &sched_rq[1];
|
|
prio_total = 0;
|
|
}
|
|
|
|
/* Swap runnable and expired runqueues. */
|
|
static void sched_rq_swap_runqueues(void)
|
|
{
|
|
struct runqueue *temp;
|
|
|
|
BUG_ON(list_empty(&rq_expired->task_list));
|
|
BUG_ON(rq_expired->total == 0);
|
|
|
|
/* Queues are swapped and expired list becomes runnable */
|
|
temp = rq_runnable;
|
|
rq_runnable = rq_expired;
|
|
rq_expired = temp;
|
|
}
|
|
|
|
/* Set policy on where to add tasks in the runqueue */
|
|
#define RQ_ADD_BEHIND 0
|
|
#define RQ_ADD_FRONT 1
|
|
|
|
/* Helper for adding a new task to a runqueue */
|
|
static void sched_rq_add_task(struct ktcb *task, struct runqueue *rq, int front)
|
|
{
|
|
BUG_ON(!list_empty(&task->rq_list));
|
|
|
|
sched_lock_runqueues();
|
|
if (front)
|
|
list_insert(&task->rq_list, &rq->task_list);
|
|
else
|
|
list_insert_tail(&task->rq_list, &rq->task_list);
|
|
rq->total++;
|
|
task->rq = rq;
|
|
sched_unlock_runqueues();
|
|
}
|
|
|
|
/* Helper for removing a task from its runqueue. */
|
|
static inline void sched_rq_remove_task(struct ktcb *task)
|
|
{
|
|
struct runqueue *rq;
|
|
|
|
sched_lock_runqueues();
|
|
|
|
/*
|
|
* We must lock both, otherwise rqs may swap and
|
|
* we may get the wrong rq.
|
|
*/
|
|
rq = task->rq;
|
|
BUG_ON(list_empty(&task->rq_list));
|
|
list_remove_init(&task->rq_list);
|
|
task->rq = 0;
|
|
rq->total--;
|
|
|
|
BUG_ON(rq->total < 0);
|
|
sched_unlock_runqueues();
|
|
}
|
|
|
|
|
|
void sched_init_task(struct ktcb *task, int prio)
|
|
{
|
|
link_init(&task->rq_list);
|
|
task->priority = prio;
|
|
task->ticks_left = 0;
|
|
task->state = TASK_INACTIVE;
|
|
task->ts_need_resched = 0;
|
|
task->flags |= TASK_RESUMING;
|
|
}
|
|
|
|
/*
|
|
* Takes all the action that will make a task sleep
|
|
* in the scheduler. If the task is woken up before
|
|
* it schedules, then operations here are simply
|
|
* undone and task remains as runnable.
|
|
*/
|
|
void sched_prepare_sleep()
|
|
{
|
|
preempt_disable();
|
|
sched_rq_remove_task(current);
|
|
current->state = TASK_SLEEPING;
|
|
preempt_enable();
|
|
}
|
|
|
|
/* Synchronously resumes a task */
|
|
void sched_resume_sync(struct ktcb *task)
|
|
{
|
|
BUG_ON(task == current);
|
|
task->state = TASK_RUNNABLE;
|
|
sched_rq_add_task(task, rq_runnable, RQ_ADD_FRONT);
|
|
schedule();
|
|
}
|
|
|
|
/*
|
|
* Asynchronously resumes a task.
|
|
* The task will run in the future, but at
|
|
* the scheduler's discretion. It is possible that current
|
|
* task wakes itself up via this function in the scheduler().
|
|
*/
|
|
void sched_resume_async(struct ktcb *task)
|
|
{
|
|
task->state = TASK_RUNNABLE;
|
|
sched_rq_add_task(task, rq_runnable, RQ_ADD_FRONT);
|
|
}
|
|
|
|
/*
|
|
* NOTE: Could do these as sched_prepare_suspend()
|
|
* + schedule() or need_resched = 1
|
|
*/
|
|
void sched_suspend_sync(void)
|
|
{
|
|
preempt_disable();
|
|
sched_rq_remove_task(current);
|
|
current->state = TASK_INACTIVE;
|
|
current->flags &= ~TASK_SUSPENDING;
|
|
prio_total -= current->priority;
|
|
BUG_ON(prio_total <= 0);
|
|
preempt_enable();
|
|
|
|
/* Async wake up any waiters */
|
|
wake_up_task(tcb_find(current->pagerid), 0);
|
|
schedule();
|
|
}
|
|
|
|
void sched_suspend_async(void)
|
|
{
|
|
preempt_disable();
|
|
sched_rq_remove_task(current);
|
|
current->state = TASK_INACTIVE;
|
|
current->flags &= ~TASK_SUSPENDING;
|
|
prio_total -= current->priority;
|
|
BUG_ON(prio_total <= 0);
|
|
|
|
/* This will make sure we yield soon */
|
|
preempt_enable();
|
|
|
|
/* Async wake up any waiters */
|
|
wake_up_task(tcb_find(current->pagerid), 0);
|
|
need_resched = 1;
|
|
}
|
|
|
|
|
|
extern void arch_switch(struct ktcb *cur, struct ktcb *next);
|
|
|
|
static inline void context_switch(struct ktcb *next)
|
|
{
|
|
struct ktcb *cur = current;
|
|
|
|
// printk("(%d) to (%d)\n", cur->tid, next->tid);
|
|
|
|
/* Flush caches and everything */
|
|
arch_hardware_flush(TASK_PGD(next));
|
|
|
|
/* Update utcb region for next task */
|
|
task_update_utcb(cur, next);
|
|
|
|
/* Switch context */
|
|
arch_switch(cur, next);
|
|
|
|
// printk("Returning from yield. Tid: (%d)\n", cur->tid);
|
|
}
|
|
|
|
/*
|
|
* Priority calculation is so simple it is inlined. The task gets
|
|
* the ratio of its priority to total priority of all runnable tasks.
|
|
*/
|
|
static inline int sched_recalc_ticks(struct ktcb *task, int prio_total)
|
|
{
|
|
BUG_ON(prio_total < task->priority);
|
|
BUG_ON(prio_total == 0);
|
|
return task->ticks_assigned =
|
|
SCHED_TICKS * task->priority / prio_total;
|
|
}
|
|
|
|
|
|
/*
|
|
* Tasks come here, either by setting need_resched (via next irq),
|
|
* or by directly calling it (in process context).
|
|
*
|
|
* The scheduler is similar to Linux's so called O(1) scheduler,
|
|
* although a lot simpler. Task priorities determine task timeslices.
|
|
* Each task gets a ratio of its priority to the total priority of
|
|
* all runnable tasks. When this total changes, (e.g. threads die or
|
|
* are created, or a thread's priority is changed) the timeslices are
|
|
* recalculated on a per-task basis as each thread becomes runnable.
|
|
* Once all runnable tasks expire, runqueues are swapped. Sleeping
|
|
* tasks are removed from the runnable queue, and added back later
|
|
* without affecting the timeslices. Suspended tasks however,
|
|
* necessitate a timeslice recalculation as they are considered to go
|
|
* inactive indefinitely or for a very long time. They are put back
|
|
* to the expired queue if they want to run again.
|
|
*
|
|
* A task is rescheduled either when it hits a SCHED_GRANULARITY
|
|
* boundary, or when its timeslice has expired. SCHED_GRANULARITY
|
|
* ensures context switches do occur at a maximum boundary even if a
|
|
* task's timeslice is very long. In the future, real-time tasks will
|
|
* be added, and they will be able to ignore SCHED_GRANULARITY.
|
|
*
|
|
* In the future, the tasks will be sorted by priority in their
|
|
* runqueue, as well as having an adjusted timeslice.
|
|
*
|
|
* Runqueues are swapped at a single second's interval. This implies
|
|
* the timeslice recalculations would also occur at this interval.
|
|
*/
|
|
void schedule()
|
|
{
|
|
struct ktcb *next;
|
|
|
|
/* Should not schedule with preemption disabled or in nested irq */
|
|
BUG_ON(voluntary_preempt);
|
|
BUG_ON(in_nested_irq_context());
|
|
|
|
/* Should not have more ticks than SCHED_TICKS */
|
|
BUG_ON(current->ticks_left > SCHED_TICKS);
|
|
|
|
/* Cannot have any irqs that schedule after this */
|
|
preempt_disable();
|
|
|
|
/* Reset schedule flag */
|
|
need_resched = 0;
|
|
|
|
/* Remove from runnable and put into appropriate runqueue */
|
|
if (current->state == TASK_RUNNABLE) {
|
|
sched_rq_remove_task(current);
|
|
if (current->ticks_left)
|
|
sched_rq_add_task(current, rq_runnable, RQ_ADD_BEHIND);
|
|
else
|
|
sched_rq_add_task(current, rq_expired, RQ_ADD_BEHIND);
|
|
}
|
|
|
|
/*
|
|
* If task is about to sleep and
|
|
* it has pending events, wake it up.
|
|
*/
|
|
if (current->flags & TASK_SUSPENDING &&
|
|
current->state == TASK_SLEEPING)
|
|
wake_up_task(current, WAKEUP_INTERRUPT);
|
|
|
|
/* Determine the next task to be run */
|
|
if (rq_runnable->total > 0) {
|
|
next = link_to_struct(rq_runnable->task_list.next,
|
|
struct ktcb, rq_list);
|
|
} else {
|
|
if (rq_expired->total > 0) {
|
|
sched_rq_swap_runqueues();
|
|
next = link_to_struct(rq_runnable->task_list.next,
|
|
struct ktcb, rq_list);
|
|
} else {
|
|
printk("Idle task.\n");
|
|
while(1);
|
|
}
|
|
}
|
|
|
|
/* New tasks affect runqueue total priority. */
|
|
if (next->flags & TASK_RESUMING) {
|
|
prio_total += next->priority;
|
|
next->flags &= ~TASK_RESUMING;
|
|
}
|
|
|
|
/* Zero ticks indicates task hasn't ran since last rq swap */
|
|
if (next->ticks_left == 0) {
|
|
/*
|
|
* Redistribute timeslice. We do this as each task
|
|
* becomes runnable rather than all at once. It is done
|
|
* every runqueue swap
|
|
*/
|
|
sched_recalc_ticks(next, prio_total);
|
|
next->ticks_left = next->ticks_assigned;
|
|
}
|
|
|
|
/* Reinitialise task's schedule granularity boundary */
|
|
next->sched_granule = SCHED_GRANULARITY;
|
|
|
|
/* Finish */
|
|
disable_irqs();
|
|
preempt_enable();
|
|
context_switch(next);
|
|
}
|
|
|
|
/*
|
|
* Initialise pager as runnable for first-ever scheduling,
|
|
* and start the scheduler.
|
|
*/
|
|
void scheduler_start()
|
|
{
|
|
/* Initialise runqueues */
|
|
sched_init_runqueues();
|
|
|
|
/* Initialise scheduler fields of pager */
|
|
sched_init_task(current, TASK_PRIO_PAGER);
|
|
|
|
/* Add task to runqueue first */
|
|
sched_rq_add_task(current, rq_runnable, RQ_ADD_FRONT);
|
|
|
|
/* Give it a kick-start tick and make runnable */
|
|
current->ticks_left = 1;
|
|
current->state = TASK_RUNNABLE;
|
|
|
|
/* Start the timer and switch */
|
|
timer_start();
|
|
switch_to_user(current);
|
|
}
|
|
|