Files
codezero/tasks/libmem/kmalloc/kmalloc.c.orig
Bahadir Balban e2b791a3d8 Initial commit
2008-01-13 13:53:52 +00:00

458 lines
14 KiB
C

/*
* Kernel memory allocator.
*
* Copyright (C) 2007 Bahadir Balban
*
*/
#include <stdio.h>
#include <string.h>
#include <l4/config.h>
#include <l4/macros.h>
#include <l4/types.h>
#include INC_GLUE(memory.h)
#include INC_GLUE(memlayout.h)
#include INC_SUBARCH(mm.h)
#include <l4lib/arch/syscalls.h>
#include <l4/lib/list.h>
#include <kmalloc/kmalloc.h>
#include <mm/alloc_page.h>
/* Initial free area descriptor.
*
* Basic description of how free areas are tracked:
*
* A subpage_area marked as head_of_pages means it is located at the beginning
* of a new page allocation, and it is the first struct to describe those
* allocated page(s).
*
* If, for all subpage_areas, head_of_pages = {SA, SB, ..., SZ}, and `fragments
* of head_of_pages' = {sa(n), sb(n), ..., sz(n)} where n is the sequence number
* of that fragment, and for each SX, SX = sx(1), and "->" denotes "next"
* pointer relationship, on a random occasion, the areas could look like this:
*
* SA->sa(2)->sa(3)->SB->sb(2)->SC->SD->SE->se(2)->se(3)->se(4)
*
* With regard to all alloc/free functions defined below, in this example's
* context, sa(1..3) can merge if any adjacent pair of them are free. Whereas if
* adjacent(SC,SD) were true, SC and SD cannot be merged even if they are both
* free, because they are head_of_pages. Also, for each SX, it can be freed IFF
* it is the only element in SX, and it is free. For instance, each of SC or SD
* can be individually freed, provided they are marked unused.
*
* We could have used a bucket for each, e.g:
*
* SA->sa(2)->sa(3)
* |
* v
* SB->sb(2)->sb(3)
* |
* v
* SC
* |
* v
* SD
*
* etc. But the original is simple enough for now and does the job.
*
*/
struct subpage_area km_areas;
/* Initialises a subpage area descriptor according to the free area parameters
* supplied along with it. @ppage = pointer to start of free memory.
* @npages = number of pages the region contains. @areas = head of the list of
* subpage_areas on the system that belongs to kmalloc. */
void kmalloc_add_new_pages(void *ppage, int npages, struct subpage_area **areas)
{
struct subpage_area *new = (struct subpage_area *)ppage;
new->vaddr = (unsigned int)ppage + sizeof(struct subpage_area);
new->size = (npages * PAGE_SIZE) - sizeof(struct subpage_area);
new->used = 0;
new->head_of_pages = npages;
INIT_LIST_HEAD(&new->list);
/* The first entry is a head_of_pages. Adding the new head_of_pages
* in tail ensures each head_of_pages are adjacent, and their
* children are never intermixed */
list_add_tail(&new->list, &(*areas)->list);
}
#define KMALLOC_INITIAL_PAGES 3
void kmalloc_init()
{
/* Initially allocated pages with one big free km_area */
void *ppage = alloc_page(KMALLOC_INITIAL_PAGES);
ppage = l4_map_helper(ppage, KMALLOC_INITIAL_PAGES);
struct subpage_area *new = (struct subpage_area *)ppage;
BUG_ON(!new);
new->vaddr = (unsigned int)ppage + sizeof(struct subpage_area);
new->size = (KMALLOC_INITIAL_PAGES * PAGE_SIZE)
- sizeof(struct subpage_area);
new->used = 0;
new->head_of_pages = KMALLOC_INITIAL_PAGES;
INIT_LIST_HEAD(&new->list);
/* Assign the first area to global list pointer */
km_areas = new;
/* NOTE: If needed, initialise mutex here */
}
/* Given a free list, finds a free region of requested size plus one subpage
* area descriptor. Allocates and initialises the new descriptor, adds it to
* the list and returns it.
*/
static struct subpage_area *
find_free_subpage_area(int size, struct subpage_area **areas)
{
struct subpage_area *new;
struct subpage_area *cur = *areas;
const unsigned int alignment_extra_max = SZ_WORD - 1;
unsigned int alignment_used = 0, alignment_unused = 0;
/* The minimum size needed if the area will be divided into two */
int dividable_size = size + sizeof(struct subpage_area)
+ alignment_extra_max;
/* Is this a free region that fits? */
if ((cur->size) >= dividable_size && !cur->used) {
unsigned int addr, addr_aligned;
/* Cut the free area as much as we want to used */
cur->size -= size + sizeof(struct subpage_area);
addr = (cur->vaddr + cur->size);
addr_aligned = align_up(addr, SZ_WORD);
alignment_used = addr_aligned - addr;
alignment_unused = alignment_extra_max - alignment_used;
/* Add the extra bit that's skipped for alignment to original subpage */
cur->size += alignment_used;
/* Allocate the new link structure at the end
* of the free area shortened previously. */
new = (struct subpage_area *)addr_aligned;
/* Actual allocated memory starts after subpage descriptor */
new->vaddr = (unsigned int)new + sizeof(struct subpage_area);
new->size = size + sizeof(struct subpage_area) + alignment_unused;
new->used = 1;
new->head_of_pages = 0; /* Divides other allocated page(s) */
/* Add used region to the subpage_area list */
INIT_LIST_HEAD(&new->list);
list_add(&new->list, &cur->list);
return new;
} else if (cur->size < dividable_size &&
cur->size >= size && !cur->used) {
/* The area can't be divided, but has enough room for the
* actual allocation, it just misses the few bytes for a
* new subpage_area for splitting. In this case the current
* page area is simply marked used and returned. This is a
* rare but important case, because on-demand free page
* allocations don't ensure new free areas are sufficiently
* large to be divisable. */
cur->used = 1;
return cur;
}
/* Do the same for all other entries */
list_for_each_entry (cur, &(*areas)->list, list) {
/* Is this a free region that fits? */
if ((cur->size) >= dividable_size && !cur->used) {
unsigned int addr, addr_aligned;
/* Cut the free area from the end, as much as
* we want to use */
cur->size -= size + sizeof(struct subpage_area);
addr = (cur->vaddr + cur->size);
addr_aligned = align_up(addr, SZ_WORD);
alignment_used = addr_aligned - addr;
alignment_unused = alignment_extra_max
- alignment_used;
/* Add the extra bit that's skipped for alignment
* to original subpage */
cur->size += alignment_used;
/* Allocate the new link structure at the end
* of the free area shortened previously. */
new = (struct subpage_area *)addr_aligned;
/* Actual allocated memory starts after subpage
* descriptor */
new->vaddr = (unsigned int)new
+ sizeof(struct subpage_area);
new->size = size + sizeof(struct subpage_area)
+ alignment_unused;
new->used = 1;
/* Divides other allocated page(s) */
new->head_of_pages = 0;
/* Add used region to the page area list */
INIT_LIST_HEAD(&new->list);
list_add(&new->list, &cur->list);
return new;
} else if (cur->size < dividable_size &&
cur->size >= size && !cur->used) {
/* Area not at dividable size but can satisfy request,
* so it's simply returned. */
cur->used = 1;
return cur;
}
}
/* Traversed all areas and can't satisfy request. */
return 0;
}
/* Allocate, initialise a subpage area along with its free
* memory of minimum size as @size, and add it to subpage list. */
static int
kmalloc_get_free_pages(int size, struct subpage_area **areas)
{
int totalsize = size + sizeof(struct subpage_area) * 2;
int npages = totalsize / PAGE_SIZE;
void *ppage;
if (totalsize & PAGE_MASK)
npages++;
if ((ppage = l4_map_helper(alloc_page(npages), npages))
== 0)
/* TODO: Return specific error code, e.g. ENOMEM */
return -1;
BUG_ON((npages * PAGE_SIZE) < (size + sizeof(struct subpage_area)));
kmalloc_add_new_pages(ppage, npages, areas);
return 0;
}
/* Linked list based subpage allocator. This has the simplicity of allocating
* list structures together with the requested memory area. This can't be done
* with the page allocator, because it works in page-size chunks. In kmalloc
* we can allocate more fine-grain sizes, so a link structure can also be
* embedded together with requested data.
*/
/* Allocates given @size, requests more free pages if free areas depleted. */
void *kmalloc(int size)
{
struct subpage_area *new_area;
void *allocation;
/* NOTE: If needed, lock mutex here */
new_area = find_free_subpage_area(size, &km_areas);
if (!new_area) {
if (kmalloc_get_free_pages(size, &km_areas) < 0) {
allocation = 0;
goto out;
}
else
new_area = find_free_subpage_area(size, &km_areas);
}
BUG_ON(!new_area);
allocation = (void *)new_area->vaddr;
out:
/* NOTE: If locked, unlock mutex here */
return allocation;
}
/* kmalloc with zero initialised memory */
void *kzalloc(int size)
{
void *mem = kmalloc(size);
if (mem)
memset(mem, 0, size);
return mem;
}
void km_free_empty_pages(struct subpage_area *free_area,
struct subpage_area **start)
{
unsigned int wholesize;
if (!free_area->head_of_pages)
return; /* Not allocated from page allocator */
if (free_area == *start)
return; /* First subpage area is allocated at
initialisation and never deallocated */
/* A head of page: */
/* Can't be the only element, start is always there. */
BUG_ON(list_empty(&free_area->list));
/* Must be on a page boundary */
BUG_ON((unsigned int)free_area & PAGE_MASK);
/* Must be unused */
BUG_ON(free_area->used);
/* Furthermore, a head of page that can be freed must be whole:
* Total number of pages when as a whole, is kept in [31:1] */
wholesize = free_area->head_of_pages * PAGE_SIZE;
if ((free_area->size + sizeof(struct subpage_area)) < wholesize)
return;
/* Must have at least PAGE_SIZE size, when itself included */
BUG_ON(free_area->size < (PAGE_SIZE - sizeof(struct subpage_area)));
/* Its size must be a multiple of PAGE_SIZE, when itself included */
// BUG_ON((free_area->size + sizeof(struct subpage_area)) & PAGE_MASK);
if ((free_area->size + sizeof(struct subpage_area)) & PAGE_MASK) {
printk("Error: free_area->size: 0x%x, with subpage: 0x%x, PAGE_MASK: 0x%x\n",
free_area->size, free_area->size + sizeof(struct subpage_area), PAGE_MASK);
BUG();
}
list_del(&free_area->list);
/* And finally must be freed without problems */
if (free_page(l4_unmap_helper(free_area, wholesize)) < 0)
BUG();
return;
}
static int
km_merge_with_prev_subpage(struct subpage_area *start,
struct subpage_area *this,
struct subpage_area *prev)
{
BUG_ON(this == prev);
BUG_ON(this->used);
/* Can't merge used and unused regions */
if (prev->used)
return 0;
/* At the beginning. this is head, prev is tail. Can't merge. */
if (start == this)
return 0;
/* Can't merge head descriptors of page allocations. They
* are to be returned back to the page allocator on their own. */
if (this->head_of_pages)
return 0;
/* Subpage areas can be non-contiguous, if they are not a part of
* the same page(s) allocation. This usually holds if prev and this
* are fragments from the same page allocation. */
if (prev->vaddr + prev->size != (unsigned int)this)
return 0;
/* Remember that subpage_area structures are at the beginning of
* the memory areas they describe. By simply merging them with
* another area they're effectively freed. */
prev->size += this->size + sizeof(struct subpage_area);
list_del(&this->list);
return 1;
}
static int
km_merge_with_next_subpage(struct subpage_area *start,
struct subpage_area *this,
struct subpage_area *next)
{
BUG_ON(this == next);
BUG_ON(this->used);
/* At the end. this is tail, next is head. Can't merge. */
if (start == next)
return 0;
/* Can't merge used and unused regions */
if (next->used)
return 0;
/* Can't merge head descriptors of page allocations. They
* are to be returned back to the page allocator on their own. */
if (next->head_of_pages)
return 0;
/* Subpage areas can be non-contiguous, if they are not a part of
* the same head_of_page(s) allocation. This usually holds if next
* and this are fragments from the same head_of_page. */
if (this->vaddr + this->size != (unsigned int)next)
return 0;
/* Remember that subpage_area structures are at the beginning of
* the memory areas they describe. By simply merging them with
* another area they're effectively freed. */
this->size += next->size + sizeof(struct subpage_area);
list_del(&next->list);
return 1;
}
int find_and_free_subpage_area(void *vaddr, struct subpage_area **areas)
{
struct subpage_area *cur = *areas;
if (!vaddr) /* A well-known invalid address */
return -1;
if (cur->vaddr == (unsigned int)vaddr) {
struct subpage_area *prev, *next;
BUG_ON(!cur->used);
cur->used = 0;
if (!list_empty(&cur->list)) {
prev = list_entry(cur->list.prev,
struct subpage_area,
list);
if (km_merge_with_prev_subpage(*areas, cur, prev))
cur = prev;
if (!list_empty(&cur->list)) {
/* Last merge did not reduce to last
* element. */
next = list_entry(cur->list.next,
struct subpage_area,
list);
km_merge_with_next_subpage(*areas, cur, next);
}
}
km_free_empty_pages(cur, areas);
return 0;
}
list_for_each_entry(cur, &(*areas)->list, list) {
if (cur->vaddr == (unsigned int)vaddr) {
struct subpage_area *prev, *next;
BUG_ON(!cur->used);
cur->used = 0;
if (!list_empty(&cur->list)) {
prev = list_entry(cur->list.prev,
struct subpage_area,
list);
if (km_merge_with_prev_subpage(*areas,
cur, prev))
cur = prev;
if (!list_empty(&cur->list)) {
/* Last merge did not reduce to last
* element. */
next = list_entry(cur->list.next,
struct subpage_area,
list);
km_merge_with_next_subpage(*areas, cur,
next);
}
}
/* After freeing and all possible merging, try
* returning region back to page allocator. */
km_free_empty_pages(cur, areas);
return 0;
}
}
/* TODO, Return a specific error code. Here, this is a
* serious error. (Trying to free non-existing memory) */
return -1;
}
int kfree(void *vaddr)
{
int ret;
/* NOTE: If needed, lock mutex here */
ret = find_and_free_subpage_area(vaddr, &km_areas);
/* NOTE: If locked, unlock mutex here */
return ret;
}