Files
codezero/src/generic/resource.c

438 lines
11 KiB
C

/*
* Initialize system resource management.
*
* Copyright (C) 2009 Bahadir Balban
*/
#include <l4/generic/capability.h>
#include <l4/generic/cap-types.h>
#include <l4/generic/container.h>
#include <l4/generic/resource.h>
#include <l4/generic/bootmem.h>
#include <l4/lib/math.h>
#include <l4/lib/memcache.h>
#include INC_GLUE(memory.h)
#include INC_ARCH(linker.h)
struct kernel_container kernel_container;
void cap_list_init(struct cap_list *clist)
{
clist->ncaps = 0;
link_init(&clist->caps);
}
void cap_list_insert(struct capability *cap, struct cap_list *clist)
{
list_insert(&cap->list, &clist->caps);
clist->ncaps++;
}
/*
* This splits a capability, splitter region must be in
* the *middle* of original capability
*/
int memcap_split(struct capability *cap, struct cap_list *cap_list,
const unsigned long start,
const unsigned long end)
{
struct capability *new;
/* Allocate a capability first */
new = alloc_bootmem(sizeof(*new), 0);
/*
* Some sanity checks to show that splitter range does end up
* producing two smaller caps.
*/
BUG_ON(cap->start >= start || cap->end <= end);
/* Update new and original caps */
new->end = cap->end;
new->start = end;
cap->end = start;
new->access = cap->access;
/* Add new one next to original cap */
cap_list_insert(new, cap_list);
return 0;
}
/* This shrinks the cap from *one* end only, either start or end */
int memcap_shrink(struct capability *cap, struct cap_list *cap_list,
const unsigned long start, const unsigned long end)
{
/* Shrink from the end */
if (cap->start < start) {
BUG_ON(start >= cap->end);
cap->end = start;
/* Shrink from the beginning */
} else if (cap->end > end) {
BUG_ON(end <= cap->start);
cap->start = end;
} else
BUG();
return 0;
}
int memcap_unmap_range(struct capability *cap,
struct cap_list *cap_list,
const unsigned long start,
const unsigned long end)
{
/* Split needed? */
if (cap->start < start && cap->end > end)
return memcap_split(cap, cap_list, start, end);
/* Shrink needed? */
else if (((cap->start >= start) && (cap->end > end))
|| ((cap->start < start) && (cap->end <= end)))
return memcap_shrink(cap, cap_list, start, end);
/* Destroy needed? */
else if ((cap->start >= start) && (cap->end <= end))
/* Simply unlink it */
list_remove(&cap->list);
else
BUG();
return 0;
}
/*
* Unmaps given memory range from the list of capabilities
* by either shrinking, splitting or destroying the
* intersecting capability. Similar to do_munmap()
*/
int memcap_unmap(struct cap_list *cap_list,
const unsigned long unmap_start,
const unsigned long unmap_end)
{
struct capability *cap, *n;
int err;
list_foreach_removable_struct(cap, n, &cap_list->caps, list) {
/* Check for intersection */
if (set_intersection(unmap_start, unmap_end,
cap->start, cap->end)) {
if ((err = memcap_unmap_range(cap, cap_list,
unmap_start,
unmap_end))) {
return err;
}
return 0;
}
}
/* Return 1 to indicate unmap didn't occur */
return 1;
}
/*
* Do all system accounting for this capability info
* structure that belongs to a container, such as
* count its resource requirements, remove its portion
* from global kernel capabilities etc.
*/
int process_cap_info(struct cap_info *cap,
struct boot_resources *bootres,
struct kernel_container *kcont)
{
int ret;
switch (cap->type & CAP_RTYPE_MASK) {
case CAP_RTYPE_THREADPOOL:
bootres->nthreads += cap->size;
break;
case CAP_RTYPE_SPACEPOOL:
bootres->nspaces += cap->size;
break;
case CAP_RTYPE_MUTEXPOOL:
bootres->nmutex += cap->size;
break;
case CAP_RTYPE_VIRTMEM:
/* Area size in pages divided by mapsize in pages */
bootres->npmds +=
cap->size / __pfn(PMD_MAP_SIZE);
if ((ret = memcap_unmap(&kcont->virtmem_free,
cap->start, cap->end))) {
if (ret < 0)
printk("FATAL: Insufficient boot memory "
"to split capability\n");
if (ret > 0)
printk("FATAL: Memory capability range "
"overlaps with another one. "
"start=0x%lx, end=0x%lx\n",
__pfn_to_addr(cap->start),
__pfn_to_addr(cap->end));
BUG();
}
break;
case CAP_RTYPE_PHYSMEM:
if ((ret = memcap_unmap(&kcont->physmem_free,
cap->start, cap->end))) {
if (ret < 0)
printk("FATAL: Insufficient boot memory "
"to split capability\n");
if (ret > 0)
printk("FATAL: Memory capability range "
"overlaps with another one. "
"start=0x%lx, end=0x%lx\n",
__pfn_to_addr(cap->start),
__pfn_to_addr(cap->end));
BUG();
}
break;
}
return ret;
}
/*
* Migrate any boot allocations to their relevant caches.
*/
void migrate_boot_resources(struct boot_resources *bootres,
struct kernel_container *kcont)
{
/* Migrate boot page tables to new caches */
// migrate_page_tables(kcont);
/* Migrate all boot-allocated capabilities */
// migrate_boot_caps(kcont);
}
/* Delete all boot memory and add it to physical memory pool. */
int free_boot_memory(struct boot_resources *bootres,
struct kernel_container *kcont)
{
/* Trim kernel used memory cap */
memcap_unmap(&kcont->physmem_used, (unsigned long)_start_init,
(unsigned long)_end_init);
/* Add it to unused physical memory */
// memcap_map(&kcont->physmem_free, (unsigned long)_start_init,
// (unsigned long)_end_init);
/*
* Freed physical area will be unmapped from virtual
* by not mapping it in the task page tables.
*/
return 0;
}
struct mem_cache *init_resource_cache(int nstruct, int struct_size,
struct kernel_container *kcont,
int aligned)
{
struct capability *cap;
unsigned long bufsize;
/* In all unused physical memory regions */
list_foreach_struct(cap, &kcont->physmem_free.caps, list) {
/* Get buffer size needed for cache */
bufsize = mem_cache_bufsize((void *)__pfn_to_addr(cap->start),
struct_size, nstruct,
aligned);
/*
* Check if memcap region size is enough to cover
* resource allocation
*/
if (__pfn_to_addr(cap->end - cap->start) >= bufsize) {
unsigned long virtual =
phys_to_virt(__pfn_to_addr(cap->start));
/*
* Map the buffer as boot mapping if pmd caches
* are not initialized
*/
if (!kcont->pmd_cache) {
add_boot_mapping(__pfn_to_addr(cap->start),
virtual, bufsize,
MAP_SVC_RW_FLAGS);
} else {
add_mapping(__pfn_to_addr(cap->start),
virtual, bufsize,
MAP_SVC_RW_FLAGS);
}
/* Unmap area from memcap */
memcap_unmap_range(cap, &kcont->physmem_free,
cap->start, cap->start +
__pfn(page_align_up((bufsize))));
/* TODO: Manipulate memcaps for virtual range??? */
/* Initialize the cache */
return mem_cache_init((void *)virtual, bufsize,
PGD_SIZE, 1);
}
}
return 0;
}
/*
* Initializes kernel caplists, and sets up total of physical
* and virtual memory as single capabilities of the kernel.
* They will then get split into caps of different lengths
* during the traversal of container capabilities.
*/
void init_kernel_container(struct kernel_container *kcont)
{
struct capability *physmem, *virtmem, *kernel_area;
/* Initialize kernel capability lists */
cap_list_init(&kcont->physmem_used);
cap_list_init(&kcont->physmem_free);
cap_list_init(&kcont->virtmem_used);
cap_list_init(&kcont->virtmem_free);
cap_list_init(&kcont->devmem_used);
cap_list_init(&kcont->devmem_free);
/* Set up total physical memory as single capability */
physmem = alloc_bootmem(sizeof(*physmem), 0);
physmem->start = __pfn(PHYS_MEM_START);
physmem->end = __pfn(PHYS_MEM_END);
link_init(&physmem->list);
cap_list_insert(physmem, &kcont->physmem_free);
/* Set up total virtual memory as single capability */
virtmem = alloc_bootmem(sizeof(*virtmem), 0);
virtmem->start = __pfn(VIRT_MEM_START);
virtmem->end = __pfn(VIRT_MEM_END);
link_init(&virtmem->list);
cap_list_insert(virtmem, &kcont->virtmem_free);
/* Set up kernel used area as a single capability */
kernel_area = alloc_bootmem(sizeof(*physmem), 0);
kernel_area->start = __pfn(virt_to_phys(_start_kernel));
kernel_area->end = __pfn(virt_to_phys(_end_kernel));
link_init(&kernel_area->list);
cap_list_insert(kernel_area, &kcont->physmem_used);
/* Unmap kernel used area from free physical memory capabilities */
memcap_unmap(&kcont->physmem_free, kernel_area->start,
kernel_area->end);
/* TODO:
* Add all virtual memory areas used by the kernel
* e.g. kernel virtual area, syscall page, kip page,
* vectors page, timer, sysctl and uart device pages
*/
}
void create_containers(struct boot_resources *bootres,
struct kernel_container *kcont)
{
}
void create_capabilities(struct boot_resources *bootres,
struct kernel_container *kcont)
{
}
/*
* Make sure to count boot pmds, and kernel capabilities
* created in boot memory.
*
* Also total capabilities in the system + number of
* capabilities containers are allowed to create dynamically.
*
* Count the extra pgd + space needed in case all containers quit
*/
void init_resource_allocators(struct boot_resources *bootres,
struct kernel_container *kcont)
{
/* Initialise PGD cache */
kcont->pgd_cache = init_resource_cache(bootres->nspaces,
PGD_SIZE, kcont, 1);
/* Initialise PMD cache */
kcont->pmd_cache = init_resource_cache(bootres->npmds,
PMD_SIZE, kcont, 1);
/* Initialise struct address_space cache */
kcont->address_space_cache =
init_resource_cache(bootres->nspaces,
sizeof(struct address_space),
kcont, 0);
/* Initialise ktcb cache */
kcont->ktcb_cache = init_resource_cache(bootres->nthreads,
PAGE_SIZE, kcont, 1);
/* Initialise umutex cache */
kcont->mutex_cache = init_resource_cache(bootres->nmutex,
sizeof(struct mutex_queue),
kcont, 0);
/* TODO: Initialize ID cache */
/* Initialise capability cache */
kcont->cap_cache = init_resource_cache(bootres->ncaps, /* FIXME: Count correctly */
sizeof(struct capability),
kcont, 0);
/* Initialise container cache */
kcont->cont_cache = init_resource_cache(bootres->nconts,
sizeof(struct container),
kcont, 0);
/* Create system containers */
create_containers(bootres, kcont);
/* Create capabilities */
create_capabilities(bootres, kcont);
}
int init_boot_resources(struct boot_resources *bootres,
struct kernel_container *kcont)
{
struct cap_info *cap;
init_kernel_container(kcont);
/* Number of containers known at compile-time */
bootres->nconts = TOTAL_CONTAINERS;
/* Traverse all containers */
for (int i = 0; i < bootres->nconts; i++) {
/* Traverse all pagers */
for (int j = 0; j < cinfo[i].npagers; j++) {
int ncaps = cinfo[i].pager[j].ncaps;
/* Count all capabilities */
bootres->ncaps += ncaps;
/* Count all resources */
for (int k = 0; k < ncaps; k++) {
cap = &cinfo[i].pager[j].caps[k];
process_cap_info(cap, bootres, kcont);
}
}
}
/* TODO: Count all ids needed to represent all */
return 0;
}
/*
* FIXME: Add error handling
*/
int init_system_resources(struct kernel_container *kcont)
{
struct boot_resources bootres;
memset(&bootres, 0, sizeof(bootres));
init_boot_resources(&bootres, kcont);
init_resource_allocators(&bootres, kcont);
free_boot_memory(&bootres, kcont);
return 0;
}