Files
codezero/tasks/libmem/mm/alloc_page.c
Bahadir Balban 68a4e78e66 Greatly simplified page allocator.
Made most changes for alloc_page()
2008-09-06 12:55:47 +03:00

250 lines
6.4 KiB
C

/*
* A proof-of-concept linked-list based page allocator.
*
* Copyright (C) 2007 Bahadir Balban
*/
#include <stdio.h>
#include <string.h>
#include <l4/config.h>
#include <l4/macros.h>
#include <l4/types.h>
#include <l4/lib/list.h>
#include <l4lib/arch/syscalls.h>
#include <l4lib/arch/syslib.h>
#include "alloc_page.h"
#include INC_GLUE(memory.h)
#include INC_SUBARCH(mm.h)
#include INC_GLUE(memlayout.h)
struct page_allocator allocator;
/*
* Allocate a new page area from the page area cache
*/
static struct page_area *new_page_area(struct page_allocator *p)
{
struct mem_cache *cache;
struct page_area *new_area;
list_for_each_entry(cache, &p->pga_cache_list, list) {
if ((new_area = mem_cache_alloc(cache)) != 0) {
new_area->cache = cache;
p->pga_free--;
return new_area;
}
}
return 0;
}
/* Given the page @quantity, finds a free region, divides and returns new area. */
static struct page_area *
get_free_page_area(int quantity, struct page_allocator *p)
{
struct page_area *new, *area;
if (quantity <= 0)
return 0;
list_for_each_entry(area, &p->page_area_list, list) {
/* Check for exact size match */
if (area->numpages == quantity && !area->used) {
area->used = 1;
return area;
}
/* Divide a bigger area */
if (area->numpages > quantity && !area->used) {
new = new_page_area(p);
area->numpages -= quantity;
new->pfn = area->pfn + area->numpages;
new->numpages = quantity;
new->used = 1;
INIT_LIST_HEAD(&new->list);
list_add(&new->list, &area->list);
return new;
}
}
/* No more pages */
return 0;
}
/*
* All physical memory is tracked by a simple linked list implementation. A
* single list contains both used and free page_area descriptors. Each page_area
* describes a continuous region of physical pages, indicating its location by
* it's pfn.
*
* alloc_page() keeps track of all page-granuled memory, except the bits that
* were in use before the allocator initialised. This covers anything that is
* outside the @start @end range. This includes the page tables, first caches
* allocated by this function, compile-time allocated kernel data and text.
* Also other memory regions like IO are not tracked by alloc_page() but by
* other means.
*/
void init_page_allocator(unsigned long start, unsigned long end)
{
/* Initialise a page area cache in the first page */
struct page_area *freemem, *area;
struct mem_cache *cache;
INIT_LIST_HEAD(&allocator.page_area_list);
INIT_LIST_HEAD(&allocator.pga_cache_list);
/* Initialise the first page area cache */
cache = mem_cache_init(l4_map_helper((void *)start, 1), PAGE_SIZE,
sizeof(struct page_area), 0);
list_add(&cache->list, &allocator.pga_cache_list);
/* Initialise the first area that describes the page just allocated */
area = mem_cache_alloc(cache);
INIT_LIST_HEAD(&area->list);
area->pfn = __pfn(start);
area->used = 1;
area->numpages = 1;
area->cache = cache;
list_add(&area->list, &allocator.page_area_list);
/* Update freemem start address */
start += PAGE_SIZE;
/* Initialise first area that describes all of free physical memory */
freemem = mem_cache_alloc(cache);
INIT_LIST_HEAD(&freemem->list);
freemem->pfn = __pfn(start);
freemem->numpages = __pfn(end) - freemem->pfn;
freemem->cache = cache;
freemem->used = 0;
/* Add it as the first unused page area */
list_add(&freemem->list, &allocator.page_area_list);
/* Initialise free page area counter */
allocator.pga_free = mem_cache_total_empty(cache);
}
/*
* Check if we're about to run out of free page area structures.
* If so, allocate a new cache of page areas.
*/
int check_page_areas(struct page_allocator *p)
{
struct page_area *new;
struct mem_cache *newcache;
void *newpage;
/* If only one free area left */
if (p->pga_free == 1) {
/* Use that area to allocate a new page */
if (!(new = get_free_page_area(1, p)))
return -1; /* Out of memory */
/* Free page areas must now be reduced to 0 */
BUG_ON(p->pga_free != 0);
/* Map the new page into virtual memory */
newpage = l4_map_helper((void *)__pfn_to_addr(new->pfn), 1);
/* Initialise it as a new source of page area structures */
newcache = mem_cache_init(newpage, PAGE_SIZE,
sizeof(struct page_area), 0);
/*
* Update the free page area counter
* NOTE: need to lock the allocator here
*/
p->pga_free += mem_cache_total_empty(newcache);
/*
* Add the new cache to available
* list of free page area caches
*/
list_add(&newcache->list, &p->pga_cache_list);
/* Unlock here */
}
return 0;
}
void *alloc_page(int quantity)
{
struct page_area *new;
/*
* First make sure we have enough page
* area structures in the cache
*/
if (check_page_areas(&allocator) < 0)
return 0; /* Out of memory */
/*
* Now allocate the actual pages, using the available
* page area structures to describe the allocation
*/
new = get_free_page_area(quantity, &allocator);
/* Return physical address */
return (void *)__pfn_to_addr(new->pfn);
}
/* Merges two page areas, frees area cache if empty, returns the merged area. */
struct page_area *merge_free_areas(struct page_area *before,
struct page_area *after)
{
struct mem_cache *c;
BUG_ON(before->pfn + before->numpages != after->pfn);
BUG_ON(before->used || after->used)
BUG_ON(before == after);
before->numpages += after->numpages;
list_del(&after->list);
c = after->cache;
mem_cache_free(c, after);
/* Recursively free the cache page */
if (mem_cache_is_empty(c)) {
list_del(&c->list);
BUG_ON(free_page(l4_unmap_helper(c, 1)) < 0)
}
return before;
}
static int find_and_free_page_area(void *addr, struct page_allocator *p)
{
struct page_area *area, *prev, *next;
/* First find the page area to be freed. */
list_for_each_entry(area, &p->page_area_list, list)
if (__pfn_to_addr(area->pfn) == (unsigned long)addr &&
area->used) { /* Found it */
area->used = 0;
goto found;
}
return -1; /* Finished the loop, but area not found. */
found:
/* Now merge with adjacent areas, if possible */
if (area->list.prev != &p->page_area_list) {
prev = list_entry(area->list.prev, struct page_area, list);
if (!prev->used)
area = merge_free_areas(prev, area);
}
if (area->list.next != &p->page_area_list) {
next = list_entry(area->list.next, struct page_area, list);
if (!next->used)
area = merge_free_areas(area, next);
}
return 0;
}
int free_page(void *paddr)
{
return find_and_free_page_area(paddr, &allocator);
}