Update awk.

This commit is contained in:
Serge
2022-05-26 00:50:08 -07:00
parent 716151b46f
commit 37d1b00b7c
10 changed files with 504 additions and 3 deletions

View File

@@ -5,7 +5,7 @@ CFLAGS += -Werror -Os
YACC = bison -y
YFLAGS = -d
LIBS = -lm -lc
LIBS = -lm -lc -lclang
FILES = awk.lx.o b.o main.o tran.o lib.o run.o parse.o proctab.o freeze.o
SOURCE = awk.def.h awk.g.y awk.lx.l b.c lib.c main.c parse.c \
proc.c freeze.c run.c tran.c

View File

@@ -810,7 +810,7 @@ obj fncn(a,n) node **a;
else if (t == FEXP)
u = exp(getfval(x.optr));
else if (t == FSQRT)
u = sqrt(getfval(x.optr));
u = 0 /* TODO: sqrt(getfval(x.optr))*/;
else
error(FATAL, "illegal function type %d", t);
tempfree(x);

View File

@@ -8,14 +8,19 @@ OBJS = adddf3.o \
divdf3.o \
divsf3.o \
comparedf2.o \
comparesf2.o \
extendsfdf2.o \
fixdfsi.o \
fixsfsi.o \
floatsidf.o \
floatsisf.o \
floatunsisf.o \
fp_mode.o \
muldf3.o \
mulsf3.o \
subsf3.o
subdf3.o \
subsf3.o \
truncdfsf2.o
all: ../libclang.a

151
src/libclang/comparesf2.c Normal file
View File

@@ -0,0 +1,151 @@
//===-- lib/comparesf2.c - Single-precision comparisons -----------*- C -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the following soft-fp_t comparison routines:
//
// __eqsf2 __gesf2 __unordsf2
// __lesf2 __gtsf2
// __ltsf2
// __nesf2
//
// The semantics of the routines grouped in each column are identical, so there
// is a single implementation for each, and wrappers to provide the other names.
//
// The main routines behave as follows:
//
// __lesf2(a,b) returns -1 if a < b
// 0 if a == b
// 1 if a > b
// 1 if either a or b is NaN
//
// __gesf2(a,b) returns -1 if a < b
// 0 if a == b
// 1 if a > b
// -1 if either a or b is NaN
//
// __unordsf2(a,b) returns 0 if both a and b are numbers
// 1 if either a or b is NaN
//
// Note that __lesf2( ) and __gesf2( ) are identical except in their handling of
// NaN values.
//
//===----------------------------------------------------------------------===//
#define SINGLE_PRECISION
#include "fp_lib.h"
enum LE_RESULT { LE_LESS = -1, LE_EQUAL = 0, LE_GREATER = 1, LE_UNORDERED = 1 };
COMPILER_RT_ABI enum LE_RESULT __lesf2(fp_t a, fp_t b) {
const srep_t aInt = toRep(a);
const srep_t bInt = toRep(b);
const rep_t aAbs = aInt & absMask;
const rep_t bAbs = bInt & absMask;
// If either a or b is NaN, they are unordered.
if (aAbs > infRep || bAbs > infRep)
return LE_UNORDERED;
// If a and b are both zeros, they are equal.
if ((aAbs | bAbs) == 0)
return LE_EQUAL;
// If at least one of a and b is positive, we get the same result comparing
// a and b as signed integers as we would with a fp_ting-point compare.
if ((aInt & bInt) >= 0) {
if (aInt < bInt)
return LE_LESS;
else if (aInt == bInt)
return LE_EQUAL;
else
return LE_GREATER;
}
// Otherwise, both are negative, so we need to flip the sense of the
// comparison to get the correct result. (This assumes a twos- or ones-
// complement integer representation; if integers are represented in a
// sign-magnitude representation, then this flip is incorrect).
else {
if (aInt > bInt)
return LE_LESS;
else if (aInt == bInt)
return LE_EQUAL;
else
return LE_GREATER;
}
}
#if defined(__ELF__)
// Alias for libgcc compatibility
COMPILER_RT_ALIAS(__lesf2, __cmpsf2)
#endif
COMPILER_RT_ALIAS(__lesf2, __eqsf2)
COMPILER_RT_ALIAS(__lesf2, __ltsf2)
COMPILER_RT_ALIAS(__lesf2, __nesf2)
enum GE_RESULT {
GE_LESS = -1,
GE_EQUAL = 0,
GE_GREATER = 1,
GE_UNORDERED = -1 // Note: different from LE_UNORDERED
};
COMPILER_RT_ABI enum GE_RESULT __gesf2(fp_t a, fp_t b) {
const srep_t aInt = toRep(a);
const srep_t bInt = toRep(b);
const rep_t aAbs = aInt & absMask;
const rep_t bAbs = bInt & absMask;
if (aAbs > infRep || bAbs > infRep)
return GE_UNORDERED;
if ((aAbs | bAbs) == 0)
return GE_EQUAL;
if ((aInt & bInt) >= 0) {
if (aInt < bInt)
return GE_LESS;
else if (aInt == bInt)
return GE_EQUAL;
else
return GE_GREATER;
} else {
if (aInt > bInt)
return GE_LESS;
else if (aInt == bInt)
return GE_EQUAL;
else
return GE_GREATER;
}
}
COMPILER_RT_ALIAS(__gesf2, __gtsf2)
COMPILER_RT_ABI int
__unordsf2(fp_t a, fp_t b) {
const rep_t aAbs = toRep(a) & absMask;
const rep_t bAbs = toRep(b) & absMask;
return aAbs > infRep || bAbs > infRep;
}
#if defined(__ARM_EABI__)
#if defined(COMPILER_RT_ARMHF_TARGET)
AEABI_RTABI int __aeabi_fcmpun(fp_t a, fp_t b) { return __unordsf2(a, b); }
#else
COMPILER_RT_ALIAS(__unordsf2, __aeabi_fcmpun)
#endif
#endif
#if defined(_WIN32) && !defined(__MINGW32__)
// The alias mechanism doesn't work on Windows except for MinGW, so emit
// wrapper functions.
int __eqsf2(fp_t a, fp_t b) { return __lesf2(a, b); }
int __ltsf2(fp_t a, fp_t b) { return __lesf2(a, b); }
int __nesf2(fp_t a, fp_t b) { return __lesf2(a, b); }
int __gtsf2(fp_t a, fp_t b) { return __gesf2(a, b); }
#endif

23
src/libclang/fixsfsi.c Normal file
View File

@@ -0,0 +1,23 @@
//===-- fixsfsi.c - Implement __fixsfsi -----------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#define SINGLE_PRECISION
#include "fp_lib.h"
typedef si_int fixint_t;
typedef su_int fixuint_t;
#include "fp_fixint_impl.inc"
COMPILER_RT_ABI si_int __fixsfsi(fp_t a) { return __fixint(a); }
#if defined(__ARM_EABI__)
#if defined(COMPILER_RT_ARMHF_TARGET)
AEABI_RTABI si_int __aeabi_f2iz(fp_t a) { return __fixsfsi(a); }
#else
COMPILER_RT_ALIAS(__fixsfsi, __aeabi_f2iz)
#endif
#endif

View File

@@ -0,0 +1,57 @@
//===-- lib/floatunsisf.c - uint -> single-precision conversion ---*- C -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements unsigned integer to single-precision conversion for the
// compiler-rt library in the IEEE-754 default round-to-nearest, ties-to-even
// mode.
//
//===----------------------------------------------------------------------===//
#define SINGLE_PRECISION
#include "fp_lib.h"
#include "int_lib.h"
COMPILER_RT_ABI fp_t __floatunsisf(unsigned int a) {
const int aWidth = sizeof a * CHAR_BIT;
// Handle zero as a special case to protect clz
if (a == 0)
return fromRep(0);
// Exponent of (fp_t)a is the width of abs(a).
const int exponent = (aWidth - 1) - __builtin_clz(a);
rep_t result;
// Shift a into the significand field, rounding if it is a right-shift
if (exponent <= significandBits) {
const int shift = significandBits - exponent;
result = (rep_t)a << shift ^ implicitBit;
} else {
const int shift = exponent - significandBits;
result = (rep_t)a >> shift ^ implicitBit;
rep_t round = (rep_t)a << (typeWidth - shift);
if (round > signBit)
result++;
if (round == signBit)
result += result & 1;
}
// Insert the exponent
result += (rep_t)(exponent + exponentBias) << significandBits;
return fromRep(result);
}
#if defined(__ARM_EABI__)
#if defined(COMPILER_RT_ARMHF_TARGET)
AEABI_RTABI fp_t __aeabi_ui2f(unsigned int a) { return __floatunsisf(a); }
#else
COMPILER_RT_ALIAS(__floatunsisf, __aeabi_ui2f)
#endif
#endif

85
src/libclang/fp_trunc.h Normal file
View File

@@ -0,0 +1,85 @@
//=== lib/fp_trunc.h - high precision -> low precision conversion *- C -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Set source and destination precision setting
//
//===----------------------------------------------------------------------===//
#ifndef FP_TRUNC_HEADER
#define FP_TRUNC_HEADER
#include "int_lib.h"
#if defined SRC_SINGLE
typedef float src_t;
typedef uint32_t src_rep_t;
#define SRC_REP_C UINT32_C
static const int srcSigBits = 23;
#elif defined SRC_DOUBLE
typedef double src_t;
typedef uint64_t src_rep_t;
#define SRC_REP_C UINT64_C
static const int srcSigBits = 52;
#elif defined SRC_QUAD
typedef long double src_t;
typedef __uint128_t src_rep_t;
#define SRC_REP_C (__uint128_t)
static const int srcSigBits = 112;
#else
#error Source should be double precision or quad precision!
#endif // end source precision
#if defined DST_DOUBLE
typedef double dst_t;
typedef uint64_t dst_rep_t;
#define DST_REP_C UINT64_C
static const int dstSigBits = 52;
#elif defined DST_SINGLE
typedef float dst_t;
typedef uint32_t dst_rep_t;
#define DST_REP_C UINT32_C
static const int dstSigBits = 23;
#elif defined DST_HALF
#ifdef COMPILER_RT_HAS_FLOAT16
typedef _Float16 dst_t;
#else
typedef uint16_t dst_t;
#endif
typedef uint16_t dst_rep_t;
#define DST_REP_C UINT16_C
static const int dstSigBits = 10;
#else
#error Destination should be single precision or double precision!
#endif // end destination precision
// End of specialization parameters. Two helper routines for conversion to and
// from the representation of floating-point data as integer values follow.
static __inline src_rep_t srcToRep(src_t x) {
const union {
src_t f;
src_rep_t i;
} rep = {.f = x};
return rep.i;
}
static __inline dst_t dstFromRep(dst_rep_t x) {
const union {
dst_t f;
dst_rep_t i;
} rep = {.i = x};
return rep.f;
}
#endif // FP_TRUNC_HEADER

View File

@@ -0,0 +1,132 @@
//= lib/fp_trunc_impl.inc - high precision -> low precision conversion *-*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements a fairly generic conversion from a wider to a narrower
// IEEE-754 floating-point type in the default (round to nearest, ties to even)
// rounding mode. The constants and types defined following the includes below
// parameterize the conversion.
//
// This routine can be trivially adapted to support conversions to
// half-precision or from quad-precision. It does not support types that don't
// use the usual IEEE-754 interchange formats; specifically, some work would be
// needed to adapt it to (for example) the Intel 80-bit format or PowerPC
// double-double format.
//
// Note please, however, that this implementation is only intended to support
// *narrowing* operations; if you need to convert to a *wider* floating-point
// type (e.g. float -> double), then this routine will not do what you want it
// to.
//
// It also requires that integer types at least as large as both formats
// are available on the target platform; this may pose a problem when trying
// to add support for quad on some 32-bit systems, for example.
//
// Finally, the following assumptions are made:
//
// 1. Floating-point types and integer types have the same endianness on the
// target platform.
//
// 2. Quiet NaNs, if supported, are indicated by the leading bit of the
// significand field being set.
//
//===----------------------------------------------------------------------===//
#include "fp_trunc.h"
static __inline dst_t __truncXfYf2__(src_t a) {
// Various constants whose values follow from the type parameters.
// Any reasonable optimizer will fold and propagate all of these.
const int srcBits = sizeof(src_t) * CHAR_BIT;
const int srcExpBits = srcBits - srcSigBits - 1;
const int srcInfExp = (1 << srcExpBits) - 1;
const int srcExpBias = srcInfExp >> 1;
const src_rep_t srcMinNormal = SRC_REP_C(1) << srcSigBits;
const src_rep_t srcSignificandMask = srcMinNormal - 1;
const src_rep_t srcInfinity = (src_rep_t)srcInfExp << srcSigBits;
const src_rep_t srcSignMask = SRC_REP_C(1) << (srcSigBits + srcExpBits);
const src_rep_t srcAbsMask = srcSignMask - 1;
const src_rep_t roundMask = (SRC_REP_C(1) << (srcSigBits - dstSigBits)) - 1;
const src_rep_t halfway = SRC_REP_C(1) << (srcSigBits - dstSigBits - 1);
const src_rep_t srcQNaN = SRC_REP_C(1) << (srcSigBits - 1);
const src_rep_t srcNaNCode = srcQNaN - 1;
const int dstBits = sizeof(dst_t) * CHAR_BIT;
const int dstExpBits = dstBits - dstSigBits - 1;
const int dstInfExp = (1 << dstExpBits) - 1;
const int dstExpBias = dstInfExp >> 1;
const int underflowExponent = srcExpBias + 1 - dstExpBias;
const int overflowExponent = srcExpBias + dstInfExp - dstExpBias;
const src_rep_t underflow = (src_rep_t)underflowExponent << srcSigBits;
const src_rep_t overflow = (src_rep_t)overflowExponent << srcSigBits;
const dst_rep_t dstQNaN = DST_REP_C(1) << (dstSigBits - 1);
const dst_rep_t dstNaNCode = dstQNaN - 1;
// Break a into a sign and representation of the absolute value.
const src_rep_t aRep = srcToRep(a);
const src_rep_t aAbs = aRep & srcAbsMask;
const src_rep_t sign = aRep & srcSignMask;
dst_rep_t absResult;
if (aAbs - underflow < aAbs - overflow) {
// The exponent of a is within the range of normal numbers in the
// destination format. We can convert by simply right-shifting with
// rounding and adjusting the exponent.
absResult = aAbs >> (srcSigBits - dstSigBits);
absResult -= (dst_rep_t)(srcExpBias - dstExpBias) << dstSigBits;
const src_rep_t roundBits = aAbs & roundMask;
// Round to nearest.
if (roundBits > halfway)
absResult++;
// Tie to even.
else if (roundBits == halfway)
absResult += absResult & 1;
} else if (aAbs > srcInfinity) {
// a is NaN.
// Conjure the result by beginning with infinity, setting the qNaN
// bit and inserting the (truncated) trailing NaN field.
absResult = (dst_rep_t)dstInfExp << dstSigBits;
absResult |= dstQNaN;
absResult |=
((aAbs & srcNaNCode) >> (srcSigBits - dstSigBits)) & dstNaNCode;
} else if (aAbs >= overflow) {
// a overflows to infinity.
absResult = (dst_rep_t)dstInfExp << dstSigBits;
} else {
// a underflows on conversion to the destination type or is an exact
// zero. The result may be a denormal or zero. Extract the exponent
// to get the shift amount for the denormalization.
const int aExp = aAbs >> srcSigBits;
const int shift = srcExpBias - dstExpBias - aExp + 1;
const src_rep_t significand = (aRep & srcSignificandMask) | srcMinNormal;
// Right shift by the denormalization amount with sticky.
if (shift > srcSigBits) {
absResult = 0;
} else {
const bool sticky = (significand << (srcBits - shift)) != 0;
src_rep_t denormalizedSignificand = significand >> shift | sticky;
absResult = denormalizedSignificand >> (srcSigBits - dstSigBits);
const src_rep_t roundBits = denormalizedSignificand & roundMask;
// Round to nearest
if (roundBits > halfway)
absResult++;
// Ties to even
else if (roundBits == halfway)
absResult += absResult & 1;
}
}
// Apply the signbit to the absolute value.
const dst_rep_t result = absResult | sign >> (srcBits - dstBits);
return dstFromRep(result);
}

27
src/libclang/subdf3.c Normal file
View File

@@ -0,0 +1,27 @@
//===-- lib/adddf3.c - Double-precision subtraction ---------------*- C -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements double-precision soft-float subtraction.
//
//===----------------------------------------------------------------------===//
#define DOUBLE_PRECISION
#include "fp_lib.h"
// Subtraction; flip the sign bit of b and add.
COMPILER_RT_ABI fp_t __subdf3(fp_t a, fp_t b) {
return __adddf3(a, fromRep(toRep(b) ^ signBit));
}
#if defined(__ARM_EABI__)
#if defined(COMPILER_RT_ARMHF_TARGET)
AEABI_RTABI fp_t __aeabi_dsub(fp_t a, fp_t b) { return __subdf3(a, b); }
#else
COMPILER_RT_ALIAS(__subdf3, __aeabi_dsub)
#endif
#endif

21
src/libclang/truncdfsf2.c Normal file
View File

@@ -0,0 +1,21 @@
//===-- lib/truncdfsf2.c - double -> single conversion ------------*- C -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#define SRC_DOUBLE
#define DST_SINGLE
#include "fp_trunc_impl.inc"
COMPILER_RT_ABI float __truncdfsf2(double a) { return __truncXfYf2__(a); }
#if defined(__ARM_EABI__)
#if defined(COMPILER_RT_ARMHF_TARGET)
AEABI_RTABI float __aeabi_d2f(double a) { return __truncdfsf2(a); }
#else
COMPILER_RT_ALIAS(__truncdfsf2, __aeabi_d2f)
#endif
#endif