Add ili9341 sources from adafruit library, and nt35702 sources from elsewhere.

This commit is contained in:
Serge Vakulenko
2015-10-30 20:44:07 -07:00
parent b259f58533
commit 3ee11917bb
7 changed files with 1662 additions and 0 deletions

View File

@@ -0,0 +1,579 @@
// IMPORTANT: LIBRARY MUST BE SPECIFICALLY CONFIGURED FOR EITHER TFT SHIELD
// OR BREAKOUT BOARD USAGE. SEE RELEVANT COMMENTS IN Adafruit_ILI9341_8bit_AS.h
// Graphics library by ladyada/adafruit with init code from Rossum
// MIT license
#include <avr/pgmspace.h>
#include "pins_arduino.h"
#include "wiring_private.h"
#include "Adafruit_ILI9341_8bit_AS.h"
#if defined __AVR_ATmega328P__
#include "pin_magic_UNO.h"
#endif
#if defined __AVR_ATmega2560__
#include "pin_magic_MEGA.h"
#endif
//#define TFTWIDTH 320
//#define TFTHEIGHT 480
#define TFTWIDTH 240
#define TFTHEIGHT 320
// LCD controller chip identifiers
#define ID_9341 2
#include "registers.h"
// Constructor for breakout board (configurable LCD control lines).
// Can still use this w/shield, but parameters are ignored.
Adafruit_ILI9341_8bit_AS::Adafruit_ILI9341_8bit_AS(uint8_t cs, uint8_t cd, uint8_t wr, uint8_t rd, uint8_t reset) : Adafruit_GFX_AS(TFTWIDTH, TFTHEIGHT) {
#ifndef USE_ADAFRUIT_SHIELD_PINOUT
// Convert pin numbers to registers and bitmasks
_reset = reset;
csPort = portOutputRegister(digitalPinToPort(cs));
cdPort = portOutputRegister(digitalPinToPort(cd));
wrPort = portOutputRegister(digitalPinToPort(wr));
rdPort = portOutputRegister(digitalPinToPort(rd));
csPinSet = digitalPinToBitMask(cs);
cdPinSet = digitalPinToBitMask(cd);
wrPinSet = digitalPinToBitMask(wr);
rdPinSet = digitalPinToBitMask(rd);
csPinUnset = ~csPinSet;
cdPinUnset = ~cdPinSet;
wrPinUnset = ~wrPinSet;
rdPinUnset = ~rdPinSet;
*csPort |= csPinSet; // Set all control bits to HIGH (idle)
*cdPort |= cdPinSet; // Signals are ACTIVE LOW
*wrPort |= wrPinSet;
*rdPort |= rdPinSet;
pinMode(cs, OUTPUT); // Enable outputs
pinMode(cd, OUTPUT);
pinMode(wr, OUTPUT);
pinMode(rd, OUTPUT);
if(reset) {
digitalWrite(reset, HIGH);
pinMode(reset, OUTPUT);
}
#endif
init();
}
// Constructor for shield (fixed LCD control lines)
Adafruit_ILI9341_8bit_AS::Adafruit_ILI9341_8bit_AS(void) : Adafruit_GFX_AS(TFTWIDTH, TFTHEIGHT) {
init();
}
// Initialization common to both shield & breakout configs
void Adafruit_ILI9341_8bit_AS::init(void) {
#ifdef USE_ADAFRUIT_SHIELD_PINOUT
CS_IDLE; // Set all control bits to idle state
WR_IDLE;
RD_IDLE;
CD_DATA;
digitalWrite(5, HIGH); // Reset line
pinMode(A3, OUTPUT); // Enable outputs
pinMode(A2, OUTPUT);
pinMode(A1, OUTPUT);
pinMode(A0, OUTPUT);
pinMode( 5, OUTPUT);
#endif
setWriteDir(); // Set up LCD data port(s) for WRITE operations
rotation = 0;
cursor_y = cursor_x = 0;
textsize = 1;
textcolor = 0xFFFF;
_width = TFTWIDTH;
_height = TFTHEIGHT;
}
// Initialization command tables for different LCD controllers
#define ILI9341_8bit_AS_DELAY 0xFF
static const uint8_t HX8347G_regValues[] PROGMEM = {
0x2E , 0x89,
0x29 , 0x8F,
0x2B , 0x02,
0xE2 , 0x00,
0xE4 , 0x01,
0xE5 , 0x10,
0xE6 , 0x01,
0xE7 , 0x10,
0xE8 , 0x70,
0xF2 , 0x00,
0xEA , 0x00,
0xEB , 0x20,
0xEC , 0x3C,
0xED , 0xC8,
0xE9 , 0x38,
0xF1 , 0x01,
// skip gamma, do later
0x1B , 0x1A,
0x1A , 0x02,
0x24 , 0x61,
0x25 , 0x5C,
0x18 , 0x36,
0x19 , 0x01,
0x1F , 0x88,
ILI9341_8bit_AS_DELAY , 5 , // delay 5 ms
0x1F , 0x80,
ILI9341_8bit_AS_DELAY , 5 ,
0x1F , 0x90,
ILI9341_8bit_AS_DELAY , 5 ,
0x1F , 0xD4,
ILI9341_8bit_AS_DELAY , 5 ,
0x17 , 0x05,
0x36 , 0x09,
0x28 , 0x38,
ILI9341_8bit_AS_DELAY , 40 ,
0x28 , 0x3C,
0x02 , 0x00,
0x03 , 0x00,
0x04 , 0x00,
0x05 , 0xEF,
0x06 , 0x00,
0x07 , 0x00,
0x08 , 0x01,
0x09 , 0x3F
};
void Adafruit_ILI9341_8bit_AS::begin(uint16_t id) {
uint8_t i = 0;
reset();
delay(200);
uint16_t a, d;
driver = ID_9341;
CS_ACTIVE;
writeRegister8(ILI9341_SOFTRESET, 0);
delay(50);
writeRegister8(ILI9341_DISPLAYOFF, 0);
writeRegister8(ILI9341_POWERCONTROL1, 0x23);
writeRegister8(ILI9341_POWERCONTROL2, 0x10);
writeRegister16(ILI9341_VCOMCONTROL1, 0x2B2B);
writeRegister8(ILI9341_VCOMCONTROL2, 0xC0);
writeRegister8(ILI9341_MEMCONTROL, ILI9341_MADCTL_MY | ILI9341_MADCTL_BGR);
writeRegister8(ILI9341_PIXELFORMAT, 0x55);
writeRegister16(ILI9341_FRAMECONTROL, 0x001B);
writeRegister8(ILI9341_ENTRYMODE, 0x07);
/* writeRegister32(ILI9341_DISPLAYFUNC, 0x0A822700);*/
writeRegister8(ILI9341_SLEEPOUT, 0);
delay(150);
writeRegister8(ILI9341_DISPLAYON, 0);
delay(500);
setAddrWindow(0, 0, TFTWIDTH-1, TFTHEIGHT-1);
return;
}
void Adafruit_ILI9341_8bit_AS::reset(void) {
CS_IDLE;
// CD_DATA;
WR_IDLE;
RD_IDLE;
#ifdef USE_ADAFRUIT_SHIELD_PINOUT
digitalWrite(5, LOW);
delay(2);
digitalWrite(5, HIGH);
#else
// if we have a reset pin defined ( _reset )
if(_reset) {
digitalWrite(_reset, LOW);
delay(2);
digitalWrite(_reset, HIGH);
}
#endif
// Data transfer sync
CS_ACTIVE;
CD_COMMAND;
write8(0x00);
for(uint8_t i=0; i<3; i++) WR_STROBE; // Three extra 0x00s
CS_IDLE;
// let the display recover from the reset
delay(500);
}
// Sets the LCD address window (and address counter, on 932X).
// Relevant to rect/screen fills and H/V lines. Input coordinates are
// assumed pre-sorted (e.g. x2 >= x1).
void Adafruit_ILI9341_8bit_AS::setAddrWindow(int x1, int y1, int x2, int y2) {
CS_ACTIVE;
uint32_t t;
t = x1;
t <<= 16;
t |= x2;
writeRegister32(ILI9341_COLADDRSET, t); // HX8357D uses same registers!
t = y1;
t <<= 16;
t |= y2;
writeRegister32(ILI9341_PAGEADDRSET, t); // HX8357D uses same registers!
CS_IDLE;
}
// Fast block fill operation for fillScreen, fillRect, H/V line, etc.
// Requires setAddrWindow() has previously been called to set the fill
// bounds. 'len' is inclusive, MUST be >= 1.
void Adafruit_ILI9341_8bit_AS::flood(uint16_t color, uint32_t len) {
uint16_t blocks;
uint8_t i, hi = color >> 8,
lo = color;
CS_ACTIVE;
CD_COMMAND;
write8(0x2C);
// Write first pixel normally, decrement counter by 1
CD_DATA;
write8(hi);
write8(lo);
len--;
blocks = (uint16_t)(len / 64); // 64 pixels/block
if(hi == lo) {
// High and low bytes are identical. Leave prior data
// on the port(s) and just toggle the write strobe.
while(blocks--) {
i = 16; // 64 pixels/block / 4 pixels/pass
do {
WR_STROBE; WR_STROBE; WR_STROBE; WR_STROBE; // 2 bytes/pixel
WR_STROBE; WR_STROBE; WR_STROBE; WR_STROBE; // x 4 pixels
} while(--i);
}
// Fill any remaining pixels (1 to 64)
for(i = (uint8_t)len & 63; i--; ) {
WR_STROBE;
WR_STROBE;
}
} else {
while(blocks--) {
i = 16; // 64 pixels/block / 4 pixels/pass
do {
write8(hi); write8(lo); write8(hi); write8(lo);
write8(hi); write8(lo); write8(hi); write8(lo);
} while(--i);
}
for(i = (uint8_t)len & 63; i--; ) {
write8(hi);
write8(lo);
}
}
CS_IDLE;
}
void Adafruit_ILI9341_8bit_AS::drawFastHLine(int16_t x, int16_t y, int16_t length,
uint16_t color)
{
int16_t x2;
// Initial off-screen clipping
if((length <= 0 ) ||
(y < 0 ) || ( y >= _height) ||
(x >= _width) || ((x2 = (x+length-1)) < 0 )) return;
if(x < 0) { // Clip left
length += x;
x = 0;
}
if(x2 >= _width) { // Clip right
x2 = _width - 1;
length = x2 - x + 1;
}
setAddrWindow(x, y, x2, y);
flood(color, length);
}
void Adafruit_ILI9341_8bit_AS::drawFastVLine(int16_t x, int16_t y, int16_t length,
uint16_t color)
{
int16_t y2;
// Initial off-screen clipping
if((length <= 0 ) ||
(x < 0 ) || ( x >= _width) ||
(y >= _height) || ((y2 = (y+length-1)) < 0 )) return;
if(y < 0) { // Clip top
length += y;
y = 0;
}
if(y2 >= _height) { // Clip bottom
y2 = _height - 1;
length = y2 - y + 1;
}
setAddrWindow(x, y, x, y2);
flood(color, length);
}
void Adafruit_ILI9341_8bit_AS::fillRect(int16_t x1, int16_t y1, int16_t w, int16_t h,
uint16_t fillcolor) {
int16_t x2, y2;
// Initial off-screen clipping
if( (w <= 0 ) || (h <= 0 ) ||
(x1 >= _width) || (y1 >= _height) ||
((x2 = x1+w-1) < 0 ) || ((y2 = y1+h-1) < 0 )) return;
if(x1 < 0) { // Clip left
w += x1;
x1 = 0;
}
if(y1 < 0) { // Clip top
h += y1;
y1 = 0;
}
if(x2 >= _width) { // Clip right
x2 = _width - 1;
w = x2 - x1 + 1;
}
if(y2 >= _height) { // Clip bottom
y2 = _height - 1;
h = y2 - y1 + 1;
}
setAddrWindow(x1, y1, x2, y2);
flood(fillcolor, (uint32_t)w * (uint32_t)h);
}
void Adafruit_ILI9341_8bit_AS::fillScreen(uint16_t color) {
// For these, there is no settable address pointer, instead the
// address window must be set for each drawing operation. However,
// this display takes rotation into account for the parameters, no
// need to do extra rotation math here.
setAddrWindow(0, 0, _width - 1, _height - 1);
flood(color, (long)TFTWIDTH * (long)TFTHEIGHT);
}
void Adafruit_ILI9341_8bit_AS::drawPixel(int16_t x, int16_t y, uint16_t color) {
// Clip
if((x < 0) || (y < 0) || (x >= _width) || (y >= _height)) return;
CS_ACTIVE;
setAddrWindow(x, y, _width-1, _height-1);
CS_ACTIVE;
CD_COMMAND;
write8(0x2C);
CD_DATA;
write8(color >> 8); write8(color);
CS_IDLE;
}
// Issues 'raw' an array of 16-bit color values to the LCD; used
// externally by BMP examples. Assumes that setWindowAddr() has
// previously been set to define the bounds. Max 255 pixels at
// a time (BMP examples read in small chunks due to limited RAM).
void Adafruit_ILI9341_8bit_AS::pushColors(uint16_t *data, uint8_t len, boolean first) {
uint16_t color;
uint8_t hi, lo;
CS_ACTIVE;
if(first == true) { // Issue GRAM write command only on first call
CD_COMMAND;
write8(0x2C);
}
CD_DATA;
while(len--) {
color = *data++;
hi = color >> 8; // Don't simplify or merge these
lo = color; // lines, there's macro shenanigans
write8(hi); // going on.
write8(lo);
}
CS_IDLE;
}
void Adafruit_ILI9341_8bit_AS::setRotation(uint8_t x) {
// Call parent rotation func first -- sets up rotation flags, etc.
Adafruit_GFX_AS::setRotation(x);
// Then perform hardware-specific rotation operations...
CS_ACTIVE;
uint16_t t;
switch (rotation) {
case 2:
t = ILI9341_MADCTL_MX | ILI9341_MADCTL_BGR;
break;
case 3:
t = ILI9341_MADCTL_MV | ILI9341_MADCTL_BGR;
break;
case 0:
t = ILI9341_MADCTL_MY | ILI9341_MADCTL_BGR;
break;
case 1:
t = ILI9341_MADCTL_MX | ILI9341_MADCTL_MY | ILI9341_MADCTL_MV | ILI9341_MADCTL_BGR;
break;
}
writeRegister8(ILI9341_MADCTL, t ); // MADCTL
// For 9341, init default full-screen address window:
setAddrWindow(0, 0, _width - 1, _height - 1); // CS_IDLE happens here
writeRegister8(ILI9341_MADCTL, t ); // MADCTL
// For 8357, init default full-screen address window:
setAddrWindow(0, 0, _width - 1, _height - 1); // CS_IDLE happens here
}
#ifdef read8isFunctionalized
#define read8(x) x=read8fn()
#endif
// Because this function is used infrequently, it configures the ports for
// the read operation, reads the data, then restores the ports to the write
// configuration. Write operations happen a LOT, so it's advantageous to
// leave the ports in that state as a default.
uint16_t Adafruit_ILI9341_8bit_AS::readPixel(int16_t x, int16_t y) {
return 0;
}
// Ditto with the read/write port directions, as above.
uint16_t Adafruit_ILI9341_8bit_AS::readID(void) {
uint16_t id = readReg(0xD3);
return id;
}
uint32_t Adafruit_ILI9341_8bit_AS::readReg(uint8_t r) {
uint32_t id;
uint8_t x;
// try reading register #4
CS_ACTIVE;
CD_COMMAND;
write8(r);
setReadDir(); // Set up LCD data port(s) for READ operations
CD_DATA;
delayMicroseconds(50);
read8(x);
id = x; // Do not merge or otherwise simplify
id <<= 8; // these lines. It's an unfortunate
read8(x);
id |= x; // shenanigans that are going on.
id <<= 8; // these lines. It's an unfortunate
read8(x);
id |= x; // shenanigans that are going on.
id <<= 8; // these lines. It's an unfortunate
read8(x);
id |= x; // shenanigans that are going on.
CS_IDLE;
setWriteDir(); // Restore LCD data port(s) to WRITE configuration
return id;
}
// Pass 8-bit (each) R,G,B, get back 16-bit packed color
uint16_t Adafruit_ILI9341_8bit_AS::color565(uint8_t r, uint8_t g, uint8_t b) {
return ((r & 0xF8) << 8) | ((g & 0xFC) << 3) | (b >> 3);
}
// For I/O macros that were left undefined, declare function
// versions that reference the inline macros just once:
#ifndef write8
void Adafruit_ILI9341_8bit_AS::write8(uint8_t value) {
write8inline(value);
}
#endif
#ifdef read8isFunctionalized
uint8_t Adafruit_ILI9341_8bit_AS::read8fn(void) {
uint8_t result;
read8inline(result);
return result;
}
#endif
#ifndef setWriteDir
void Adafruit_ILI9341_8bit_AS::setWriteDir(void) {
setWriteDirInline();
}
#endif
#ifndef setReadDir
void Adafruit_ILI9341_8bit_AS::setReadDir(void) {
setReadDirInline();
}
#endif
#ifndef writeRegister8
void Adafruit_ILI9341_8bit_AS::writeRegister8(uint8_t a, uint8_t d) {
writeRegister8inline(a, d);
}
#endif
#ifndef writeRegister16
void Adafruit_ILI9341_8bit_AS::writeRegister16(uint16_t a, uint16_t d) {
writeRegister16inline(a, d);
}
#endif
#ifndef writeRegisterPair
void Adafruit_ILI9341_8bit_AS::writeRegisterPair(uint8_t aH, uint8_t aL, uint16_t d) {
writeRegisterPairInline(aH, aL, d);
}
#endif
void Adafruit_ILI9341_8bit_AS::writeRegister24(uint8_t r, uint32_t d) {
CS_ACTIVE;
CD_COMMAND;
write8(r);
CD_DATA;
delayMicroseconds(10);
write8(d >> 16);
delayMicroseconds(10);
write8(d >> 8);
delayMicroseconds(10);
write8(d);
CS_IDLE;
}
void Adafruit_ILI9341_8bit_AS::writeRegister32(uint8_t r, uint32_t d) {
CS_ACTIVE;
CD_COMMAND;
write8(r);
CD_DATA;
delayMicroseconds(10);
write8(d >> 24);
delayMicroseconds(10);
write8(d >> 16);
delayMicroseconds(10);
write8(d >> 8);
delayMicroseconds(10);
write8(d);
CS_IDLE;
}

View File

@@ -0,0 +1,105 @@
// IMPORTANT: SEE COMMENTS @ LINE 15 REGARDING SHIELD VS BREAKOUT BOARD USAGE.
// Graphics library by ladyada/adafruit with init code from Rossum
// MIT license
#ifndef _ADAFRUIT_ILI9341_8bit_AS_H_
#define _ADAFRUIT_ILI9341_8bit_AS_H_
#if ARDUINO >= 100
#include "Arduino.h"
#else
#include "WProgram.h"
#endif
#include "Adafruit_GFX_AS.h"
// **** IF USING THE LCD BREAKOUT BOARD, COMMENT OUT THIS NEXT LINE. ****
// **** IF USING THE LCD SHIELD, LEAVE THE LINE ENABLED: ****
//#define USE_ADAFRUIT_SHIELD_PINOUT 1
class Adafruit_ILI9341_8bit_AS : public Adafruit_GFX_AS {
public:
Adafruit_ILI9341_8bit_AS(uint8_t cs, uint8_t cd, uint8_t wr, uint8_t rd, uint8_t rst);
Adafruit_ILI9341_8bit_AS(void);
void begin(uint16_t id = 0x9325);
void drawPixel(int16_t x, int16_t y, uint16_t color);
void drawFastHLine(int16_t x0, int16_t y0, int16_t w, uint16_t color);
void drawFastVLine(int16_t x0, int16_t y0, int16_t h, uint16_t color);
void fillRect(int16_t x, int16_t y, int16_t w, int16_t h, uint16_t c);
void fillScreen(uint16_t color);
void reset(void);
void setRegisters8(uint8_t *ptr, uint8_t n);
void setRegisters16(uint16_t *ptr, uint8_t n);
void setRotation(uint8_t x);
// These methods are public in order for BMP examples to work:
void setAddrWindow(int x1, int y1, int x2, int y2);
void pushColors(uint16_t *data, uint8_t len, boolean first);
uint16_t color565(uint8_t r, uint8_t g, uint8_t b),
readPixel(int16_t x, int16_t y),
readID(void);
uint32_t readReg(uint8_t r);
private:
void init(),
// These items may have previously been defined as macros
// in pin_magic.h. If not, function versions are declared:
#ifndef write8
write8(uint8_t value),
#endif
#ifndef setWriteDir
setWriteDir(void),
#endif
#ifndef setReadDir
setReadDir(void),
#endif
#ifndef writeRegister8
writeRegister8(uint8_t a, uint8_t d),
#endif
#ifndef writeRegister16
writeRegister16(uint16_t a, uint16_t d),
#endif
writeRegister24(uint8_t a, uint32_t d),
writeRegister32(uint8_t a, uint32_t d),
#ifndef writeRegisterPair
writeRegisterPair(uint8_t aH, uint8_t aL, uint16_t d),
#endif
setLR(void),
flood(uint16_t color, uint32_t len);
uint8_t driver;
#ifndef read8
uint8_t read8fn(void);
#define read8isFunctionalized
#endif
#ifndef USE_ADAFRUIT_SHIELD_PINOUT
#ifdef __AVR__
volatile uint8_t *csPort , *cdPort , *wrPort , *rdPort;
uint8_t csPinSet , cdPinSet , wrPinSet , rdPinSet ,
csPinUnset, cdPinUnset, wrPinUnset, rdPinUnset,
_reset;
#endif
#if defined(__SAM3X8E__)
Pio *csPort , *cdPort , *wrPort , *rdPort;
uint32_t csPinSet , cdPinSet , wrPinSet , rdPinSet ,
csPinUnset, cdPinUnset, wrPinUnset, rdPinUnset,
_reset;
#endif
#endif
};
// For compatibility with sketches written for older versions of library.
// Color function name was changed to 'color565' for parity with 2.2" LCD
// library.
#define Color565 color565
#endif

View File

@@ -0,0 +1,375 @@
// IMPORTANT: Adafruit_ILI9341_8bit_AS LIBRARY MUST BE SPECIFICALLY
// CONFIGURED FOR EITHER THE TFT SHIELD OR THE BREAKOUT BOARD.
// DEFAULT IS THE UNO SHIELD
// SEE RELEVANT COMMENTS IN Adafruit_ILI9341_8bit_AS.h FOR SETUP.
#define DEBUG
#include <Adafruit_GFX_AS.h> // Core graphics library
#include <Adafruit_ILI9341_8bit_AS.h> // Hardware-specific library
// The control pins for the LCD can be assigned to any digital or
// analog pins...but we'll use the analog pins as this allows us to
// double up the pins with the touch screen (see the TFT paint example).
#define LCD_CS A3 // Chip Select goes to Analog 3
#define LCD_CD A2 // Command/Data goes to Analog 2
#define LCD_WR A1 // LCD Write goes to Analog 1
#define LCD_RD A0 // LCD Read goes to Analog 0
#define LCD_RESET A4 // Can alternately just connect to Arduino's reset pin
// When using the BREAKOUT BOARD only, use these 8 data lines to the LCD:
// For the Arduino Uno, Duemilanove, Diecimila, etc.:
// D0 connects to digital pin 8 (Notice these are
// D1 connects to digital pin 9 NOT in order!)
// D2 connects to digital pin 2
// D3 connects to digital pin 3
// D4 connects to digital pin 4
// D5 connects to digital pin 5
// D6 connects to digital pin 6
// D7 connects to digital pin 7
// For the Arduino Mega, use digital pins 22 through 29
// (on the 2-row header at the end of the board).
// Assign human-readable names to some common 16-bit color values:
#define BLACK 0x0000
#define BLUE 0x001F
#define RED 0xF800
#define GREEN 0x07E0
#define CYAN 0x07FF
#define MAGENTA 0xF81F
#define YELLOW 0xFFE0
#define WHITE 0xFFFF
Adafruit_ILI9341_8bit_AS tft(LCD_CS, LCD_CD, LCD_WR, LCD_RD, LCD_RESET);
// If using the shield, all control and data lines are fixed, and
// a simpler declaration can optionally be used:
// Adafruit_ILI9341_8bit_AS tft;
void setup(void) {
#ifdef DEBUG
Serial.begin(9600);
Serial.println("TFT LCD test");
Serial.print("TFT size is ");
Serial.print(tft.width());
Serial.print("x");
Serial.println(tft.height());
#endif // DEBUG
tft.reset();
delay(10);
tft.begin(0x9341);
#ifdef DEBUG
Serial.println("Benchmark Time (microseconds)");
Serial.print("Screen fill ");
Serial.println(testFillScreen());
delay(500);
Serial.print("Text ");
Serial.println(testText());
delay(3000);
Serial.print("Lines ");
Serial.println(testLines(CYAN));
delay(500);
Serial.print("Horiz/Vert Lines ");
Serial.println(testFastLines(RED, BLUE));
delay(500);
Serial.print("Rectangles (outline) ");
Serial.println(testRects(GREEN));
delay(500);
Serial.print("Rectangles (filled) ");
Serial.println(testFilledRects(YELLOW, MAGENTA));
delay(500);
Serial.print("Circles (filled) ");
Serial.println(testFilledCircles(10, MAGENTA));
Serial.print("Circles (outline) ");
Serial.println(testCircles(10, WHITE));
delay(500);
Serial.print("Triangles (outline) ");
Serial.println(testTriangles());
delay(500);
Serial.print("Triangles (filled) ");
Serial.println(testFilledTriangles());
delay(500);
Serial.print("Rounded rects (outline) ");
Serial.println(testRoundRects());
delay(500);
Serial.print("Rounded rects (filled) ");
Serial.println(testFilledRoundRects());
delay(500);
Serial.println("Done!");
#endif // DEBUG
}
void loop(void) {
for(uint8_t rotation=0; rotation<4; rotation++) {
tft.setRotation(rotation);
testText();
delay(2000);
}
testFilledRoundRects();
testRoundRects();
testFilledTriangles();
testTriangles();
testCircles(10, WHITE);
testFillScreen();
testText();
testLines(CYAN);
testFastLines(RED, BLUE);
testRects(GREEN);
testFilledRects(YELLOW, MAGENTA);
testFilledCircles(10, MAGENTA);
}
unsigned long testFillScreen() {
unsigned long start = micros();
tft.fillScreen(BLACK);
tft.fillScreen(RED);
tft.fillScreen(GREEN);
tft.fillScreen(BLUE);
tft.fillScreen(BLACK);
return micros() - start;
}
unsigned long testText() {
tft.fillScreen(BLACK);
unsigned long start = micros();
tft.setCursor(0, 0);
tft.setTextColor(WHITE); tft.setTextSize(1);
tft.println("Hello World!");
tft.setTextColor(YELLOW); tft.setTextSize(2);
tft.println(1234.56);
tft.setTextColor(RED); tft.setTextSize(3);
tft.println(0xDEADBEEF, HEX);
tft.println();
tft.setTextColor(GREEN);
tft.setTextSize(5);
tft.println("Groop");
tft.setTextSize(2);
tft.println("I implore thee,");
tft.setTextSize(1);
tft.println("my foonting turlingdromes.");
tft.println("And hooptiously drangle me");
tft.println("with crinkly bindlewurdles,");
tft.println("Or I will rend thee");
tft.println("in the gobberwarts");
tft.println("with my blurglecruncheon,");
tft.println("see if I don't!");
return micros() - start;
}
unsigned long testLines(uint16_t color) {
unsigned long start, t;
int x1, y1, x2, y2,
w = tft.width(),
h = tft.height();
tft.fillScreen(BLACK);
x1 = y1 = 0;
y2 = h - 1;
start = micros();
for(x2=0; x2<w; x2+=6) tft.drawLine(x1, y1, x2, y2, color);
x2 = w - 1;
for(y2=0; y2<h; y2+=6) tft.drawLine(x1, y1, x2, y2, color);
t = micros() - start; // fillScreen doesn't count against timing
tft.fillScreen(BLACK);
x1 = w - 1;
y1 = 0;
y2 = h - 1;
start = micros();
for(x2=0; x2<w; x2+=6) tft.drawLine(x1, y1, x2, y2, color);
x2 = 0;
for(y2=0; y2<h; y2+=6) tft.drawLine(x1, y1, x2, y2, color);
t += micros() - start;
tft.fillScreen(BLACK);
x1 = 0;
y1 = h - 1;
y2 = 0;
start = micros();
for(x2=0; x2<w; x2+=6) tft.drawLine(x1, y1, x2, y2, color);
x2 = w - 1;
for(y2=0; y2<h; y2+=6) tft.drawLine(x1, y1, x2, y2, color);
t += micros() - start;
tft.fillScreen(BLACK);
x1 = w - 1;
y1 = h - 1;
y2 = 0;
start = micros();
for(x2=0; x2<w; x2+=6) tft.drawLine(x1, y1, x2, y2, color);
x2 = 0;
for(y2=0; y2<h; y2+=6) tft.drawLine(x1, y1, x2, y2, color);
return micros() - start;
}
unsigned long testFastLines(uint16_t color1, uint16_t color2) {
unsigned long start;
int x, y, w = tft.width(), h = tft.height();
tft.fillScreen(BLACK);
start = micros();
for(y=0; y<h; y+=5) tft.drawFastHLine(0, y, w, color1);
for(x=0; x<w; x+=5) tft.drawFastVLine(x, 0, h, color2);
return micros() - start;
}
unsigned long testRects(uint16_t color) {
unsigned long start;
int n, i, i2,
cx = tft.width() / 2,
cy = tft.height() / 2;
tft.fillScreen(BLACK);
n = min(tft.width(), tft.height());
start = micros();
for(i=2; i<n; i+=6) {
i2 = i / 2;
tft.drawRect(cx-i2, cy-i2, i, i, color);
}
return micros() - start;
}
unsigned long testFilledRects(uint16_t color1, uint16_t color2) {
unsigned long start, t = 0;
int n, i, i2,
cx = tft.width() / 2 - 1,
cy = tft.height() / 2 - 1;
tft.fillScreen(BLACK);
n = min(tft.width(), tft.height());
for(i=n; i>0; i-=6) {
i2 = i / 2;
start = micros();
tft.fillRect(cx-i2, cy-i2, i, i, color1);
t += micros() - start;
// Outlines are not included in timing results
tft.drawRect(cx-i2, cy-i2, i, i, color2);
}
return t;
}
unsigned long testFilledCircles(uint8_t radius, uint16_t color) {
unsigned long start;
int x, y, w = tft.width(), h = tft.height(), r2 = radius * 2;
tft.fillScreen(BLACK);
start = micros();
for(x=radius; x<w; x+=r2) {
for(y=radius; y<h; y+=r2) {
tft.fillCircle(x, y, radius, color);
}
}
return micros() - start;
}
unsigned long testCircles(uint8_t radius, uint16_t color) {
unsigned long start;
int x, y, r2 = radius * 2,
w = tft.width() + radius,
h = tft.height() + radius;
// Screen is not cleared for this one -- this is
// intentional and does not affect the reported time.
start = micros();
for(x=0; x<w; x+=r2) {
for(y=0; y<h; y+=r2) {
tft.drawCircle(x, y, radius, color);
}
}
return micros() - start;
}
unsigned long testTriangles() {
unsigned long start;
int n, i, cx = tft.width() / 2 - 1,
cy = tft.height() / 2 - 1;
tft.fillScreen(BLACK);
n = min(cx, cy);
start = micros();
for(i=0; i<n; i+=5) {
tft.drawTriangle(
cx , cy - i, // peak
cx - i, cy + i, // bottom left
cx + i, cy + i, // bottom right
tft.color565(0, 0, i));
}
return micros() - start;
}
unsigned long testFilledTriangles() {
unsigned long start, t = 0;
int i, cx = tft.width() / 2 - 1,
cy = tft.height() / 2 - 1;
tft.fillScreen(BLACK);
start = micros();
for(i=min(cx,cy); i>10; i-=5) {
start = micros();
tft.fillTriangle(cx, cy - i, cx - i, cy + i, cx + i, cy + i,
tft.color565(0, i, i));
t += micros() - start;
tft.drawTriangle(cx, cy - i, cx - i, cy + i, cx + i, cy + i,
tft.color565(i, i, 0));
}
return t;
}
unsigned long testRoundRects() {
unsigned long start;
int w, i, i2,
cx = tft.width() / 2 - 1,
cy = tft.height() / 2 - 1;
tft.fillScreen(BLACK);
w = min(tft.width(), tft.height());
start = micros();
for(i=0; i<w; i+=6) {
i2 = i / 2;
tft.drawRoundRect(cx-i2, cy-i2, i, i, i/8, tft.color565(i, 0, 0));
}
return micros() - start;
}
unsigned long testFilledRoundRects() {
unsigned long start;
int i, i2,
cx = tft.width() / 2 - 1,
cy = tft.height() / 2 - 1;
tft.fillScreen(BLACK);
start = micros();
for(i=min(tft.width(), tft.height()); i>20; i-=6) {
i2 = i / 2;
tft.fillRoundRect(cx-i2, cy-i2, i, i, i/8, tft.color565(0, i, 0));
}
return micros() - start;
}

330
sys/pic32/gpanel/nt35702.c Normal file
View File

@@ -0,0 +1,330 @@
#define LCD_RD A0
#define LCD_WR A1
#define LCD_RS A2
#define LCD_CS A3
#define LCD_REST A4
void Lcd_Writ_Bus(unsigned char VH)
{
unsigned int i,temp,data;
data=VH;
for (i=8; i<=9; i++) {
temp=(data&0x01);
if (temp)
digitalWrite(i,HIGH);
else
digitalWrite(i,LOW);
data=data>>1;
}
for (i=2; i<=7; i++) {
temp=(data&0x01);
if (temp)
digitalWrite(i,HIGH);
else
digitalWrite(i,LOW);
data=data>>1;
}
digitalWrite(LCD_WR,LOW);
digitalWrite(LCD_WR,HIGH);
}
void Lcd_Write_Com(unsigned char VH)
{
digitalWrite(LCD_RS,LOW);
Lcd_Writ_Bus(VH);
}
void Lcd_Write_Data(unsigned char VH)
{
digitalWrite(LCD_RS,HIGH);
Lcd_Writ_Bus(VH);
}
void Lcd_Write_Com_Data(unsigned char com,unsigned char dat)
{
Lcd_Write_Com(com);
Lcd_Write_Data(dat);
}
void Address_set(unsigned int x1,unsigned int y1,unsigned int x2,unsigned int y2)
{
Lcd_Write_Com_Data(0x2a,x1>>8);
Lcd_Write_Com_Data(0x2a,x1);
Lcd_Write_Com_Data(0x2a,x2>>8);
Lcd_Write_Com_Data(0x2a,x2);
Lcd_Write_Com_Data(0x2b,y1>>8);
Lcd_Write_Com_Data(0x2b,y1);
Lcd_Write_Com_Data(0x2b,y2>>8);
Lcd_Write_Com_Data(0x2b,y2);
Lcd_Write_Com(0x2c);
}
void Lcd_Init(void)
{
digitalWrite(LCD_REST, HIGH);
delay(5);
digitalWrite(LCD_REST, LOW);
delay(15);
digitalWrite(LCD_REST, HIGH);
delay(15);
digitalWrite(LCD_CS, HIGH);
digitalWrite(LCD_WR, HIGH);
digitalWrite(LCD_CS, LOW); //CS
Lcd_Write_Com(0x01);// Software Reset
delay(20);
Lcd_Write_Com(0x11);//Sleep Out
delay(120);
Lcd_Write_Com(0xc2);//Power Control 3
Lcd_Write_Data(0x05);//APA2 APA1 APA0 Large
Lcd_Write_Data(0x00);//Step-up cycle in Booster circuit 1
//Step-up cycle in Booster circuit 2,3
Lcd_Write_Com(0xc3);//Power Control 4
Lcd_Write_Data(0x05);//APA2 APA1 APA0 Large
Lcd_Write_Data(0x00);//Step-up cycle in Booster circuit 1
//Step-up cycle in Booster circuit 2,3
Lcd_Write_Com(0xc4);//Power Control 5
Lcd_Write_Data(0x05);//APA2 APA1 APA0 Large
Lcd_Write_Data(0x00);//Step-up cycle in Booster circuit 1
//Step-up cycle in Booster circuit 2,3
Lcd_Write_Com(0x3A);
Lcd_Write_Data(0x55);
Lcd_Write_Com(0xD7);
Lcd_Write_Data(0x40);
Lcd_Write_Data(0xE0);
Lcd_Write_Com(0xFD);
Lcd_Write_Data(0x06);
Lcd_Write_Data(0x11);
Lcd_Write_Com(0xFA);
Lcd_Write_Data(0x38);
Lcd_Write_Data(0x20);
Lcd_Write_Data(0x1C);
Lcd_Write_Data(0x10);
Lcd_Write_Data(0x37);
Lcd_Write_Data(0x12);
Lcd_Write_Data(0x22);
Lcd_Write_Data(0x1E);
Lcd_Write_Com(0xC0);//Set GVDD
Lcd_Write_Data(0x05);
Lcd_Write_Com(0xC5);//Set Vcom
Lcd_Write_Data(0x60);
Lcd_Write_Data(0x00);
Lcd_Write_Com(0xC7);//Set VCOM-OFFSET
Lcd_Write_Data(0xA9);// 可以微调改善flicker
Lcd_Write_Com(0x36);//Memory data access control
Lcd_Write_Data(0xC8);//MY MX MV ML RGB MH 0 0
////Gamma//////////////////
Lcd_Write_Com(0xE0);//E0H Set
Lcd_Write_Data(0x23);
Lcd_Write_Data(0x23);
Lcd_Write_Data(0x24);
Lcd_Write_Data(0x02);
Lcd_Write_Data(0x08);
Lcd_Write_Data(0x0F);
Lcd_Write_Data(0x35);
Lcd_Write_Data(0x7B);
Lcd_Write_Data(0x43);
Lcd_Write_Data(0x0E);
Lcd_Write_Data(0x1F);
Lcd_Write_Data(0x25);
Lcd_Write_Data(0x10);
Lcd_Write_Data(0x16);
Lcd_Write_Data(0x31);
Lcd_Write_Com(0xE1);//E1H Set
Lcd_Write_Data(0x0D);
Lcd_Write_Data(0x28);
Lcd_Write_Data(0x2E);
Lcd_Write_Data(0x0B);
Lcd_Write_Data(0x11);
Lcd_Write_Data(0x12);
Lcd_Write_Data(0x3E);
Lcd_Write_Data(0x59);
Lcd_Write_Data(0x4C);
Lcd_Write_Data(0x10);
Lcd_Write_Data(0x26);
Lcd_Write_Data(0x2B);
Lcd_Write_Data(0x1B);
Lcd_Write_Data(0x1B);
Lcd_Write_Data(0x1B);
Lcd_Write_Com(0x29);//display on
Lcd_Write_Com(0x2c);//Memory Write
}
void H_line(unsigned int x, unsigned int y, unsigned int l, unsigned int c)
{
unsigned int i, j;
Lcd_Write_Com(0x02c); //write_memory_start
digitalWrite(LCD_RS, HIGH);
digitalWrite(LCD_CS, LOW);
l = l+x;
Address_set(x,y,l,y);
j = l*2;
for(i=1;i<=j;i++)
{
Lcd_Write_Data(c>>8);
Lcd_Write_Data(c);
}
digitalWrite(LCD_CS, HIGH);
}
void V_line(unsigned int x, unsigned int y, unsigned int l, unsigned int c)
{
unsigned int i, j;
Lcd_Write_Com(0x02c); //write_memory_start
digitalWrite(LCD_RS, HIGH);
digitalWrite(LCD_CS, LOW);
l = l+y;
Address_set(x,y,x,l);
j = l*2;
for(i=1;i<=j;i++)
{
Lcd_Write_Data(c>>8);
Lcd_Write_Data(c);
}
digitalWrite(LCD_CS, HIGH);
}
void Rect(unsigned int x,unsigned int y,unsigned int w,unsigned int h,unsigned int c)
{
H_line(x , y , w, c);
H_line(x , y+h, w, c);
V_line(x , y , h, c);
V_line(x+w, y , h, c);
}
void Rectf(unsigned int x,unsigned int y,unsigned int w,unsigned int h,unsigned int c)
{
unsigned int i;
for (i=0; i<h; i++) {
H_line(x , y , w, c);
H_line(x , y+i, w, c);
}
}
int RGB(int r, int g, int b)
{
return ((r & 0xF8) << 8) | ((g & 0xFC) << 3) | (b >> 3);
}
void LCD_Clear(unsigned int j)
{
unsigned int i, m;
Address_set(0, 0, 320, 240);
Lcd_Write_Com(0x02c); //write_memory_start
digitalWrite(LCD_RS,HIGH);
digitalWrite(LCD_CS,LOW);
for (i=0; i<320; i++) {
for (m=0; m<240; m++) {
//ch=((fcolorr&248)|fcolorg>>5);
//cl=((fcolorg&28)<<3|fcolorb>>3);
Lcd_Write_Data(j>>8);
Lcd_Write_Data(j);
}
}
digitalWrite(LCD_CS,HIGH);
}
void draw_Pixel(int x,int y, unsigned int c)
{
Address_set(x, y, x, y);
Lcd_Write_Data(c >> 8);
Lcd_Write_Data(c);
}
void swap(int x, int y)
{
int temp = x;
x = y;
y = temp;
}
void draw_Hline(int x, int y, int l,unsigned int c)
{
Address_set(x, y, x+l, y);
for (int i=0; i<l+1; i++)
{
Lcd_Write_Data(c >> 8);
Lcd_Write_Data(c);
}
}
void draw_Vline(int x, int y, int l, unsigned int c)
{
Address_set(x, y, x, y+l);
for (int i=0; i<l+1; i++)
{
Lcd_Write_Data(c);
Lcd_Write_Data(c);
}
}
void RoundRect(int x1, int y1, int x2, int y2,unsigned int c)
{
Lcd_Write_Com(0x02c); //write_memory_start
digitalWrite(LCD_RS,HIGH);
digitalWrite(LCD_CS,LOW);
int tmp;
if (x1 > x2) {
swap(x1, x2);
}
if (y1 > y2) {
swap(y1, y2);
}
if ((x2-x1 > 4 && (y2-y1) > 4) {
draw_Pixel(x1+1,y1+1,c);
draw_Pixel(x2-1,y1+1,c);
draw_Pixel(x1+1,y2-1,c);
draw_Pixel(x2-1,y2-1,c);
draw_Hline(x1+2, y1, x2-x1-4,c);
draw_Hline(x1+2, y2, x2-x1-4,c);
draw_Vline(x1, y1+2, y2-y1-4,c);
draw_Vline(x2, y1+2, y2-y1-4,c);
}
}
void setup()
{
for (int p=2; p<10; p++)
pinMode(p, OUTPUT);
pinMode(A0, OUTPUT);
pinMode(A1, OUTPUT);
pinMode(A2, OUTPUT);
pinMode(A3, OUTPUT);
pinMode(A4, OUTPUT);
digitalWrite(A0, HIGH);
digitalWrite(A1, HIGH);
digitalWrite(A2, HIGH);
digitalWrite(A3, HIGH);
digitalWrite(A4, HIGH);
Lcd_Init();
//LCD_Clear(RGB(255, 0, 0));
//LCD_Clear(RGB(255, 255, 0));
//LCD_Clear(RGB(255, 0, 255));
//LCD_Clear(RGB(0, 255, 255));
//LCD_Clear(RGB(0, 255, 0));
}

View File

@@ -0,0 +1,126 @@
#ifndef _pin_magic_
#define _pin_magic_
// This header file serves two purposes:
//
// 1) Isolate non-portable MCU port- and pin-specific identifiers and
// operations so the library code itself remains somewhat agnostic
// (PORTs and pin numbers are always referenced through macros).
//
// 2) GCC doesn't always respect the "inline" keyword, so this is a
// ham-fisted manner of forcing the issue to minimize function calls.
// This sometimes makes the library a bit bigger than before, but fast++.
// However, because they're macros, we need to be SUPER CAREFUL about
// parameters -- for example, write8(x) may expand to multiple PORT
// writes that all refer to x, so it needs to be a constant or fixed
// variable and not something like *ptr++ (which, after macro
// expansion, may increment the pointer repeatedly and run off into
// la-la land). Macros also give us fine-grained control over which
// operations are inlined on which boards (balancing speed against
// available program space).
// When using the TFT shield, control and data pins exist in set physical
// locations, but the ports and bitmasks corresponding to each vary among
// boards. A separate set of pin definitions is given for each supported
// board type.
// When using the TFT breakout board, control pins are configurable but
// the data pins are still fixed -- making every data pin configurable
// would be much too slow. The data pin layouts are not the same between
// the shield and breakout configurations -- for the latter, pins were
// chosen to keep the tutorial wiring manageable more than making optimal
// use of ports and bitmasks. So there's a second set of pin definitions
// given for each supported board.
// Shield pin usage:
// Breakout pin usage:
// LCD Data Bit : 7 6 5 4 3 2 1 0
// Uno dig. pin : 7 6 5 4 3 2 9 8
// Uno port/pin : PD7 PD6 PD5 PD4 PD3 PD2 PB1 PB0
// Mega dig. pin: 27 6 5 4 3 2 9 8
// Mega port/pin: PH4 PH3 PE3 PG5 PE5 PE4 PH6 PH5
// Pixel read operations require a minimum 400 nS delay from RD_ACTIVE
// to polling the input pins. At 16 MHz, one machine cycle is 62.5 nS.
// This code burns 7 cycles (437.5 nS) doing nothing; the RJMPs are
// equivalent to two NOPs each, final NOP burns the 7th cycle, and the
// last line is a radioactive mutant emoticon.
#define DELAY7 \
asm volatile( \
"rjmp .+0" "\n\t" \
"rjmp .+0" "\n\t" \
"rjmp .+0" "\n\t" \
"nop" "\n" \
::);
// As part of the inline control, macros reference other macros...if any
// of these are left undefined, an equivalent function version (non-inline)
// is declared later. The Uno has a moderate amount of program space, so
// only write8() is inlined -- that one provides the most performance
// benefit, but unfortunately also generates the most bloat. This is
// why only certain cases are inlined for each board.
// Arduino Mega, ADK, etc.
// Mega port/pin: PH4 PH3 PE3 PG5 PE5 PE4 PH6 PH5
// Because the MEGA port to pin mapping is very messy it is necessary to shift the data bits around a lot.
#define write8inline(d) { \
PORTE = (PORTE & B11001111) | ((d << 2) & B00110000); \
PORTE = (PORTE & B11110111) | ((d >> 2) & B00001000); \
PORTG = (PORTG & B11011111) | ((d << 1) & B00100000); \
PORTH = (PORTH & B11100111) | ((d >> 3) & B00011000); \
PORTH = (PORTH & B10011111) | ((d << 5) & B01100000); \
WR_STROBE; }
#define read8inline(result) { \
RD_ACTIVE; \
DELAY7; \
result = ((PINH & B00011000) << 3) | ((PINE & B00001000) << 2) | ((PING & B00100000) >> 1) |((PINE & B00110000) >> 2) | ((PINH & B01100000) >> 5); \
RD_IDLE; }
// // These set the PORT directions as required before the write and read
// // operations.
#define setWriteDirInline() { DDRE |= B00111000; DDRG |= B00100000; DDRH |= B01111000;}
#define setReadDirInline() { DDRE &= ~B00111000; DDRG &= ~B00100000; DDRH &= ~B01111000;}
// All of the functions are inlined on the Arduino Mega. When using the
// breakout board, the macro versions aren't appreciably larger than the
// function equivalents, and they're super simple and fast. When using
// the shield, the macros become pretty complicated...but this board has
// so much code space, the macros are used anyway. If you need to free
// up program space, some macros can be removed, at a minor cost in speed.
#define write8 write8inline
#define read8 read8inline
#define setWriteDir setWriteDirInline
#define setReadDir setReadDirInline
#define writeRegister8 writeRegister8inline
#define writeRegister16 writeRegister16inline
#define writeRegisterPair writeRegisterPairInline
// When using the TFT breakout board, control pins are configurable.
#define RD_ACTIVE *rdPort &= rdPinUnset
#define RD_IDLE *rdPort |= rdPinSet
#define WR_ACTIVE *wrPort &= wrPinUnset
#define WR_IDLE *wrPort |= wrPinSet
#define CD_COMMAND *cdPort &= cdPinUnset
#define CD_DATA *cdPort |= cdPinSet
#define CS_ACTIVE *csPort &= csPinUnset
#define CS_IDLE *csPort |= csPinSet
#endif
// Data read and write strobes, ~2 instructions and always inline
#define RD_STROBE { RD_ACTIVE; RD_IDLE; }
#define WR_STROBE { WR_ACTIVE; WR_IDLE; }
// These higher-level operations are usually functionalized,
// except on Mega where's there's gobs and gobs of program space.
// Set value of TFT register: 8-bit address, 8-bit value
#define writeRegister8inline(a, d) { \
CD_COMMAND; write8(a); CD_DATA; write8(d); }
// Set value of TFT register: 16-bit address, 16-bit value
// See notes at top about macro expansion, hence hi & lo temp vars
#define writeRegister16inline(a, d) { \
uint8_t hi, lo; \
hi = (a) >> 8; lo = (a); CD_COMMAND; write8(hi); write8(lo); \
hi = (d) >> 8; lo = (d); CD_DATA ; write8(hi); write8(lo); }
// Set value of 2 TFT registers: Two 8-bit addresses (hi & lo), 16-bit value
#define writeRegisterPairInline(aH, aL, d) { \
uint8_t hi = (d) >> 8, lo = (d); \
CD_COMMAND; write8(aH); CD_DATA; write8(hi); \
CD_COMMAND; write8(aL); CD_DATA; write8(lo); }

View File

@@ -0,0 +1,117 @@
#ifndef _pin_magic_
#define _pin_magic_
// This header file serves two purposes:
//
// 1) Isolate non-portable MCU port- and pin-specific identifiers and
// operations so the library code itself remains somewhat agnostic
// (PORTs and pin numbers are always referenced through macros).
//
// 2) GCC doesn't always respect the "inline" keyword, so this is a
// ham-fisted manner of forcing the issue to minimize function calls.
// This sometimes makes the library a bit bigger than before, but fast++.
// However, because they're macros, we need to be SUPER CAREFUL about
// parameters -- for example, write8(x) may expand to multiple PORT
// writes that all refer to x, so it needs to be a constant or fixed
// variable and not something like *ptr++ (which, after macro
// expansion, may increment the pointer repeatedly and run off into
// la-la land). Macros also give us fine-grained control over which
// operations are inlined on which boards (balancing speed against
// available program space).
// When using the TFT shield, control and data pins exist in set physical
// locations, but the ports and bitmasks corresponding to each vary among
// boards. A separate set of pin definitions is given for each supported
// board type.
// When using the TFT breakout board, control pins are configurable but
// the data pins are still fixed -- making every data pin configurable
// would be much too slow. The data pin layouts are not the same between
// the shield and breakout configurations -- for the latter, pins were
// chosen to keep the tutorial wiring manageable more than making optimal
// use of ports and bitmasks. So there's a second set of pin definitions
// given for each supported board.
// Shield pin usage:
// Breakout pin usage:
// LCD Data Bit : 7 6 5 4 3 2 1 0
// Uno dig. pin : 7 6 5 4 3 2 9 8
// Uno port/pin : PD7 PD6 PD5 PD4 PD3 PD2 PB1 PB0
// Mega dig. pin: 27 6 5 4 3 2 9 8
// Mega port/pin: PH4 PH3 PE3 PG5 PE5 PE4 PH6 PH5
// Pixel read operations require a minimum 400 nS delay from RD_ACTIVE
// to polling the input pins. At 16 MHz, one machine cycle is 62.5 nS.
// This code burns 7 cycles (437.5 nS) doing nothing; the RJMPs are
// equivalent to two NOPs each, final NOP burns the 7th cycle, and the
// last line is a radioactive mutant emoticon.
#define DELAY7 \
asm volatile( \
"rjmp .+0" "\n\t" \
"rjmp .+0" "\n\t" \
"rjmp .+0" "\n\t" \
"nop" "\n" \
::);
// As part of the inline control, macros reference other macros...if any
// of these are left undefined, an equivalent function version (non-inline)
// is declared later. The Uno has a moderate amount of program space, so
// only write8() is inlined -- that one provides the most performance
// benefit, but unfortunately also generates the most bloat. This is
// why only certain cases are inlined for each board.
//Uno w/Breakout board
// Uno dig. pin : 7 6 5 4 3 2 9 8
// Uno port/pin : PD7 PD6 PD5 PD4 PD3 PD2 PB1 PB0
#define write8inline(d) { \
PORTD = (PORTD & B00000011) | ((d) & B11111100); \
PORTB = (PORTB & B11111100) | ((d) & B00000011); \
WR_STROBE; }
#define read8inline(result) { \
RD_ACTIVE; \
DELAY7; \
result = (PIND & B11111100) | (PINB & B00000011); \
RD_IDLE; }
#define setWriteDirInline() { DDRD |= B11111100; DDRB |= B00000011; }
#define setReadDirInline() { DDRD &= ~B11111100; DDRB &= ~B00000011; }
// All of the functions are inlined on the Arduino Mega. When using the
// breakout board, the macro versions aren't appreciably larger than the
// function equivalents, and they're super simple and fast. When using
// the shield, the macros become pretty complicated...but this board has
// so much code space, the macros are used anyway. If you need to free
// up program space, some macros can be removed, at a minor cost in speed.
#define write8 write8inline
#define read8 read8inline
#define setWriteDir setWriteDirInline
#define setReadDir setReadDirInline
#define writeRegister8 writeRegister8inline
#define writeRegister16 writeRegister16inline
#define writeRegisterPair writeRegisterPairInline
// When using the TFT breakout board, control pins are configurable.
#define RD_ACTIVE *rdPort &= rdPinUnset
#define RD_IDLE *rdPort |= rdPinSet
#define WR_ACTIVE *wrPort &= wrPinUnset
#define WR_IDLE *wrPort |= wrPinSet
#define CD_COMMAND *cdPort &= cdPinUnset
#define CD_DATA *cdPort |= cdPinSet
#define CS_ACTIVE *csPort &= csPinUnset
#define CS_IDLE *csPort |= csPinSet
#endif
// Data read and write strobes, ~2 instructions and always inline
#define RD_STROBE { RD_ACTIVE; RD_IDLE; }
#define WR_STROBE { WR_ACTIVE; WR_IDLE; }
// These higher-level operations are usually functionalized,
// except on Mega where's there's gobs and gobs of program space.
// Set value of TFT register: 8-bit address, 8-bit value
#define writeRegister8inline(a, d) { \
CD_COMMAND; write8(a); CD_DATA; write8(d); }
// Set value of TFT register: 16-bit address, 16-bit value
// See notes at top about macro expansion, hence hi & lo temp vars
#define writeRegister16inline(a, d) { \
uint8_t hi, lo; \
hi = (a) >> 8; lo = (a); CD_COMMAND; write8(hi); write8(lo); \
hi = (d) >> 8; lo = (d); CD_DATA ; write8(hi); write8(lo); }
// Set value of 2 TFT registers: Two 8-bit addresses (hi & lo), 16-bit value
#define writeRegisterPairInline(aH, aL, d) { \
uint8_t hi = (d) >> 8, lo = (d); \
CD_COMMAND; write8(aH); CD_DATA; write8(hi); \
CD_COMMAND; write8(aL); CD_DATA; write8(lo); }

View File

@@ -0,0 +1,30 @@
#define ILI9341_SOFTRESET 0x01
#define ILI9341_SLEEPIN 0x10
#define ILI9341_SLEEPOUT 0x11
#define ILI9341_NORMALDISP 0x13
#define ILI9341_INVERTOFF 0x20
#define ILI9341_INVERTON 0x21
#define ILI9341_GAMMASET 0x26
#define ILI9341_DISPLAYOFF 0x28
#define ILI9341_DISPLAYON 0x29
#define ILI9341_COLADDRSET 0x2A
#define ILI9341_PAGEADDRSET 0x2B
#define ILI9341_MEMORYWRITE 0x2C
#define ILI9341_MEMCONTROL 0x36
#define ILI9341_MADCTL 0x36
#define ILI9341_PIXELFORMAT 0x3A
#define ILI9341_FRAMECONTROL 0xB1
#define ILI9341_DISPLAYFUNC 0xB6
#define ILI9341_ENTRYMODE 0xB7
#define ILI9341_POWERCONTROL1 0xC0
#define ILI9341_POWERCONTROL2 0xC1
#define ILI9341_VCOMCONTROL1 0xC5
#define ILI9341_VCOMCONTROL2 0xC7
#define ILI9341_MADCTL_MY 0x80
#define ILI9341_MADCTL_MX 0x40
#define ILI9341_MADCTL_MV 0x20
#define ILI9341_MADCTL_ML 0x10
#define ILI9341_MADCTL_BGR 0x08
#define ILI9341_MADCTL_MH 0x04
#define ILI9341_MADCTL_RGB 0x00