Files
xomb-bare-bones/kernel/runtime/precision.d
2009-05-24 14:06:22 +08:00

601 lines
14 KiB
D

/*
* precision.d
*
* This file implements a multiprecision divide function for non 64-bit
* systems. This original license for the file used as reference is below.
* The file originally was located:
* http://fxr.watson.org/fxr/source/libkern/qdivrem.c
* It has been updated for the D programming language and for usage
* within the XOmB kernel and XOmB Bare Bones packages.
*
* Author: Dave Wilkinson, The Regents of the University of California.
*
*/
module kernel.runtime.precision;
/*-
* Copyright (c) 1992, 1993
* The Regents of the University of California. All rights reserved.
*
* This software was developed by the Computer Systems Engineering group
* at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
* contributed to Berkeley.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Berkeley and its contributors.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* $FreeBSD: src/sys/libkern/qdivrem.c,v 1.8 1999/08/28 00:46:35 peter Exp $
* $DragonFly: src/sys/libkern/qdivrem.c,v 1.4 2004/01/26 11:09:44 joerg Exp $
*/
/*
* Multiprecision divide. This algorithm is from Knuth vol. 2 (2nd ed),
* section 4.3.1, pp. 257--259.
*/
//-------------
/*#include <sys/cdefs.h>
#include <sys/types.h>
#include <sys/limits.h>
#include <sys/syslimits.h>*/
/*
* Depending on the desired operation, we view a 64 bit integer (a long)
* in these particular ways.
*/
union uu {
long l;
ulong ul;
int si[2];
uint ui[2];
}
// These are architecture specific, and should be defined in the
// architecture import as a definition sheet.
const size_t LONG_HIGHWORD = 1;
const size_t LONG_LOWWORD = 0;
const size_t BYTE_BITS = 8;
/*
* Define high and low longwords. (endian-ness)
*/
alias LONG_HIGHWORD H;
alias LONG_LOWWORD L;
/*
* Total number of bits in a quad_t and in the pieces that make it up.
* These are used for shifting, and also below for halfword extraction
* and assembly.
*/
const uint QUAD_BITS = (8 * BYTE_BITS);
const uint LONG_BITS = (4 * BYTE_BITS);
const uint HALF_BITS = (4 * BYTE_BITS / 2);
/*
* Extract high and low shortwords from longword, and move low shortword of
* longword to upper half of long, i.e., produce the upper longword of
* ((quad_t)(x) << (number_of_bits_in_long/2)). (`x' must actually be u_long.)
*
* These are used in the multiply code, to split a longword into upper
* and lower halves, and to reassemble a product as a quad_t, shifted left
* (sizeof(long)*CHAR_BIT/2).
*/
uint HHALF(uint x) {
return x >> HALF_BITS;
}
int LHALF(uint x) {
return x & ((1 << HALF_BITS) - 1);
}
uint LHUP(uint x) {
return x << HALF_BITS;
}
typedef uint qshift_t;
/*
quad_t __ashldi3(quad_t, qshift_t);
quad_t __ashrdi3(quad_t, qshift_t);
int __cmpdi2(quad_t a, quad_t b);
quad_t __divdi3(quad_t a, quad_t b);
quad_t __lshrdi3(quad_t, qshift_t);
quad_t __moddi3(quad_t a, quad_t b);
u_quad_t __qdivrem(u_quad_t u, u_quad_t v, u_quad_t *rem);
u_quad_t __udivdi3(u_quad_t a, u_quad_t b);
u_quad_t __umoddi3(u_quad_t a, u_quad_t b);
int __ucmpdi2(u_quad_t a, u_quad_t b);
*/
// ------------------
// digit base
const uint B = (1 << HALF_BITS);
/* Combine two `digits' to make a single two-digit number. */
uint COMBINE(uint a, uint b) {
return (a << HALF_BITS) | b;
}
alias uint digit;
/*
* Shift p[0]..p[len] left `sh' bits, ignoring any bits that
* `fall out' the left (there never will be any such anyway).
* We may assume len >= 0. NOTE THAT THIS WRITES len+1 DIGITS.
*/
void shl(digit* p, int len, int sh)
{
int i;
for (i = 0; i < len; i++)
{
p[i] = LHALF(p[i] << sh) | (p[i + 1] >> (HALF_BITS - sh));
}
p[i] = LHALF(p[i] << sh);
}
/*
* qdivrem(u, v, rem) returns u/v and, optionally, sets *rem to u%v.
*
* We do this in base 2-sup-HALF_BITS, so that all intermediate products
* fit within u_long. As a consequence, the maximum length dividend and
* divisor are 4 `digits' in this base (they are shorter if they have
* leading zeros).
*/
ulong qdivrem(ulong uq, ulong vq, ulong* arq)
{
uu tmp;
digit* u;
digit* v;
digit* q;
digit v1, v2;
uint qhat, rhat, t;
int m, n, d, j, i;
digit[5] uspace;
digit[5] vspace;
digit[5] qspace;
/*
* Take care of special cases: divide by zero, and u < v.
*/
if (vq == 0) {
/* divide by zero. */
volatile uint zero;
tmp.ui[H] = tmp.ui[L] = 1 / zero;
if (arq)
{
*arq = uq;
}
return (tmp.l);
}
if (uq < vq) {
if (arq) {
*arq = uq;
}
return (0);
}
u = &uspace[0];
v = &vspace[0];
q = &qspace[0];
/*
* Break dividend and divisor into digits in base B, then
* count leading zeros to determine m and n. When done, we
* will have:
* u = (u[1]u[2]...u[m+n]) sub B
* v = (v[1]v[2]...v[n]) sub B
* v[1] != 0
* 1 < n <= 4 (if n = 1, we use a different division algorithm)
* m >= 0 (otherwise u < v, which we already checked)
* m + n = 4
* and thus
* m = 4 - n <= 2
*/
tmp.ul = uq;
u[0] = 0;
u[1] = HHALF(tmp.ui[H]);
u[2] = LHALF(tmp.ui[H]);
u[3] = HHALF(tmp.ui[L]);
u[4] = LHALF(tmp.ui[L]);
tmp.ul = vq;
v[1] = HHALF(tmp.ui[H]);
v[2] = LHALF(tmp.ui[H]);
v[3] = HHALF(tmp.ui[L]);
v[4] = LHALF(tmp.ui[L]);
for (n = 4; v[1] == 0; v++) {
if (--n == 1) {
uint rbj; /* r*B+u[j] (not root boy jim) */
digit q1, q2, q3, q4;
/*
* Change of plan, per exercise 16.
* r = 0;
* for j = 1..4:
* q[j] = floor((r*B + u[j]) / v),
* r = (r*B + u[j]) % v;
* We unroll this completely here.
*/
t = v[2]; /* nonzero, by definition */
q1 = u[1] / t;
rbj = COMBINE(u[1] % t, u[2]);
q2 = rbj / t;
rbj = COMBINE(rbj % t, u[3]);
q3 = rbj / t;
rbj = COMBINE(rbj % t, u[4]);
q4 = rbj / t;
if (arq)
*arq = rbj % t;
tmp.ui[H] = COMBINE(q1, q2);
tmp.ui[L] = COMBINE(q3, q4);
return (tmp.l);
}
}
/*
* By adjusting q once we determine m, we can guarantee that
* there is a complete four-digit quotient at &qspace[1] when
* we finally stop.
*/
for (m = 4 - n; u[1] == 0; u++) {
m--;
}
for (i = 4 - m; --i >= 0;) {
q[i] = 0;
}
q += 4 - m;
/*
* Here we run Program D, translated from MIX to C and acquiring
* a few minor changes.
*
* D1: choose multiplier 1 << d to ensure v[1] >= B/2.
*/
d = 0;
for (t = v[1]; t < B / 2; t <<= 1) {
d++;
}
if (d > 0) {
shl(&u[0], m + n, d); /* u <<= d */
shl(&v[1], n - 1, d); /* v <<= d */
}
/*
* D2: j = 0.
*/
j = 0;
v1 = v[1]; /* for D3 -- note that v[1..n] are constant */
v2 = v[2]; /* for D3 */
do {
digit uj0, uj1, uj2;
/*
* D3: Calculate qhat (\^q, in TeX notation).
* Let qhat = min((u[j]*B + u[j+1])/v[1], B-1), and
* let rhat = (u[j]*B + u[j+1]) mod v[1].
* While rhat < B and v[2]*qhat > rhat*B+u[j+2],
* decrement qhat and increase rhat correspondingly.
* Note that if rhat >= B, v[2]*qhat < rhat*B.
*/
uj0 = u[j + 0]; /* for D3 only -- note that u[j+...] change */
uj1 = u[j + 1]; /* for D3 only */
uj2 = u[j + 2]; /* for D3 only */
if (uj0 == v1) {
qhat = B;
rhat = uj1;
goto qhat_too_big;
} else {
uint nn = COMBINE(uj0, uj1);
qhat = nn / v1;
rhat = nn % v1;
}
while (v2 * qhat > COMBINE(rhat, uj2)) {
qhat_too_big:
qhat--;
if ((rhat += v1) >= B) {
break;
}
}
/*
* D4: Multiply and subtract.
* The variable `t' holds any borrows across the loop.
* We split this up so that we do not require v[0] = 0,
* and to eliminate a final special case.
*/
for (t = 0, i = n; i > 0; i--) {
t = u[i + j] - v[i] * qhat - t;
u[i + j] = LHALF(t);
t = (B - HHALF(t)) & (B - 1);
}
t = u[j] - t;
u[j] = LHALF(t);
/*
* D5: test remainder.
* There is a borrow if and only if HHALF(t) is nonzero;
* in that (rare) case, qhat was too large (by exactly 1).
* Fix it by adding v[1..n] to u[j..j+n].
*/
if (HHALF(t)) {
qhat--;
for (t = 0, i = n; i > 0; i--) { /* D6: add back. */
t += u[i + j] + v[i];
u[i + j] = LHALF(t);
t = HHALF(t);
}
u[j] = LHALF(u[j] + t);
}
q[j] = qhat;
} while (++j <= m); /* D7: loop on j. */
/*
* If caller wants the remainder, we have to calculate it as
* u[m..m+n] >> d (this is at most n digits and thus fits in
* u[m+1..m+n], but we may need more source digits).
*/
if (arq) {
if (d) {
for (i = m + n; i > m; --i)
{
u[i] = (u[i] >> d) | LHALF(u[i - 1] << (HALF_BITS - d));
}
u[i] = 0;
}
tmp.ui[H] = COMBINE(uspace[1], uspace[2]);
tmp.ui[L] = COMBINE(uspace[3], uspace[4]);
*arq = tmp.l;
}
tmp.ui[H] = COMBINE(qspace[1], qspace[2]);
tmp.ui[L] = COMBINE(qspace[3], qspace[4]);
return (tmp.l);
}
// Return 0, 1, or 2 as a <, =, > b respectively.
// Neither a nor b are considered signed.
int ucmpdi2(ulong a, ulong b)
{
uu aa, bb;
aa.ul = a;
bb.ul = b;
return (aa.ui[H] < bb.ui[H] ? 0 : aa.ui[H] > bb.ui[H] ? 2 :
aa.ui[L] < bb.ui[L] ? 0 : aa.ui[L] > bb.ui[L] ? 2 : 1);
}
extern(C) int __ucmpdi2(ulong a, ulong b)
{
return ucmpdi2(a,b);
}
// Divide two unsigned longs
ulong udivdi3(ulong a, ulong b)
{
return qdivrem(a, b, null);
}
extern(C) ulong __udivdi3(ulong a, ulong b)
{
return udivdi3(a,b);
}
// Modulus two unsigned longs
ulong umoddi3(ulong a, ulong b)
{
ulong r;
qdivrem(a, b, &r);
return r;
}
extern(C) ulong __umoddi3(ulong a, ulong b)
{
return umoddi3(a,b);
}
// Logical shift right of an unsigned long
long lshrdi3(long a, qshift_t shift)
{
uu aa;
aa.l = a;
if (shift >= LONG_BITS) {
aa.ui[L] = shift >= QUAD_BITS ? 0 :
aa.ui[H] >> (shift - LONG_BITS);
aa.ui[H] = 0;
} else if (shift > 0) {
aa.ui[L] = (aa.ui[L] >> shift) |
(aa.ui[H] << (LONG_BITS - shift));
aa.ui[H] >>= shift;
}
return aa.l;
}
extern(C) long __lshrdi3(long a, qshift_t shift)
{
return lshrdi3(a, shift);
}
// Arithmetic Shift Left of a signed long
// A.K.A. Logical Shift Left
long ashldi3(long a, qshift_t shift)
{
uu aa;
aa.l = a;
if (shift >= LONG_BITS) {
aa.ui[H] = shift >= QUAD_BITS ? 0 :
aa.ui[L] << (shift - LONG_BITS);
aa.ui[L] = 0;
} else if (shift > 0) {
aa.ui[H] = (aa.ui[H] << shift) |
(aa.ui[L] >> (LONG_BITS - shift));
aa.ui[L] <<= shift;
}
return aa.l;
}
extern(C) long __ashldi3(long a, qshift_t shift)
{
return ashldi3(a, shift);
}
// Arithmetic Shift Right of a signed long
long ashrdi3(long a, qshift_t shift)
{
uu aa;
aa.l = a;
if (shift >= LONG_BITS) {
int s;
/* Smear bits rightward using the machine's right-shift method,
whether that is sign extension or zero fill, to get the
'sign word' s. Note that shifting by LONG_BITS is
undefined, so we shift (LONG_BITS-1), then 1 more, to get
our answer */
s = (aa.si[H] >> (LONG_BITS - 1)) >> 1;
aa.ui[L] = shift >= QUAD_BITS ? s :
aa.si[H] >> (shift - LONG_BITS);
aa.ui[H] = s;
} else if (shift > 0) {
aa.ui[L] = (aa.ui[L] >> shift) |
(aa.ui[H] << (LONG_BITS - shift));
aa.si[H] >>= shift;
}
return aa.l;
}
extern(C) long __ashrdi3(long a, qshift_t shift)
{
return ashrdi3(a,shift);
}
// Return 0, 1, or 2 as a <, =, > b respectively.
// Both a and b are considered signed -- which means only
// the high word is signed.
int cmpdi2(long a, long b)
{
uu aa, bb;
aa.l = a;
bb.l = b;
return (aa.si[H] < bb.si[H] ? 0 : aa.si[H] > bb.si[H] ? 2 :
aa.ui[L] < bb.ui[L] ? 0 : aa.ui[L] > bb.ui[L] ? 2 : 1);
}
extern(C) int __cmpdi2(long a, long b)
{
return cmpdi2(a,b);
}
// Divide two signed longs
long divdi3(long a, long b)
{
ulong ua, ub, ul;
int neg;
if (a < 0) {
ua = -cast(ulong)a;
neg = 1;
} else {
ua = a;
neg = 0;
}
if (b < 0) {
ub = -cast(ulong)b;
neg ^= 1;
} else {
ub = b;
}
ul = qdivrem(ua, ub, null);
return (neg ? -ul : ul);
}
extern(C) long __divdi3(long a, long b)
{
return divdi3(a,b);
}
// Modulus two signed longs
long moddi3(long a, long b)
{
ulong ua, ub, ur;
int neg;
if (a < 0) {
ua = -cast(ulong)a;
neg = 1;
} else {
ua = a;
neg = 0;
}
if (b < 0) {
ub = -cast(ulong)b;
} else {
ub = b;
}
qdivrem(ua, ub, &ur);
return (neg ? -ur : ur);
}
extern(C) long __moddi3(long a, long b)
{
return moddi3(a,b);
}