mirror of
https://github.com/kelvinlawson/atomthreads.git
synced 2026-02-22 06:43:14 +01:00
STM8: Add README for Raisonance RKit-STM8 RTOS port.
This commit is contained in:
@@ -44,12 +44,13 @@ provides an easy mechanism for building, downloading and running the test
|
||||
suite to prove the OS on your target.
|
||||
|
||||
The port was carried out and tested on an STM8S105C6 running within an
|
||||
STM8S-Discovery board, and supports both the Cosmic and IAR compiler tools.
|
||||
It is possible to use it with other processors in the STM8 range, as well
|
||||
as other hardware platforms and compilers, with minimal changes. Platform
|
||||
and compiler specific code has been kept to an absolute minimum. This
|
||||
README covers usage of Atomthreads with the Cosmic compiler. Instructions
|
||||
for users of the IAR compiler are available in README-IAR.
|
||||
STM8S-Discovery board, and supports the Cosmic, Raisonance and IAR compiler
|
||||
tools. It is possible to use it with other processors in the STM8 range, as
|
||||
well as other hardware platforms and compilers, with minimal changes.
|
||||
Platform and compiler specific code has been kept to an absolute minimum.
|
||||
This README covers usage of Atomthreads with the Cosmic compiler.
|
||||
Instructions for users of the other compilers are available in README-IAR
|
||||
and README-RAISONANCE.
|
||||
|
||||
|
||||
---------------------------------------------------------------------------
|
||||
@@ -76,7 +77,7 @@ The core software prerequisites are therefore:
|
||||
Optionally, application build, program and debug can be carried out
|
||||
using ST's visual debug tool, STVD.
|
||||
|
||||
Use with alternative compiler tools will require some modification, but you
|
||||
Use with alternative compiler tools may require some modification, but you
|
||||
can easily replace STVP by your own favourite programmer if required.
|
||||
|
||||
|
||||
|
||||
@@ -43,12 +43,13 @@ provides an easy mechanism for building, downloading and running the test
|
||||
suite to prove the OS on your target.
|
||||
|
||||
The port was carried out and tested on an STM8S105C6 running within an
|
||||
STM8S-Discovery board, and supports both the Cosmic and IAR compiler tools.
|
||||
It is possible to use it with other processors in the STM8 range, as well
|
||||
as other hardware platforms and compilers, with minimal changes. Platform
|
||||
and compiler specific code has been kept to an absolute minimum. This
|
||||
README covers usage of Atomthreads with the IAR compiler. Instructions for
|
||||
users of the Cosmic compiler are available in README-COSMIC.
|
||||
STM8S-Discovery board, and supports the Cosmic, Raisonance and IAR compiler
|
||||
tools. It is possible to use it with other processors in the STM8 range, as
|
||||
well as other hardware platforms and compilers, with minimal changes.
|
||||
Platform and compiler specific code has been kept to an absolute minimum.
|
||||
This README covers usage of Atomthreads with the IAR compiler. Instructions
|
||||
for users of the other compilers are available in README-COSMIC and
|
||||
README-RAISONANCE.
|
||||
|
||||
|
||||
---------------------------------------------------------------------------
|
||||
@@ -70,7 +71,7 @@ such as VirtualBox, including USB download and debug.
|
||||
The core software prerequisites are therefore:
|
||||
* IAR Embedded Workbench STM8
|
||||
|
||||
Use with alternative compiler tools will require some modification, but you
|
||||
Use with alternative compiler tools may require some modification, but you
|
||||
can easily replace the EWSTM8 IDE by your own favourite programmer if
|
||||
required (e.g. STVP).
|
||||
|
||||
|
||||
452
ports/stm8/README-RAISONANCE
Normal file
452
ports/stm8/README-RAISONANCE
Normal file
@@ -0,0 +1,452 @@
|
||||
---------------------------------------------------------------------------
|
||||
|
||||
Library: Atomthreads
|
||||
Author: Kelvin Lawson <kelvinl@users.sf.net>
|
||||
Website: http://atomthreads.com
|
||||
License: BSD Revised
|
||||
|
||||
---------------------------------------------------------------------------
|
||||
|
||||
STM8 PORT - RAISONANCE COMPILER
|
||||
|
||||
This folder contains a port of the Atomthreads real time kernel for the
|
||||
STM8 processor architecture. These instructions cover usage of Atomthreads
|
||||
with the Raisonance compiler (RCSTM8).
|
||||
|
||||
All of the cross-platform kernel code is contained in the top-level
|
||||
'kernel' folder, while ports to specific CPU architectures are contained in
|
||||
the 'ports' folder tree. A port to a CPU architecture can comprise just one
|
||||
or two modules which provide the architecture-specific functionality, such
|
||||
as the context-switch routine which saves and restores processor registers
|
||||
on a thread switch. In this case, the kernel port is split into two files:
|
||||
|
||||
* atomport.c: Those functions which can be written in C
|
||||
* atomport-asm-raisonance.s: Main register save/restore assembler routines
|
||||
|
||||
Each Atomthreads port requires also a header file which describes various
|
||||
architecture-specific details such as appropriate types for 8-bit, 16-bit
|
||||
etc variables, the port's system tick frequency, and macros for performing
|
||||
interrupt lockouts / critical sections:
|
||||
|
||||
* atomuser.h: Port-specific header required by the kernel for each port
|
||||
|
||||
A few additional source files are also included here:
|
||||
|
||||
* tests-main.c: Main application file (used for launching automated tests)
|
||||
* uart.c: UART wrapper to allow use of stdio/printf()
|
||||
* stm8s-periphs/*.*: Peripheral drivers as delivered by ST (no changes
|
||||
to distributed code).
|
||||
|
||||
Atomthreads includes a suite of automated tests which prove the key OS
|
||||
functionality, and can be used with any architecture ports. This port
|
||||
provides an easy mechanism for building, downloading and running the test
|
||||
suite to prove the OS on your target.
|
||||
|
||||
The port was carried out and tested on an STM8S105C6 running within an
|
||||
STM8S-Discovery board, and supports the Cosmic, Raisonance and IAR compiler
|
||||
tools. It is possible to use it with other processors in the STM8 range, as
|
||||
well as other hardware platforms and compilers, with minimal changes.
|
||||
Platform and compiler specific code has been kept to an absolute minimum.
|
||||
This README covers usage of Atomthreads with the Raisonance compiler.
|
||||
Instructions for users of the other compilers are available in README-IAR
|
||||
and README-COSMIC.
|
||||
|
||||
|
||||
---------------------------------------------------------------------------
|
||||
|
||||
PREREQUISITES
|
||||
|
||||
The port works out-of-the-box with the Raisonance compiler tools for
|
||||
building. Applications are generated in .hex form and can be programmed
|
||||
with any supporting programming software, including the free STVP (visual
|
||||
programmer tool). At this time there does not appear to be a command-line
|
||||
programmer application suitable for use with STM8.
|
||||
|
||||
The Raisonance compiler and STVP are currently Windows-only applications.
|
||||
For users of other operating systems the Raisonance compiler may work in
|
||||
environments like Wine, but the USB programming tools are less likely to
|
||||
be supported. Both the compiler and the USB programming tool for
|
||||
STM8S-Discovery (STVP) can, however, be run successfully within a VM such
|
||||
as VirtualBox.
|
||||
|
||||
The core software prerequisites are therefore:
|
||||
* Raisonance STM8 compiler
|
||||
* Programming software (e.g. ST's STVP tool)
|
||||
|
||||
Optionally, application build, program and debug can be carried out
|
||||
using ST's visual debug tool, STVD.
|
||||
|
||||
Use with alternative compiler tools may require some modification, but you
|
||||
can easily replace STVP by your own favourite programmer if required.
|
||||
|
||||
|
||||
---------------------------------------------------------------------------
|
||||
|
||||
MEMORY MODEL
|
||||
|
||||
The sample build configurations use the Small memory model. All global
|
||||
variables are placed in the Data section rather than page0, which allows
|
||||
for large arrays such as thread stacks which would not fit in page0.
|
||||
|
||||
|
||||
---------------------------------------------------------------------------
|
||||
|
||||
BUILDING THE SOURCE
|
||||
|
||||
You may build Atomthreads using whichever build environment you desire. For
|
||||
your convenience we provide both a ready-rolled Makefile-based build system
|
||||
and an STVD visual debugger project. The STVD project permits easy
|
||||
building, programming and debugging, but does not easily support building
|
||||
a wide range of application builds within the same project, which is
|
||||
useful for building the numerous automated tests. For the automated tests
|
||||
you may find it easier to use the Makefile which automatically builds all
|
||||
automated tests.
|
||||
|
||||
|
||||
---------------------------------------------------------------------------
|
||||
|
||||
BUILD VIA STVD PROJECT
|
||||
|
||||
For building applications using STVD you can use the sample workspace
|
||||
atomthreads-sample-stvd.stw which contains both Cosmic compiler and
|
||||
Raisonance compiler based projects. You can also import the
|
||||
Raisonance-only project file atomthreads-sample-raisonance.stp directly.
|
||||
This builds a sample full application which runs the "sem1" automated test.
|
||||
Applications can be downloaded directly to the target hardware (e.g.
|
||||
STM8S-Discovery) and run via the integrated debugger. Press the
|
||||
exclamation button to run, and confirm that the LED flashes once per
|
||||
second (if running on an STM8S-Discovery) to ensure that the test has
|
||||
passed.
|
||||
|
||||
This is also a good starting point for building your own applications:
|
||||
simply modify the file tests-main.c which starts the test application.
|
||||
You can run any of the other automated tests by replacing the file sem1.c
|
||||
within the project by another of the tests within the atomthreads tests
|
||||
folder. This is rather painful using a GUI interface due to the large
|
||||
number of test files, and you may prefer to use the Makefile-based system
|
||||
instead which builds all automated tests in one command.
|
||||
|
||||
|
||||
---------------------------------------------------------------------------
|
||||
|
||||
BUILD VIA MAKEFILE
|
||||
|
||||
A Makefile is also provided for building the kernel, port and automated
|
||||
tests. This is particularly useful for building the automated tests
|
||||
because many different independent applications need to be built which is
|
||||
not easily achieved within the STVD environment.
|
||||
|
||||
For a Windows system you can obtain a Make application suitable for use
|
||||
with the Raisonance compiler from:
|
||||
|
||||
* http://www.cosmic-software.com/comp_utils/GNU_Make.zip
|
||||
|
||||
Assuming you install the above into C:\Program Files\GNU_MAKE, you
|
||||
should set up your environment variables as follows:
|
||||
|
||||
* set PATH=%PATH%;C:\Program Files\GNU_MAKE;C:\Program Files\Raisonance\Ride\bin
|
||||
* set MAKE_MODE=DOS
|
||||
|
||||
|
||||
The full build is carried out using simply:
|
||||
|
||||
* make -f raisonance.mak
|
||||
|
||||
All objects are built into the 'build-raisonance' folder under ports/stm8.
|
||||
The build process builds separate target applications for each automated
|
||||
test, and appropriate .aof or .hex files can be found in the build folder
|
||||
ready for downloading to and running on the target. Because of the limited
|
||||
resources on the STM8, and the large amount of automated tests, each test
|
||||
is built and run as a separate application.
|
||||
|
||||
|
||||
All built objects etc can be cleaned using:
|
||||
|
||||
* make -f raisonance.mak clean
|
||||
|
||||
|
||||
The Atomthreads sources are documented using Doxygen markup. You can build
|
||||
both the kernel and STM8 port documentation from this folder using:
|
||||
|
||||
* make -f raisonance.mak doxygen
|
||||
|
||||
|
||||
---------------------------------------------------------------------------
|
||||
|
||||
PROGRAMMING MAKEFILE-BUILT APPLICATIONS TO THE TARGET DEVICE
|
||||
|
||||
When developing within STVD, programs can be downloaded directly to the
|
||||
target. If, however, you are building applications separately using a
|
||||
Makefile or similar, then you are not able to program the application
|
||||
using STVD. None of the tools delivered by ST appear to be designed to
|
||||
cater for those who build applications externally, but it is possible using
|
||||
STVP.
|
||||
|
||||
The following development workflow can be used (note that these settings
|
||||
apply to the STM8S-Discovery):
|
||||
|
||||
* Build app using Makefile.
|
||||
* Open STVP and configure to use Swim ST-Link for CPU STM8105C6.
|
||||
* Open application .hex file and program using "Program All Tabs".
|
||||
|
||||
Unfortunately STVP does not have a command to reset and start the CPU
|
||||
running, but it can be forced into doing so by reconfiguring the
|
||||
programmer:
|
||||
|
||||
* Select "Configure ST Visual Programmer" from the Configure menu.
|
||||
|
||||
Your application should now be programmed and running.
|
||||
|
||||
If you wish to program and run another application then you can open and
|
||||
program it in STVP, then use the Configure menu again to reset the
|
||||
device and start it running.
|
||||
|
||||
Other programming tools may exist but are not apparent in the toolset
|
||||
delivered for use the STM8S Discovery platform.
|
||||
|
||||
|
||||
---------------------------------------------------------------------------
|
||||
|
||||
STM8S-DISCOVERY SPECIFICS
|
||||
|
||||
There are very minimal board-specific aspects to the STM8 port so it is
|
||||
trivial to run Atomthreads on other STM8 platforms.
|
||||
|
||||
The test applications make use of a LED to indicate test pass/fail status.
|
||||
This is currently configured to use a bit in GPIOD, which on the Discovery
|
||||
board maps to the board's only LED. You may change the port and register
|
||||
bit in tests-main.c to utilise a different pin on other hardware platforms.
|
||||
You may also completely omit the LED flashing in the test application if
|
||||
you prefer to use the UART for monitoring test status.
|
||||
|
||||
The test applications also make use of the UART to print out pass/fail
|
||||
indications and other information. For this you should connect a serial
|
||||
cable to the Discovery board via the external pin connectors. Use of
|
||||
a UART is not required if you prefer to use the LED or some other method
|
||||
of notifying test pass/fail status.
|
||||
|
||||
To connect a serial cable to the Discovery you will need to connect to
|
||||
the following pins on the external connectors:
|
||||
Vcc: CN2 pin 8
|
||||
GND: CN2 pin 7
|
||||
UART TX: CN4 pin 10 (connect to RX at the PC end)
|
||||
UART RX: CN4 pin 9 (connect to TX at the PC end)
|
||||
Note that the board uses TTL levels so you may need to use a level
|
||||
converter. External level converters may need to be powered using
|
||||
a Vdd of 5v, which can be achieved by positioning JP1 on the Discovery.
|
||||
|
||||
The STM8 device on the Discovery only offers UART2. If you are using a
|
||||
different device or wish to use an alternative UART then you must change
|
||||
the stm8s_conf.h file.
|
||||
|
||||
If you are using a CPU other than the STM8S105C6 you should change the
|
||||
PART macro from "STM8S105" to your target CPU. This can be changed in the
|
||||
raisonance.mak Makefile. If you are using the STVD project it should be
|
||||
changed in the project preprocessor settings for both Debug and Release
|
||||
builds. You may also wish to enable any CPU peripherals which you wish to
|
||||
use in the stm8s_conf.h file.
|
||||
|
||||
|
||||
---------------------------------------------------------------------------
|
||||
|
||||
RUNNING THE AUTOMATED TESTS
|
||||
|
||||
Atomthreads contains a set of generic kernel tests which can be run on any
|
||||
port to prove that all core functionality is working on your target.
|
||||
|
||||
The full set of tests can be found in the top-level 'tests' folder. The
|
||||
Makefile builds each of these tests as independent applications in the
|
||||
'build' folder. Run them individually using the STVP process described
|
||||
above. For example to run the 'kern1.c' test use STVP to program and run
|
||||
it.
|
||||
|
||||
You may also build the tests using the STVD project, but to run each
|
||||
different test you must manually remove the previous test module (e.g.
|
||||
kern1.c) and replace it with one of other tests, which can be quite time
|
||||
consuming compared to building all tests in one command via the Makefile.
|
||||
|
||||
To view the test results, watch the LED on the STM8S-Discovery. This will
|
||||
flash once per second if the test passed, and once every 1/8 second if the
|
||||
test failed.
|
||||
|
||||
If you wish to use the UART, connect a serial debug cable to your target
|
||||
platform (defaults to 9600bps 8N1). On starting, the test applications
|
||||
print out "Go" on the UART. Once the test is complete they will print
|
||||
out "Pass" or "Fail", along with other information if the test failed.
|
||||
|
||||
Most of the tests complete within a few seconds, but some (particularly
|
||||
the stress tests) can take several seconds, so be patient.
|
||||
|
||||
The full suite of tests endeavours to exercise as much of the kernel code
|
||||
as possible, and can be used for quick confirmation of core OS
|
||||
functionality if you ever need to make a change to the kernel or port.
|
||||
|
||||
The test application main() is contained in tests-main.c. This initialises
|
||||
the OS, creates a main thread, and calls out to the test modules. It also
|
||||
initialises the UART driver for use by stdout.
|
||||
|
||||
|
||||
---------------------------------------------------------------------------
|
||||
|
||||
WRITING APPLICATIONS
|
||||
|
||||
The easiest way to start a new application which utilises the Atomthreads
|
||||
scheduler is to base your main application startup on tests-main.c. This
|
||||
initialises the OS, sets up a UART and calls out to the test module entry
|
||||
functions. You can generally simply replace the call to the test modules by
|
||||
a call to your own application startup code.
|
||||
|
||||
Projects developed within STVD can be started using the sample project
|
||||
atomthreads-sample-raisonance.stp. If you wish to create your own STVD
|
||||
project from scratch, then you should ensure you change the project settings
|
||||
for both Debug and Release builds as follows:
|
||||
|
||||
* Toolset: "Raisonance"
|
||||
* MCU Selection: Appropriate for your platform (STM8S10C56 for Discovery)
|
||||
* C Compiler Memory Model: "Small"
|
||||
* C Compiler Preprocessor Definitions: CPU part (e.g. "STM8S105")
|
||||
* C Compiler Preprocessor Definitions: Enable thread stack checking if
|
||||
desired by adding "ATOM_STACK_CHECKING", for example the full
|
||||
preprocessor line for Discovery might be: "STM8S105 ATOM_STACK_CHECKING"
|
||||
* Linker Input: You may need to change the DATA setion to start from 0x1
|
||||
rather than 0x0 to prevent the linker from placing OS data at address
|
||||
0x0 (which would cause NULL-pointer checks to fail). So far this has
|
||||
not actually proved necessary, however.
|
||||
|
||||
Note that for an RTOS like this the Raisonance compiler must place all
|
||||
functions in reentrant mode, however it does this by default on the STM8
|
||||
platform so no user action is required (unlike when targeting the STM7
|
||||
platform with Raisonance).
|
||||
|
||||
---------------------------------------------------------------------------
|
||||
|
||||
RAM FOOTPRINT & STACK USAGE
|
||||
|
||||
The Atomthreads kernel is written in well-structured pure C which is highly
|
||||
portable and not targeted at any particular compiler or CPU architecture.
|
||||
For this reason it is not highly optimised for the STM8 architecture, and
|
||||
by its nature will likely have a higher text and data footprint than an
|
||||
RTOS targeted at the STM8 architecture only. The emphasis here is on
|
||||
C-based portable, readable and maintainable code which can run on any CPU
|
||||
architecture, from the 8-bitters up.
|
||||
|
||||
A good rule of thumb when using Atomthreads on the STM8 architecture is
|
||||
that a minimum of 1KB RAM is required in order to support an application
|
||||
with 4 or 5 threads and the idle thread. If a minimum of approximately
|
||||
128 bytes per thread stack is acceptable then you will benefit from the
|
||||
easy-to-read, portable implementation of an RTOS herein.
|
||||
|
||||
The major consumer of RAM when using Atomthreads is your thread stacks.
|
||||
Functionality that is shared between several kernel modules is farmed out
|
||||
to separate functions, resulting in readable and maintainable code but
|
||||
with some associated stack cost of calling out to subroutines. Further,
|
||||
each thread stack is used for saving its own registers on a context
|
||||
switch, and there is no separate interrupt stack which means that each
|
||||
thread stack has to be able to cope with the maximum stack usage of the
|
||||
kernel (and application) interrupt handlers.
|
||||
|
||||
Clearly the stack requirement for each thread depends on what your
|
||||
application code does, and what memory model is used etc, but generally
|
||||
you should find that 128 bytes is enough to allow for the thread to be
|
||||
switched out (and thus save its registers) while deep within a kernel
|
||||
or application call stack, and similarly enough to provide stack for
|
||||
interrupt handlers interrupting while the thread is deep within a kernel
|
||||
or application call stack. You will need to increase this depending on
|
||||
what level of stack the application code in question requires.
|
||||
|
||||
At this time the maximum stack consumed by the test threads within the
|
||||
automated test modules is 95 bytes of stack, and the main test thread has
|
||||
been seen to consume 163 bytes of stack. At this time the queue9 test is
|
||||
the largest consumer of test thread stack (95 bytes) and the sem1 test
|
||||
consumes the largest main thread stack (137 bytes). If your applications
|
||||
have large amounts of local data or call several subroutines then you may
|
||||
find that you need larger than 128 bytes.
|
||||
|
||||
You may monitor the stack usage of your application threads during runtime
|
||||
by defining the macro ATOM_STACK_CHECKING and calling
|
||||
atomThreadStackCheck(). This macro is defined by default in the Makefile
|
||||
so that the automated test modules can check for stack overflows, but you
|
||||
may wish to undefine this in your application Makefiles when you are happy
|
||||
that the stack usage is acceptable. Enabling ATOM_STACK_CHECKING will
|
||||
increase the size of your threads' TCBs slightly, and will incur a minor
|
||||
CPU cycles overhead whenever threads are created due to prefilling the
|
||||
thread stack with a known value.
|
||||
|
||||
With careful consideration and few threads it would be possible to use
|
||||
a platform with 512 bytes RAM, but not all of the automated test suite
|
||||
would run on such a platform (some of the test modules use 6 threads: a
|
||||
main thread together with 4 test threads and the idle thread).
|
||||
|
||||
|
||||
---------------------------------------------------------------------------
|
||||
|
||||
INTERRUPT HANDLING
|
||||
|
||||
Interrupt handlers use the stack of the thread which was running when the
|
||||
interrupt occurred. If no thread rescheduling occurs during the ISR then
|
||||
on exit from the ISR any data stacked by the ISR on the thread's stack is
|
||||
popped off the stack and execution of the thread resumes. If a reschedule
|
||||
during the ISR causes a context switch to a new thread, then the ISR's
|
||||
data will remain on the thread's stack until the thread is scheduled back
|
||||
in.
|
||||
|
||||
Interrupt priorities (via the ITC_SPRx registers) are left in their
|
||||
default power-on state, which disables interrupt nesting. Kernel changes
|
||||
may be required to support interrupt nesting.
|
||||
|
||||
Note that the STM8 programming manual currently describes the following
|
||||
feature:
|
||||
|
||||
"Fast interrupt handling through alternate register files (up to 4
|
||||
contexts) with standard stack compatible mode (for real time OS
|
||||
kernels)"
|
||||
|
||||
This feature was implemented by ST in the core but has to date never been
|
||||
included in any STM8 products. If it is included in future products then
|
||||
you will need to put the device in the stack compatible mode described.
|
||||
|
||||
|
||||
---------------------------------------------------------------------------
|
||||
|
||||
WRITING NEW INTERRUPT HANDLERS
|
||||
|
||||
All interrupt handlers which will call out to the OS kernel and potentially
|
||||
cause a thread switch must call atomIntEnter() and atomIntExit(). An
|
||||
example of this can be seen in the timer tick ISR in atomport.c.
|
||||
|
||||
You may also implement fast interrupt handlers in the system which do not
|
||||
call atomIntEnter()/atomIntExit(), however these ISRs cannot perform OS
|
||||
functions such as posting semaphores or effecting a thread switch.
|
||||
|
||||
|
||||
---------------------------------------------------------------------------
|
||||
|
||||
RAISONANCE COMPILER VIRTUAL REGISTERS
|
||||
|
||||
The STM8 has only very few CPU registers, so the Raisonance compiler
|
||||
augments them with four "virtual" registers, which are simply locations in
|
||||
fast memory. These registers are called BH, BL, CH and CL.
|
||||
|
||||
The Atomthreads context switch for Raisonance/STM8 takes advantage of the
|
||||
fact that all CPU and virtual registers are automatically saved on the
|
||||
stack by the compiler when calling out to C functions (and even then only
|
||||
if necessary).
|
||||
|
||||
For cooperative context switches (where a thread calls an OS kernel
|
||||
function to schedule itself out), any of these registers which should be
|
||||
preserved across the function call are automatically saved on the stack by
|
||||
the compiler before the context switch is even called. This means that no
|
||||
CPU or virtual registers actually have to be saved in the context switch
|
||||
routine, making cooperative switches potentially very cheap if few
|
||||
registers must be preserved.
|
||||
|
||||
For preemptive switches (where an ISR has interrupted a thread and wishes
|
||||
to switch to a new thread), the interrupt handler prologue automatically
|
||||
saves all CPU registers (actually done automatically by the CPU) and all
|
||||
of the virtual registers. In this case all registers must always be saved
|
||||
because the ISR has no knowledge of what registers the interrupted thread
|
||||
was using, so we cannot take advantage of the potential for saving fewer
|
||||
than the full set of registers that we achieve with cooperative switches.
|
||||
|
||||
|
||||
---------------------------------------------------------------------------
|
||||
Reference in New Issue
Block a user