Some more progress on resource management and boot up.

This commit is contained in:
Bahadir Balban
2009-07-29 13:32:38 +03:00
parent 2b0ea24e94
commit dd8f773f10
17 changed files with 950 additions and 86 deletions

View File

@@ -0,0 +1,83 @@
/*
* Types of capabilities and their operations
*
* Copyright (C) 2009 Bahadir Balban
*/
#ifndef __CAP_TYPES_H__
#define __CAP_TYPES_H__
/*
* Capability types
*/
#define CAP_TYPE_MASK 0x0000FFFF
#define CAP_TYPE_TCTRL (1 << 0)
#define CAP_TYPE_EXREGS (1 << 1)
#define CAP_TYPE_MAP (1 << 2)
#define CAP_TYPE_IPC (1 << 3)
#define CAP_TYPE_SCHED (1 << 4)
#define CAP_TYPE_UMUTEX (1 << 5)
#define CAP_TYPE_QUANTITY (1 << 6)
/*
* Resource types
*/
#define CAP_RTYPE_MASK 0xFFFF0000
#define CAP_RTYPE_THREAD (1 << 16)
#define CAP_RTYPE_TGROUP (1 << 17)
#define CAP_RTYPE_SPACE (1 << 18)
#define CAP_RTYPE_CONTAINER (1 << 19)
#define CAP_RTYPE_UMUTEX (1 << 20)
#define CAP_RTYPE_VIRTMEM (1 << 21)
#define CAP_RTYPE_PHYSMEM (1 << 22)
#define CAP_RTYPE_CPUPOOL (1 << 23)
#define CAP_RTYPE_THREADPOOL (1 << 24)
#define CAP_RTYPE_SPACEPOOL (1 << 25)
#define CAP_RTYPE_MUTEXPOOL (1 << 27)
#define CAP_RTYPE_MEMPOOL (1 << 26) /* Do we need this ??? */
/*
* Access permissions
*/
/* Thread control capability */
#define CAP_TCTRL_CREATE (1 << 0)
#define CAP_TCTRL_DESTROY (1 << 1)
#define CAP_TCTRL_SUSPEND (1 << 2)
#define CAP_TCTRL_RESUME (1 << 3)
#define CAP_TCTRL_RECYCLE (1 << 4)
/* Exchange registers capability */
#define CAP_EXREGS_RW_PAGER (1 << 0)
#define CAP_EXREGS_RW_UTCB (1 << 1)
#define CAP_EXREGS_RW_SP (1 << 2)
#define CAP_EXREGS_RW_PC (1 << 3)
#define CAP_EXREGS_RW_REGS (1 << 4)
#define CAP_EXREGS_RW_CPU (1 << 5)
#define CAP_EXREGS_RW_CPUTIME (1 << 6)
/* Map capability */
#define CAP_MAP_READ (1 << 0)
#define CAP_MAP_WRITE (1 << 1)
#define CAP_MAP_EXEC (1 << 2)
#define CAP_MAP_CACHED (1 << 3)
#define CAP_MAP_UNCACHED (1 << 4)
#define CAP_MAP_UNMAP (1 << 5)
/* Ipc capability */
#define CAP_IPC_SEND (1 << 0)
#define CAP_IPC_RECV (1 << 1)
#define CAP_IPC_SHORT (1 << 2)
#define CAP_IPC_FULL (1 << 3)
#define CAP_IPC_EXTENDED (1 << 4)
#define CAP_IPC_ASYNC (1 << 5)
/* Userspace mutex capability */
#define CAP_UMUTEX_LOCK (1 << 0)
/* Capability control capability */
#define CAP_CAP_SPLIT (1 << 0)
#define CAP_CAP_SPLICE (1 << 1)
#define CAP_CAP_REDUCE (1 << 2)
#define CAP_CAP_REVOKE (1 << 3)
#define CAP_CAP_GRANT (1 << 4)
#endif /* __CAP_TYPES_H__ */

View File

@@ -0,0 +1,177 @@
/*
* Codezero Capability Definitions
*
* Copyright (C) 2009 Bahadir Balban
*/
#ifndef __CAPABILITY_H__
#define __CAPABILITY_H__
#include <l4/lib/list.h>
/*
* A capability is a unique representation of security
* qualifiers on a particular resource.
*
* In this structure:
*
* The capid denotes the unique capability ID. The resid denotes the unique ID
* of targeted resource. The owner denotes the unique ID of capability owner.
* This is almost always a thread ID.
*
* The type field contains two types: The capability type, and the targeted
* resource type. The targeted resouce type denotes what type of resource the
* capability is allowed to operate on. For example a thread, a thread group,
* an address space or a memory can be of this type.
*
* The capability type defines the general set of operations allowed on a
* particular resource. The resource type defines the type of resource that
* the capability is targeting. For example a capability type may be
* thread_control, exchange_registers, ipc, or map operations. A resource type
* may be such as a thread, a thread group, a virtual or physical memory
* region.
*
* There are also quantitative capability types. While their names denote
* quantitative objects such as memory, threads, and address spaces, these
* types actually define the quantitative operations available on those
* resources such as creation and deletion of a thread, allocation and
* deallocation of a memory region etc.
*
* The access field denotes the fine-grain operations available on a particular
* resource. The meaning of each bitfield differs according to the type of the
* capability. For example, for a capability type thread_control, the bitfields
* may mean suspend, resume, create, delete etc.
*/
struct capability {
struct link list;
/* Capability identifiers */
l4id_t capid; /* Unique capability ID */
l4id_t resid; /* Targeted resource ID */
l4id_t owner; /* Capability owner ID */
unsigned int type; /* Capability and target resource type */
/* Capability limits/permissions */
u32 access; /* Permitted operations */
/* Limits on the resource */
unsigned long start; /* Resource start value */
unsigned long end; /* Resource end value */
unsigned long size; /* Resource size */
};
struct cap_list {
int ncaps;
struct link caps;
};
#if 0
/* Virtual memory space allocated to container */
struct capability cap_virtmap = {
.capid = id_alloc(capids),
.resid = container_id,
.owner = pagerid,
.type = CAP_TYPE_VIRTMEM,
.access = 0, /* No access operations */
.start = 0xF0000000,
.end = 0xF1000000,
.size = 0x1000000
};
/* Physical memory space allocated to container */
struct capability cap_physmap = {
.capid = id_alloc(capids),
.resid = container_id,
.owner = pagerid,
.type = CAP_TYPE_PHYSMEM,
.access = 0, /* No access operations */
.start = 0x0,
.end = 0x1000000,
.size = 0x1000000
};
/* IPC operations permitted on target thread */
struct capability cap_ipc = {
.capid = id_alloc(capids),
.resid = target_tid,
.owner = tid,
.type = CAP_TYPE_IPC,
.access = CAP_IPC_SEND | CAP_IPC_RECV | CAP_IPC_FULL | CAP_IPC_SHORT | CAP_IPC_EXTENDED,
.start = 0xF0000000,
.end = 0xF1000000,
.size = 0x1000000
};
/* Thread control operations permitted on target thread */
struct capability cap_thread_control = {
.capid = id_alloc(capids),
.resid = target_tid,
.owner = pagerid,
.type = CAP_TYPE_THREAD_CONTROL,
.access = CAP_THREAD_SUSPEND | CAP_THREAD_RUN | CAP_THREAD_RECYCLE | CAP_THREAD_CREATE | CAP_THREAD_DESTROY,
.start = 0,
.end = 0,
.size = 0,
};
/* Exregs operations permitted on target thread */
struct capability cap_exregs = {
.capid = id_alloc(capids),
.resid = target_tid,
.owner = pagerid,
.type = CAP_TYPE_EXREGS,
.access = CAP_EXREGS_RW_PAGER | CAP_EXREGS_RW_SP | CAP_EXREGS_RW_PC | CAP_EXREGS_RW_UTCB | CAP_EXREGS_RW_OTHERS,
.start = 0,
.end = 0,
.size = 0
};
/* Number of threads allocated to container */
struct capability cap_threads = {
.capid = id_alloc(capids),
.resid = container_id,
.owner = pagerid,
.type = CAP_TYPE_THREADS,
.access = 0,
.start = 0,
.end = 0,
.size = 256,
};
/* Number of spaces allocated to container */
struct capability cap_spaces = {
.capid = id_alloc(capids),
.resid = container_id,
.owner = pagerid,
.type = CAP_TYPE_SPACES,
.access = 0,
.start = 0,
.end = 0,
.size = 128,
};
/* CPU time allocated to container */
struct capability cap_cputime = {
.capid = id_alloc(capids),
.resid = container_id,
.owner = pagerid,
.type = CAP_TYPE_CPUTIME,
.access = 0,
.start = 0,
.end = 0,
.size = 55, /* Percentage */
};
struct capability cap_cpuprio = {
.capid = id_alloc(capids),
.resid = container_id,
.owner = pagerid,
.type = CAP_TYPE_CPUPRIO,
.access = 0,
.start = 0,
.end = 0,
.size = 55, /* Priority No */
};
#endif
#endif /* __CAPABILITY_H__ */

View File

@@ -9,11 +9,14 @@
#include <l4/generic/scheduler.h>
#include <l4/generic/space.h>
#include <l4/generic/capability.h>
#include <l4/generic/tcb.h>
#include <l4/lib/idpool.h>
#include <l4/api/mutex.h>
#include <l4/lib/list.h>
#include <l4/lib/idpool.h>
/* Container macro. No locks needed! */
#define container (current->container)
#define this_container (current->container)
struct container {
/* Unique container id */
@@ -47,21 +50,48 @@ struct container {
/* The array of containers present on the system */
extern struct container container[];
struct memdesc {
/* Compact, raw capability structure */
struct cap_info {
unsigned int type;
u32 access;
unsigned long start;
unsigned long end;
unsigned int flags;
unsigned long size;
};
struct cinfo {
char cname[32];
struct pager_info {
unsigned long pager_lma;
unsigned long pager_vma;
unsigned long pager_size;
unsigned long total_memdesc;
struct memdesc memdesc[];
/* Number of capabilities defined */
int ncaps;
/*
* Zero or more ipc caps,
* One or more thread pool caps,
* One or more space pool caps,
* One or more exregs caps,
* One or more tcontrol caps,
* One or more cputime caps,
* One or more physmem caps,
* One or more virtmem caps,
* Zero or more umutex caps,
*/
struct cap_info caps[];
};
/*
* This auto-generated structure is
* used to create run-time containers
*/
struct container_info {
char *name;
int npagers;
struct pager_info pagers[];
};
extern struct container_info cinfo[];
#endif /* __CONTAINER_H__ */

View File

@@ -0,0 +1,51 @@
#ifndef __RESOURCES_H__
#define __RESOURCES_H__
/* Number of containers defined at compile-time */
#define CONTAINERS_TOTAL 1
#include <l4/generic/capability.h>
struct boot_resources {
int nconts;
int ncaps;
int nids;
int nthreads;
int nspaces;
int npmds;
/* Kernel resource usage */
int nkpmds;
int nkpgds;
int nkmemcaps;
};
struct kernel_container {
/* Physical memory caps, used/unused */
struct cap_list physmem_used;
struct cap_list physmem_free;
/* Virtual memory caps, used/unused */
struct cap_list virtmem_used;
struct cap_list virtmem_free;
/* Device memory caps, used/unused */
struct cap_list devmem_used;
struct cap_list devmem_free;
struct mem_cache *pgd_cache;
struct mem_cache *pmd_cache;
struct mem_cache *ktcb_cache;
struct mem_cache *address_space_cache;
struct mem_cache *umutex_cache;
struct mem_cache *cap_cache;
struct mem_cache *cont_cache;
};
extern struct kernel_container kernel_container;
int init_system_resources(struct kernel_container *kcont,
struct boot_resources *bootres);
#endif /* __RESOURCES_H__ */

View File

@@ -20,8 +20,10 @@
#if defined (__KERNEL__)
#include <l4/lib/spinlock.h>
#include <l4/lib/list.h>
#include <l4/lib/mutex.h>
#include <l4/lib/idpool.h>
#include INC_SUBARCH(mm.h)
/* A simple page table with a reference count */
@@ -33,6 +35,17 @@ struct address_space {
int ktcb_refs;
};
struct address_space_list {
struct link list;
/* Lock for list add/removal */
struct spinlock list_lock;
/* Used when delete/creating spaces */
struct mutex ref_lock;
int count;
};
struct address_space *address_space_create(struct address_space *orig);
void address_space_delete(struct address_space *space);
void address_space_attach(struct ktcb *tcb, struct address_space *space);

View File

@@ -8,6 +8,7 @@
#include <l4/lib/list.h>
#include <l4/lib/mutex.h>
#include <l4/lib/spinlock.h>
#include <l4/generic/scheduler.h>
#include <l4/generic/pgalloc.h>
#include <l4/generic/space.h>
@@ -121,6 +122,13 @@ union ktcb_union {
};
/* Hash table for all existing tasks */
struct ktcb_list {
struct link list;
struct spinlock list_lock;
int count;
};
/*
* Each task is allocated a unique global id. A thread group can only belong to
* a single leader, and every thread can only belong to a single thread group.

View File

@@ -30,6 +30,7 @@ struct mem_cache {
unsigned int *bitmap;
};
int mem_cache_bufsize(void *start, int struct_size, int nstructs, int aligned);
void *mem_cache_zalloc(struct mem_cache *cache);
void *mem_cache_alloc(struct mem_cache *cache);
int mem_cache_free(struct mem_cache *cache, void *addr);

View File

@@ -4,7 +4,7 @@
Import('env')
# The set of source files associated with this SConscript file.
src_local = ['physmem.c', 'irq.c', 'scheduler.c', 'time.c', 'tcb.c', 'pgalloc.c', 'kmalloc.c', 'space.c', 'bootm.c']
src_local = ['physmem.c', 'irq.c', 'scheduler.c', 'time.c', 'tcb.c', 'pgalloc.c', 'kmalloc.c', 'space.c', 'bootm.c', 'resource.c']
obj = env.Object(src_local)
Return('obj')

View File

@@ -28,6 +28,12 @@ void *alloc_bootmem(int size, int alignment)
if (!is_aligned(cursor, alignment))
/* Align the cursor to alignment */
cursor = align_up(cursor, alignment);
/* Align to 4 byte by default */
} else if (size >= 4) {
/* And cursor is not aligned */
if (!is_aligned(cursor, 4))
/* Align the cursor to alignment */
cursor = align_up(cursor, 4);
}
/* Allocate from cursor */

7
src/generic/capability.c Normal file
View File

@@ -0,0 +1,7 @@
/*
* Capability checking for all system calls
*
* Copyright (C) 2009 Bahadir Balban
*/

View File

@@ -1,11 +1,97 @@
/*
* Containers defined for current build.
*
* Copyright (C) 2009 B Labs Ltd.
* Copyright (C) 2009 Bahadir Balban
*/
struct container container[] = {
.[0] = { 0 },
struct container_info cinfo[] = {
.name = "Codezero POSIX Services",
.npagers = 1,
.pagers = {
.[0] = {
.pager_lma = 0x38000,
.pager_vma = 0xE0000000,
.pager_size = 0x96000,
.ncaps = 11,
.caps = {
.[0] = {
.type = CAP_TYPE_MAP | CAP_RTYPE_VIRTMEM,
.access = CAP_MAP_READ | CAP_MAP_WRITE
| CAP_MAP_EXEC | CAP_MAP_UNMAP,
.access = 0,
.start = 0xE0000000,
.end = 0xF0000000,
.size = 0x10000000,
},
.[1] = {
.type = CAP_TYPE_MAP | CAP_RTYPE_VIRTMEM,
.access = CAP_MAP_READ | CAP_MAP_WRITE
| CAP_MAP_EXEC | CAP_MAP_UNMAP,
.start = 0x10000000,
.end = 0x20000000,
.size = 0x10000000,
},
.[2] = {
.type = CAP_TYPE_MAP | CAP_RTYPE_VIRTMEM,
.access = CAP_MAP_READ | CAP_MAP_WRITE
| CAP_MAP_EXEC | CAP_MAP_UNMAP,
.access = 0,
.start = 0x20000000,
.end = 0x30000000,
.size = 0x10000000,
},
.[3] = {
.type = CAP_TYPE_MAP | CAP_RTYPE_PHYSMEM,
.access = CAP_MAP_CACHED | CAP_MAP_UNCACHED
| CAP_MAP_READ | CAP_MAP_WRITE
| CAP_MAP_EXEC | CAP_MAP_UNMAP,
.start = 0x38000,
.end = 0x1000000, /* 16 MB */
},
.[4] = {
.type = CAP_TYPE_IPC | CAP_RTYPE_CONTAINER,
.access = CAP_IPC_SEND | CAP_IPC_RECV
| CAP_IPC_FULL | CAP_IPC_SHORT
| CAP_IPC_EXTENDED,
.start = 0, .end = 0, .size = 0,
},
.[5] = {
.type = CAP_TYPE_TCTRL | CAP_RTYPE_CONTAINER,
.access = CAP_TCTRL_CREATE | CAP_TCTRL_DESTROY
| CAP_TCTRL_SUSPEND | CAP_TCTRL_RESUME
| CAP_TCTRL_RECYCLE,
.start = 0, .end = 0, .size = 0,
},
.[6] = {
.type = CAP_TYPE_EXREGS | CAP_RTYPE_CONTAINER,
.access = CAP_EXREGS_RW_PAGER
| CAP_EXREGS_RW_UTCB | CAP_EXREGS_RW_SP
| CAP_EXREGS_RW_PC | CAP_EXREGS_RW_REGS,
.start = 0, .end = 0, .size = 0,
},
.[7] = {
.type = CAP_TYPE_QUANTITY
| CAP_RTYPE_THREADPOOL,
.access = 0, .start = 0, .end = 0,
.size = 64,
},
.[8] = {
.type = CAP_TYPE_QUANTITY | CAP_RTYPE_SPACEPOOL,
.access = 0, .start = 0, .end = 0,
.size = 64,
},
.[9] = {
.type = CAP_TYPE_QUANTITY | CAP_RTYPE_CPUPOOL,
.access = 0, .start = 0, .end = 0,
.size = 50, /* Percentage */
},
.[10] = {
.type = CAP_TYPE_QUANTITY | CAP_RTYPE_MUTEXPOOL,
.access = 0, .start = 0, .end = 0,
.size = 100,
},
},
},
},
};

View File

@@ -1,56 +0,0 @@
/*
* Initialize system resource management.
*
* Copyright (C) 2009 Bahadir Balban
*/
/*
* Here are the steps used to initialize system resources:
*
* Check total physical memory
* Check container memory capabilities
* Find biggest unused physical memory region
* Calculate how much memory is used by all containers
* Initialize a slab-like allocator for all resources.
* Copy boot allocations to real allocations accounted to containers and kernel.
* E.g. initial page table may become page table of a container pager.
* First few pmds used belong to kernel usage, etc.
* Delete all boot memory and add it to physical memory pool.
*/
#define MEM_FLAGS_VIRTUAL (1 << 0)
#define MEM_AREA_CACHED (1 << 1)
struct mem_area {
struct link list;
l4id_t mid;
unsigned long start;
unsigned long end;
unsigned long npages;
unsigned long flags;
};
void init_system_resources()
{
struct mem_area *physmem = alloc_bootmem(sizeof(physmem), 4);
struct mem_area *kernel_used = alloc_bootmem(sizeof(physmem), 4);
/* Initialize the first memory descriptor for total physical memory */
physmem.start = PHYS_MEM_START;
physmem.end = PHYS_MEM_END;
physmem.mid = 0;
physmem.npages = (physmem.end - physmem.start) >> PAGE_BITS;
/* Figure out current kernel usage */
kernel_used.start = virt_to_phys(_kernel_start);
kernel_used.end = virt_to_phys(_kernel_end);
/* Figure out each container's physical memory usage */
for (int i = 0; i < containers->total; i++) {
}
}

431
src/generic/resource.c Normal file
View File

@@ -0,0 +1,431 @@
/*
* Initialize system resource management.
*
* Copyright (C) 2009 Bahadir Balban
*/
#include <l4/generic/capability.h>
#include <l4/generic/container.h>
#include <l4/lib/list.h>
#include INC_GLUE(memory.h)
#include INC_ARCH(linker.h)
struct kernel_container kernel_container;
void cap_list_init(struct cap_list *clist)
{
clist->ncaps = 0;
link_init(&clist->caps);
}
void cap_list_add(struct cap_list *clist, struct capability *cap)
{
list_add(&cap->list, &clist->caps);
clist->ncaps++;
}
/*
* Initializes kernel caplists, and sets up total of physical
* and virtual memory as single capabilities of the kernel.
* They will then get split into caps of different lengths
* during the traversal of container capabilities.
*/
void setup_kernel_container(struct kernel_container *kcont)
{
struct capability *physmem, *virtmem, *kernel_area;
/* Initialize kernel capability lists */
cap_list_init(&kcont->physmem_used);
cap_list_init(&kcont->physmem_free);
cap_list_init(&kcont->virtmem_used);
cap_list_init(&kcont->virtmem_free);
cap_list_init(&kcont->devmem_used);
cap_list_init(&kcont->devmem_free);
/* Set up total physical memory as single capability */
physmem = alloc_bootmem(sizeof(*physmem));
physmem->start = __pfn(PHYS_MEM_START);
physmem->end = __pfn(PHYS_MEM_END);
link_init(&physmem->list);
cap_list_add(&kcont->physmem_free, physmem);
/* Set up total virtual memory as single capability */
virtmem = alloc_bootmem(sizeof(*virtmem));
virtmem->start = __pfn(VIRT_MEM_START);
virtmem->end = __pfn(VIRT_MEM_END);
link_init(&virtmem->list);
cap_list_add(&kcont->virtmem_free, virtmem);
/* Set up kernel used area as a single capability */
kernel_area = alloc_bootmem(sizeof(*physmem));
kernel_area->start = __pfn(virt_to_phys(_start_kernel));
kernel_area->end = __pfn(virt_to_phys(_end_kernel));
link_init(&kernel_area->list);
list_add(&kcont->physmem_used, kernel_area);
/* Unmap kernel used area from free physical memory capabilities */
memcap_unmap(&kcont->physmem_free, kernel_area->start,
kernel_area->end);
/* TODO:
* Add all virtual memory areas used by the kernel
* e.g. kernel virtual area, syscall page, kip page,
* vectors page, timer, sysctl and uart device pages
*/
}
/*
* This splits a capability, splitter region must be in
* the *middle* of original capability
*/
int memcap_split(struct capability *cap, struct cap_list *cap_list,
const unsigned long start,
const unsigned long end)
{
struct capability *new;
/* Allocate a capability first */
new = alloc_bootmem(sizeof(*new));
/*
* Some sanity checks to show that splitter range does end up
* producing two smaller caps.
*/
BUG_ON(cap->start >= start || cap->end <= end);
/* Update new and original caps */
new->end = cap->end;
new->start = end;
cap->end = start;
new->access = cap->access;
/* Add new one next to original cap */
cap_list_add(new, cap_list);
return 0;
}
/* This shrinks the cap from *one* end only, either start or end */
int memcap_shrink(struct capability *cap, struct cap_list *cap_list,
const unsigned long start, const unsigned long end)
{
/* Shrink from the end */
if (cap->start < start) {
BUG_ON(start >= cap->end);
cap->end = start;
/* Shrink from the beginning */
} else if (cap->end > end) {
BUG_ON(end <= cap->start);
cap->start = end;
} else
BUG();
return 0;
}
int memcap_unmap_range(struct capability *cap,
struct cap_list *cap_list,
const unsigned long pfn_start,
const unsigned long pfn_end)
{
/* Split needed? */
if (cap->start < start && cap->end > end)
return memcap_split(cap, cap_list, start, end);
/* Shrink needed? */
else if (((cap->start >= start) && (cap->end > end))
|| ((cap->start < start) && (cap->end <= end)))
return memcap_shrink(cap, cap_list, start, end);
/* Destroy needed? */
else if ((cap->start >= start) && (cap->end <= end))
/* Simply unlink it */
list_remove(&cap->list);
else
BUG();
return 0;
}
/*
* Unmaps given memory range from the list of capabilities
* by either shrinking, splitting or destroying the
* intersecting capability. Similar to do_munmap()
*/
int memcap_unmap(struct cap_list *cap_list,
const unsigned long unmap_start,
const unsigned long unmap_end)
{
struct capability *cap, *n;
int err;
list_foreach_removable_struct(cap, n, &cap_list->caps, list) {
/* Check for intersection */
if (set_intersection(unmap_start, unmap_end,
cap->start, cap->end)) {
if ((err = memcap_unmap_range(cap, cap_list
unmap_start,
unmap_end))) {
return err;
}
/* Return 1 to indicate unmap occured */
return 1;
}
}
return 0
}
/*
* Do all system accounting for this capability info
* structure that belongs to a container, such as
* count its resource requirements, remove its portion
* from global kernel capabilities etc.
*/
int process_cap_info(struct cap_info *cap,
struct boot_resources *bootres,
struct kernel_container *kcont)
{
int ret;
switch (cap->type & CAP_RTYPE_MASK) {
case CAP_RTYPE_THREADPOOL:
bootres->nthreads += cap->size;
break;
case CAP_RTYPE_SPACEPOOL:
bootres->nspaces += cap->size;
break;
case CAP_RTYPE_MUTEXPOOL:
bootres->nmutex += cap->size;
break;
case CAP_RTYPE_VIRTMEM:
bootres->npmds +=
cap->size / PMD_MAP_SIZE;
if ((ret = memcap_unmap(&kcont->virtmem_free,
cap->start, cap->end))) {
if (ret < 0)
printk("FATAL: Insufficient boot memory "
"to split capability\n");
if (ret > 0)
printf("FATAL: Memory capability range "
"overlaps with another one. "
"start=0x%x, end=0x%x\n",
__pfn_to_addr(cap->start),
__pfn_to_addr(cap->end));
BUG();
}
break;
case CAP_RTYPE_PHYSMEM:
if ((ret = memcap_unmap(&kcont->virtmem_free,
cap->start, cap->end))) {
if (ret < 0)
printk("FATAL: Insufficient boot memory "
"to split capability\n");
if (ret > 0)
printf("FATAL: Memory capability range "
"overlaps with another one. "
"start=0x%x, end=0x%x\n",
__pfn_to_addr(cap->start),
__pfn_to_addr(cap->end));
BUG();
}
break;
}
return ret;
}
/*
* Migrate any boot allocations to their relevant caches.
*/
void migrate_boot_resources(struct boot_resources *bootres,
struct kernel_container *kcont)
{
/* Migrate boot page tables to new caches */
migrate_page_tables(kcont);
/* Migrate all boot-allocated capabilities */
migrate_boot_caps(kcont);
}
/* Delete all boot memory and add it to physical memory pool. */
int free_boot_memory(struct kernel_container *kcont,
struct boot_resources *bootres)
{
/* Trim kernel used memory memcap */
memcap_unmap(&kcont->physical_used, _bootmem_start, _bootmem_end);
/* Add it to unused physical memory */
memcap_map(&kcont->physical_unused, _bootmem_start, _bootmem_end);
}
struct mem_cache *init_resource_cache(struct boot_resources *bootres,
struct kernel_container *kcont)
{
struct capability *cap;
unsigned long bufsize;
/* In all unused physical memory regions */
list_foreach_struct(cap, &kcont->physical_unused, list) {
/* Get buffer size needed for cache */
bufsize = mem_cache_bufsize(__pfn_to_addr(cap->start),
PGD_SIZE, bootres->nspaces,
aligned);
/*
* Check if memcap region size is enough to cover
* resource allocation
*/
if (__pfn_to_addr(cap->end - cap->start) >= bufsize) {
unsigned long virtual =
phys_to_virt(__pfn_to_addr(cap->start));
/*
* Map the buffer as boot mapping if pmd caches
* are not initialized
*/
if (!kcont->pmd_cache) {
add_boot_mapping(__pfn_to_addr(cap->start),
virtual, bufsize,
MAP_SVC_RW_FLAGS);
} else {
add_mapping(__pfn_to_addr(cap->start),
virtual, bufsize,
MAP_SVC_RW_FLAGS);
}
/* Unmap area from memcap */
memcap_unmap_range(cap, &kcont->physical_unused,
cap->start, cap->start +
__pfn(page_align_up((bufsize))));
/* TODO: Manipulate memcaps for virtual range??? */
/* Initialize the cache */
return mem_cache_init(virtual, bufsize, PGD_SIZE, 1);
}
}
return 0;
}
void create_containers(struct boot_resources *bootres,
struct kernel_container *kcont)
{
}
void create_capabilities(struct boot_resources *bootres,
struct kernel_container *kcont)
{
}
/*
* Make sure to count boot pmds, and kernel capabilities
* created in boot memory.
*
* Also total capabilities in the system + number of
* capabilities containers are allowed to create dynamically.
*
* Count the extra pgd + space needed in case all containers quit
*/
void init_resource_allocators(struct boot_resources *bootres,
struct kernel_container *kcont)
{
struct mem_cache *cache;
/* Initialise PGD cache */
cache = init_resource_cache(bootres->nspaces,
PGD_SIZE, kcont, 1);
kcont->pgd_cache = cache;
/* Initialise PMD cache */
cache = init_resource_cache(bootres->npmds,
PMD_SIZE, kcont, 1);
cache->pmd_cache = cache;
/* Initialise struct address_space cache */
cache = init_resource_cache(bootres->nspaces,
sizeof(struct address_space),
kcont, 0);
cache->address_space_cache = cache;
/* Initialise ktcb cache */
cache = init_resource_cache(bootres->nthreads,
PAGE_SIZE, kcont, 1);
cache->ktcb_cache = cache;
/* Initialise umutex cache */
cache = init_resource_cache(bootres->numutex,
sizeof(struct mutex_queue),
kcont, 0);
cache->umutex_cache = cache;
/* TODO: Initialize ID cache */
/* # of capabilities are now constant, create capabilities cache */
/* Initialise capability cache */
cache = init_resource_cache(bootres->ncaps, /* FIXME: Count correctly */
sizeof(struct capability),
kcont, 0);
cache->cap_cache = cache;
/* Initialise container cache */
cache = init_resource_cache(bootres->ncont,
sizeof(struct container),
kcont, 0);
cache->cont_cache = cache;
/* Create system containers */
create_containers(bootres, kcont);
/* Create capabilities */
create_capabilities(bootres, kcont);
}
int init_boot_resources(struct boot_resources *bootres, struct kernel_container *kcont)
{
struct cap_info *cap;
struct pager_info *pgr;
struct container_info *cont;
setup_kernel_container(kcont);
/* Number of containers known at compile-time */
bootres->nconts = ncontainers;
/* Traverse all containers */
for (int i = 0; i < bootres->nconts; i++) {
/* Traverse all pagers */
for (int j = 0; j < container[i]->npagers; j++) {
int ncaps = container[i].pager[j].ncaps;
/* Count all capabilities */
bootres->ncaps += ncaps;
/* Count all resources */
for (int k = 0; k < ncaps; k++) {
cap = container[i].pager[j].caps[k];
proces_cap_info(cap);
}
}
}
/* TODO: Count all ids needed to represent all */
return 0;
}
/*
* FIXME: Add error handling
*/
int init_system_resources(struct kernel_container *kcont)
{
struct boot_resources bootres;
init_boot_resources(&bootres, &kcont);
init_resource_allocators(&bootres, &kcont);
free_boot_memory(bootres, kcont);
}

View File

@@ -15,16 +15,6 @@
#include <l4/api/kip.h>
#include <l4/lib/idpool.h>
struct address_space_list {
struct link list;
/* Lock for list add/removal */
struct spinlock list_lock;
/* Used when delete/creating spaces */
struct mutex ref_lock;
int count;
};
static struct address_space_list address_space_list;

View File

@@ -19,12 +19,6 @@
struct id_pool *thread_id_pool;
struct id_pool *space_id_pool;
/* Hash table for all existing tasks */
struct ktcb_list {
struct link list;
struct spinlock list_lock;
int count;
};
static struct ktcb_list ktcb_list;

View File

@@ -14,6 +14,7 @@
#include <l4/generic/space.h>
#include <l4/generic/tcb.h>
#include <l4/generic/bootmem.h>
#include <l4/generic/resource.h>
#include INC_ARCH(linker.h)
#include INC_ARCH(asm.h)
#include INC_ARCH(bootdesc.h)

View File

@@ -90,12 +90,50 @@ out:
return err;
}
struct mem_cache *mem_cache_init(void *start,
/*
* Given a buffer start address, structure size, number of
* structs and alignment requirements, determines how much
* memory is needed from that starting address
*/
int mem_cache_bufsize(void *start, int struct_size, int nstructs, int aligned)
{
unsigned long start_address = (unsigned long)start;
int total_bytes, bwords;
/* Word alignment requirement */
start_address = align_up(start_address, sizeof(int));
/* Total bytes to contain structures */
total_bytes = struct_size * nstructs;
/* Total words to contain bitmap */
bwords = nstructs >> 5;
/* An extra word if not a multiple of one word's bits */
if (nstructs & 0x1F)
bwords++;
/* Total bitmap bytes */
bitmap_size = bwords * sizeof(int);
/* Current would-be start address */
start_address += bitmap_size + total_bytes + sizeof(struct mem_cache);
/* Check alignment requirement */
if (aligned)
start_address += align_up(start_address, struct_size);
return start_address - (unsigned long)start;
}
struct mem_cache *mem_cache_init(void *bufstart,
int cache_size,
int struct_size,
unsigned int aligned)
{
struct mem_cache *cache = start;
/* Align to nearest word boundary */
void *start;
struct mem_cache *cache;
unsigned int area_start;
unsigned int *bitmap;
int bwords_in_structs;
@@ -103,6 +141,10 @@ struct mem_cache *mem_cache_init(void *start,
int total;
int bsize;
start = (void *)align_up(bufstart, sizeof(int));
cache_size -= (int)start - (int)bufstart;
mem_cache = start;
if ((struct_size < 0) || (cache_size < 0) ||
((unsigned long)start == ~(0))) {
printk("Invalid parameters.\n");