It is not very straightforward to reach a capabilities list. We
now use a single function to find out a capability by its id and
its list, since the two are used frequently together (i.e. cap
removal and destruction)
Implemented a protocol between a client and its pager to
request and get a capability to ipc to another client of the pager.
Pager first ensures the request is valid from its client.
It then tries to use a greater capability that it possesses, to
produce a new capability that the client requested. Once the kernel
validates the correct one and replicates/reduces it to client's
need, it grants it to the client.
Thread ids now contain their container ids in the top 2 nibbles.
Threads on other containers can be addressed by changing those
two nibbles. The addressing of inter-container threads are
subject to capabilities.
VIRTMEM and PHYSMEM are theoretically separate resources to be
protected than a MAP resource, which is meant to protect the syscall
privileges.
In practice MAP is always used together with a VIRTMEM and a PHYSMEM
resource, therefore reach VIRTMEM/PHYSMEM resource is now merged with
the MAP capability, combining the micro-permission bits.
Capability checking for thread_control, exregs, mutex, cap_control,
ipc, and map system calls.
The visualised model is implemented in code that compiles, but
actual functionality hasn't been tested.
Need to add:
- Dynamic assignment of initial resources matching with what's
defined in the configuration.
- A paged-thread-group, since that would be a logical group of
seperation from a capability point-of-view.
- Resource ids for various tasks. E.g.
- Memory capabilities don't have target resources.
- Thread capability assumes current container for THREAD_CREATE.
- Mutex syscall assumes current thread (this one may not need
any changing)
- cap_control syscall assumes current thread. It may happen to
be that another thread's capability list is manipulated.
Last but not least:
- A simple and easy-to-use userspace library for dynamic expansion
of resource domains as new resources are created such as threads.
Pagers can now share their own private capabilities with their
paged children, or their siblings with whom they have a common pager
ancestor.
Added flags CAP_SHARE_CHILD and CAP_SHARE_SIBLINGS for that.
Notion of pager hierarchy introduced using the existing but unused
pagerid field.
Thread creation now has two more flags TC_AS_PAGER and TC_SHARE_PAGER.
The former sets creator as pager, the latter sets creator's pager as pager.
Thread group capability sharing now correctly carries shared capabilities
to the thread group leader's tgr_cap_list list, and this list is checked
during capability checking.
Capabilities will be shared among collection of threads. A pager
will have a right to share its own capabilities with its space,
its thread group and its container.
Currently sharing is possible with only all of the caps. Next,
it will be support for cap splitting, granting, and partial sharing
and granting.
Status:
- Capability initialization is a bit hacky with dummy current etc.
- All container caps belong to the pager
- Tasks refer to their pager's capabilities for mutex allocation - Hacky.
- Kernel container keeps quantitative caps and memory caps in separate lists - Hacky.
These will all evolve and get fixed.