Previously virt_to_phys/phys_to_virt macros were used such that they did a
blind offset translation for creating a pager internal virtual address for
user mappings.
This is now changed such that a properly bookkeeped virtual address pool is
used which will avoid any clashes on the virtual space.
- removed (%d) Sleeping print from contended kernel mutexes.
- removed (%d) Waiting print from WAIT_EVENT used by the pager for suspending tasks.
- removed prints from the mutex_control syscall and user mutex test.
- Fixed a wrong instruction in mutex.S user library
- Added support for blocking lock/unlock
- Divided waiting into wait_on_prepare and wait_on_prepared_wait
so that mutex_control lock is released after getting in the waitqueue.
- Declaring waitqueue on the stack should be done outside wait_on_prepare
Issues:
- Tests can be simplified for atomic data access instead of producer/consumer.
- kmalloc variable sized memory caches are not freed properly. Currently only the
last slot can be freed, occupied correctly. it should be done in any slot, i.e.
1, 2, 3, 4 instead of just 5.
- Need to add a mutex to kmalloc.
- Compiles and Codezero runs as normal without touching mutex implementation
- Mutex implementation needs testing.
The mutex control syscall allows userspace programs to declare any virtual
address as a mutex lock and ask for help from the kernel syscall
for resolving locking contentions.
- Proper releasing of user pmd and pgds when a space is not used.
- Proper releasing of task, space ids.
- At occasions a starting thread gets bogus SPSR, this needs investigating.
- At a very rare occasion arch_setup_new_thread() had a kernel data abort during
register copying from one task to another. Needs investigating.
- Fixed potential concurrency bugs due to preemption being enabled.
- Introduced a new address space structure to better account for
address spaces and page tables.
- Currently executes fine up to forking. Will investigate.
- KIP's pointer to UTCB seems to work with existing l4lib ipc functions.
- Works up to clone()
- In clone we mmap() the same UTCB on each new thread - excessive.
- Generally during page fault handling, cloned threads may fault on the same page
multiple times even though a single handling would be enough for all of them.
Need to detect and handle this.
Added setting of utcb address to l4_thread_control.
This is going to be moved to exchange_registers() since we need to pass
both the utcb physical and virtual address and exregs fits such context
modification better than thread_control.
sched_resume_async() used to forbit current tasks to wake up themselves
since it seems tasks can never be runnable to wake themselves up. However
there's a special case in the scheduler where a task that is about to sleep
may notice it has a pending event and wake itself up asynchronously. Since
all sleeping preparation has already been done and scheduler code is a safe
zone, it is safe to undo it all and resume about-to-sleep task in the scheduler.
We may want to put a BKPT in the pager's suspend routine if it waits for the
sleeping task to resume itself, to see if such a wait is successful. It rarely happens.
- Scheduler was increasing total priorities only when resuming tasks had 0 ticks.
This caused forked tasks that have parent's share of ticks to finish their jobs,
if these tasks exited quick enough, they would cause the total priorities to deduce
without increasing it in the first place. This is now fixed.
- Also strengthened rq locking, now both queues are locked before touching any.
- Also removed task suspends in irq, this would cause a race condition on ticks and
runqueues, since neither is protected against irqs.
- Implemented reasonable way to suspend task.
- A task that has a pending suspend would be interrupted
from its sleep via the suspender task.
- If suspend was raised and right after, task became about to sleep,
then scheduler wakes it up.
- If suspend was raised when task was in user mode, then an irq suspends it.
- Also suspends are checked at the end of a syscall so that if suspend was
raised because of a syscall from the task, the task is suspended before it
goes back to user mode.
- This mechanism is very similar to signals, and it may lead as a base for
implementing signal handling.
- Implemented common vma dropping for shadow vm object dropping and task exiting.
- Updated sleeping paths such that a task is atomically put into
a runqueue and made RUNNABLE, or removed from a runqueue and made SLEEPING.
- Modified vma dropping sources to handle both copy_on_write() and exit() cases
in a common function.
- Added the first infrastructure to have a pager to suspend a task and wait for
suspend completion from the scheduler.