Added Flesch-Kincaid readability scores; added readme; final tidy

This commit is contained in:
Duncan Lock
2013-06-23 21:19:39 -07:00
parent 546d003682
commit 69f7b1fb0a
3 changed files with 129 additions and 10 deletions

View File

@@ -3,11 +3,13 @@
Post Statistics
========================
This plugin calculates various Statistics about a post and stores them in an article.stats disctionary:
This plugin calculates various statistics about a post and stores them in an article.stats dictionary:
wc: how many words
read_mins: how many minutes to read this article, based on 250 wpm (http://en.wikipedia.org/wiki/Words_per_minute#Reading_and_comprehension)
word_counts: frquency count of all the words in the article; can be used for tag/word clouds/
fi: Flesch-kincaid Index/ Reading Ease
fk: Flesch-kincaid Grade Level
"""
@@ -16,6 +18,8 @@ from bs4 import BeautifulSoup
import re
from collections import Counter
from .readability import *
def calculate_stats(instance):
@@ -26,18 +30,22 @@ def calculate_stats(instance):
# How fast do average people read?
WPM = 250
# Pre-process the text to remove entities
entities = r'\&\#?.+?;'
content = content.replace(' ', ' ')
content = re.sub(entities, '', content)
# Pre-process the text to remove punctuation
drop = u'.,?!@#$%^&*()_+-=\|/[]{}`~:;\'\"‘’—…“”'
content = content.translate(dict((ord(c), u'') for c in drop))
# Use BeautifulSoup to get readable/visible text
raw_text = BeautifulSoup(content).getText()
# Process the text to remove entities
entities = r'\&\#?.+?;'
raw_text = raw_text.replace(' ', ' ')
raw_text = re.sub(entities, '', raw_text)
# Flesch-kincaid readbility stats counts sentances,
# so save before removing punctuation
tmp = raw_text
# Process the text to remove punctuation
drop = u'.,?!@#$%^&*()_+-=\|/[]{}`~:;\'\"‘’—…“”'
raw_text = raw_text.translate(dict((ord(c), u'') for c in drop))
# Count the words in the text
words = raw_text.lower().split()
word_count = Counter(words)
@@ -45,11 +53,17 @@ def calculate_stats(instance):
# Return the stats
stats['word_counts'] = word_count
stats['wc'] = sum(word_count.values())
# Calulate how long it'll take to read, rounding up
stats['read_mins'] = (stats['wc'] + WPM - 1) // WPM
if stats['read_mins'] == 0:
stats['read_mins'] = 1
# Calculate Flesch-kincaid readbility stats
readability_stats = stcs, words, sbls = text_stats(tmp, stats['wc'])
stats['fi'] = "{:.2f}".format(flesch_index(readability_stats))
stats['fk'] = "{:.2f}".format(flesch_kincaid_level(readability_stats))
instance.stats = stats

56
post_stats/readability.py Normal file
View File

@@ -0,0 +1,56 @@
# -*- coding: utf-8 -*-
# Adadpted from here: http://acdx.net/calculating-the-flesch-kincaid-level-in-python/
# See here for details: http://en.wikipedia.org/wiki/Flesch%E2%80%93Kincaid_readability_test
from __future__ import division
import re
def mean(seq):
return sum(seq) / len(seq)
def syllables(word):
if len(word) <= 3:
return 1
word = re.sub(r"(es|ed|(?<!l)e)$", "", word)
return len(re.findall(r"[aeiouy]+", word))
def normalize(text):
terminators = ".!?:;"
term = re.escape(terminators)
text = re.sub(r"[^%s\sA-Za-z]+" % term, "", text)
text = re.sub(r"\s*([%s]+\s*)+" % term, ". ", text)
return re.sub(r"\s+", " ", text)
def text_stats(text, wc):
text = normalize(text)
stcs = [s.split(" ") for s in text.split(". ")]
stcs = filter(lambda s: len(s) >= 2, stcs)
if wc:
words = wc
else:
words = sum(len(s) for s in stcs)
sbls = sum(syllables(w) for s in stcs for w in s)
return len(stcs), words, sbls
def flesch_index(stats):
stcs, words, sbls = stats
if stcs == 0 or words == 0:
return 0
return 206.835 - 1.015 * (words / stcs) - 84.6 * (sbls / words)
def flesch_kincaid_level(stats):
stcs, words, sbls = stats
if stcs == 0 or words == 0:
return 0
return 0.39 * (words / stcs) + 11.8 * (sbls / words) - 15.59

49
post_stats/readme.rst Normal file
View File

@@ -0,0 +1,49 @@
Post Statistics
==================
A Pelican plugin to calculate various statistics about a post and store them in an article.stats dictionary:
- ``wc``: how many words
- ``read_mins``: how many minutes to read this article, based on 250 wpm (http://en.wikipedia.org/wiki/Words_per_minute#Reading_and_comprehension)
- ``word_counts``: frquency count of all the words in the article; can be used for tag/word clouds/
- ``fi``: Flesch-kincaid Index/ Reading Ease (see: http://en.wikipedia.org/wiki/Flesch%E2%80%93Kincaid_readability_tests)
- ``fk``: Flesch-kincaid Grade Level
Example:
.. code-block:: python
{
'wc': 2760,
'fi': '65.94',
'fk': '7.65',
'word_counts': Counter({u'to': 98, u'a': 90, u'the': 83, u'of': 50, ...}),
'read_mins': 12
}
This allows you to output these values in your templates, like this, for example:
.. code-block:: html+jinja
<p title="~{{ article.stats['wc'] }} words">~{{ article.stats['read_mins'] }} min read</p>
<ul>
<li>Flesch-kincaid Index/ Reading Ease: {{ article.stats['fi'] }}</li>
<li>Flesch-kincaid Grade Level: {{ article.stats['fk'] }}</li>
</ul>
The ``word_counts`` variable is a Counter dictionary and looks like this, with each unique word and it's frequency:
.. code-block:: python
Counter({u'to': 98, u'a': 90, u'the': 83, u'of': 50, u'karma': 50, .....
and could be used to create a tag/word cloud for a post.
Requirements
============
`post_stats` requires BeautifulSoup.
.. code-block:: console
$ pip install beautifulsoup4