Files
retrobsd/sys/kernel/rdisk.c
2014-05-10 14:05:35 +01:00

705 lines
15 KiB
C

#include "param.h"
#include "systm.h"
#include "buf.h"
#include "errno.h"
#include "dk.h"
#include "debug.h"
#include "ioctl.h"
#include "rdisk.h"
#include "conf.h"
#define Q2(X) #X
#define QUOTE(X) Q2((X))
extern struct buf *getnewbuf();
/*
* Variable naming conventions
*
* root - this is the number of the device entry in the disks[] array
* part - the minor number of a device entry, which represents the partition
* number, or 0 for the whole disk
* unit - the physical device number of a specific device type. Equates
* to the .unit entry in the diskentry structure for a device.
*/
extern int card_read(int unit, unsigned int offset, char *data, unsigned int bcount);
extern int card_write(int unit, unsigned int offset, char *data, unsigned int bcount);
extern int sdinit(int unit, int flag);
extern int sddeinit(int unit);
extern void sd_preinit(int unit);
extern int sdopen(int unit, int flags, int mode);
extern int sdsize(int unit);
#ifdef SRAMC_ENABLED
#include <rd_sramc.h>
#endif
#ifdef SDRAMP_ENABLED
#include <rd_sdramp.h>
#endif
#ifdef FLASH_ENABLED
#include <rd_flash.h>
#endif
#ifdef MRAMS_ENABLED
#include <rd_mrams.h>
#endif
int no_deinit(int u) { return 0; }
void no_preinit(int u) { return; }
int no_init(int u, int v) { return 0; }
int no_open(int u, int a, int b) { return 0; }
int no_size(int u) { return 0; }
int no_read(int u, unsigned int o, char *dat, unsigned int bs) { return 0; }
int no_write(int u, unsigned int o, char *dat, unsigned int bs) { return 0; }
const struct devspec rd0devs[] = { { 0, "rd0" }, { 1, "rd0a" }, { 2, "rd0b" }, { 3, "rd0c" }, { 4, "rd0d" }, { 0, 0 } };
const struct devspec rd1devs[] = { { 0, "rd1" }, { 1, "rd1a" }, { 2, "rd1b" }, { 3, "rd1c" }, { 4, "rd1d" }, { 0, 0 } };
const struct devspec rd2devs[] = { { 0, "rd2" }, { 1, "rd2a" }, { 2, "rd2b" }, { 3, "rd2c" }, { 4, "rd2d" }, { 0, 0 } };
const struct devspec rd3devs[] = { { 0, "rd3" }, { 1, "rd3a" }, { 2, "rd3b" }, { 3, "rd3c" }, { 4, "rd3d" }, { 0, 0 } };
// This is the list of physical storage devices on the system.
// Uncomment the ones you want below. Maximum 4 at the moment.
// They number, in the order of this list, rd0, rd1, rd2 and rd3.
const struct diskentry disks[] = {
{sd_preinit, sdinit, sddeinit, sdopen, sdsize, card_read, card_write, 0, RD_DEFAULT},
#ifdef SD1_PORT
{sd_preinit, sdinit, sddeinit, sdopen, sdsize, card_read, card_write, 1, RD_DEFAULT},
#endif
#ifdef SRAMC0_ENABLED
{sramc_init, no_init, no_deinit, sramc_open, sramc_size, sramc_read, sramc_write, 0, RD_PREPART},
#endif
#ifdef SRAMC1_ENABLED
{sramc_init, no_init, no_deinit, sramc_open, sramc_size, sramc_read, sramc_write, 1, RD_PREPART},
#endif
#ifdef SDRAMP_ENABLED
{sdramp_preinit, no_init, no_deinit, sdramp_open, sdramp_size, sdramp_read, sdramp_write, 0, RD_PREPART},
#endif
#ifdef FLASH_ENABLED
{flash_init, no_init, no_deinit, flash_open, flash_size, flash_read, flash_write, 0, RD_READONLY},
#endif
#ifdef MRAMS_ENABLED
{mrams_preinit, no_init, no_deinit, no_open, mrams_size, mrams_read, mrams_write, 0, RD_DEFAULT},
#endif
};
#define NRDSK sizeof(disks)/sizeof(struct diskentry)
#define MAXDEV NRDSK-1
#ifdef UCB_METER
int rddk = -1;
#endif
struct diskflags dflags[NRDSK];
static inline struct buf *read_mbr(int root)
{
if(root>MAXDEV) return NULL;
int rv;
int unit = disks[root].unit;
struct buf *bp = getnewbuf();
DEBUG8("rd%d: read mbr from device %d\n",root,unit);
rv = disks[root].read(unit,0,bp->b_addr,512);
if(rv==0)
{
DEBUG8("rd%d: mbr read FAIL\n",root);
brelse(buf);
return NULL;
}
DEBUG8("rd%d: mbr read OK\n",root);
return bp;
}
static inline int init_device(int root,int flag)
{
int i;
int e;
if(root>MAXDEV) return ENODEV;
struct buf *bp;
struct mbr *mbr;
int unit = disks[root].unit;
e = disks[root].init(unit,flag);
if(e!=0)
return e;
DEBUG8("rd%d: about to read mbr\n",root);
bp = read_mbr(root);
if(!bp)
return ENXIO;
DEBUG8("rd%d: mbr read\n",root);
mbr = (struct mbr *)bp->b_addr;
DEBUG5("rd%d: partition types: %02X %02X %02X %02X\n",root,
mbr->partitions[0].type,
mbr->partitions[1].type,
mbr->partitions[2].type,
mbr->partitions[3].type
);
DEBUG8("rd%d: partition 1 start: %p length: %p\n",root,
mbr->partitions[0].lbastart, mbr->partitions[0].lbalength
);
DEBUG8("rd%d: partition 2 start: %p length: %p\n",root,
mbr->partitions[1].lbastart, mbr->partitions[1].lbalength
);
DEBUG8("rd%d: partition 3 start: %p length: %p\n",root,
mbr->partitions[2].lbastart, mbr->partitions[2].lbalength
);
DEBUG8("rd%d: partition 4 start: %p length: %p\n",root,
mbr->partitions[3].lbastart, mbr->partitions[3].lbalength
);
for(i=0; i<4; i++)
{
dflags[root].start[i] = mbr->partitions[i].lbastart>>1;
dflags[root].len[i] = mbr->partitions[i].lbalength>>1;
}
dflags[root].blocks = disks[root].size(unit);
brelse(bp);
return 0;
}
static inline int deinit_device(int root)
{
if(root>MAXDEV) return ENODEV;
return disks[root].deinit(disks[root].unit);
}
static inline int open_device(int root, int flag)
{
int e;
if(root>MAXDEV) return ENODEV;
DEBUG3("rd%d: opening\n",root);
if(dflags[root].opens==0)
{
DEBUG3("rd%d: init device\n",root);
e = init_device(root, flag);
if(e!=0)
return e;
}
dflags[root].opens++;
DEBUG3("rd%d: opened: %d\n",root,dflags[root].opens);
return 0;
}
static inline int close_device(int root)
{
if(root>MAXDEV) return ENODEV;
if(dflags[root].opens==0)
return ENXIO;
dflags[root].opens--;
if(dflags[root].opens==0)
{
deinit_device(root);
}
DEBUG3("rd%d: closed: %d\n",root,dflags[root].opens);
return 0;
}
int rdopen(dev_t dev, int mode, int flag)
{
int e;
int root = major(dev);
if(root>MAXDEV) return ENODEV;
int unit = disks[root].unit;
e=open_device(root,flag);
if(e!=0)
return e;
e=disks[root].open(unit,mode,flag);
if(e!=0)
return e;
return 0;
}
int rdclose(dev_t dev, int mode, int flag)
{
int root = major(dev);
if(root>MAXDEV) return ENODEV;
close_device(root);
return 0;
}
daddr_t rdsize(dev_t dev)
{
int root = major(dev);
if(root>MAXDEV) return ENODEV;
int part = minor(dev);
int unit = disks[root].unit;
unsigned int blocks;
if(part==0)
{
return disks[root].size(unit);
} else {
if(rdopen(dev,0,S_SILENT)!=0)
return 0;
blocks=dflags[root].len[part-1];
rdclose(dev,0,0);
DEBUG3("rd%d%c: get partition size: %d\n",root,part+'a'-1,blocks);
return blocks;
}
}
void rdstrategy(register struct buf *bp)
{
int root = major(bp->b_dev);
static int mutex = 0;
if(root>MAXDEV) return;
mutex++;
if(mutex>1)
{
led_control(LED_SWAP,1);
} else {
led_control(LED_DISK,0);
}
int part = minor(bp->b_dev);
int unit = disks[root].unit;
int offset=0;
int s;
if(part>0)
offset = dflags[root].start[part-1];
offset += (bp->b_blkno);
if (bp->b_dev == swapdev) {
led_control(LED_SWAP,1);
} else {
led_control(LED_DISK,1);
}
s = splbio();
#ifdef UCB_METER
if (rddk >= 0) {
dk_busy |= 1 << (rddk + root);
dk_xfer[rddk + root]++;
dk_bytes[rddk + root] += bp->b_bcount;
}
#endif
if (bp->b_flags & B_READ) {
disks[root].read(unit, offset, bp->b_addr, bp->b_bcount);
} else {
if(!(disks[root].settings & RD_READONLY))
disks[root].write(unit, offset, bp->b_addr, bp->b_bcount);
}
biodone(bp);
if (bp->b_dev == swapdev) {
led_control(LED_SWAP,0);
} else {
led_control(LED_DISK,0);
}
splx(s);
mutex--;
}
void update_mbr(int unit)
{
}
int rdioctl (dev_t dev, register u_int cmd, caddr_t addr, int flag)
{
int *val;
val = (int *)addr;
if(cmd == RDGETMEDIASIZE)
{
*val = rdsize(dev);
}
if(cmd == RDREINIT)
{
bflush(major(dev));
init_device(major(dev),S_SILENT);
}
return 0;
}
void rdisk_init()
{
int i;
//printf("Prepartition Schema: %s\n",prepartition_schema);
#ifdef UCB_METER
dk_alloc(&rddk,NRDSK,"rd");
#endif
for(i=0; i<NRDSK; i++)
{
disks[i].pre_init(disks[i].unit);
if(disks[i].settings & RD_PREPART)
{
}
}
}
void rdisk_list_partitions(unsigned char type)
{
int i,j;
int e;
struct buf *bp;
struct mbr *mbr;
for(i=0; i<NRDSK; i++)
{
e = init_device(i,S_SILENT);
if(e!=0)
continue;
printf("Disk: rd%d: %d KB\n",i,rdsize(makedev(i,0)));
bp = read_mbr(i);
if(!bp)
continue;
mbr = (struct mbr *)bp->b_addr;
for(j=1; j<5; j++)
{
if(mbr->partitions[j-1].type==type)
{
printf(" rd%d%c: %d KB\n",i,'a'+j-1,rdsize(makedev(i,j)));
}
}
brelse(bp);
}
}
int rdisk_num_disks()
{
return NRDSK;
}
dev_t get_boot_device()
{
// If a root device has been specified, then we can short cut all this and just
// use that device.
#ifdef ROOT
return ROOT;
#else
dev_t bd = -1;
int i,j,e;
struct buf *bp;
struct mbr *mbr;
for(i=0; i<NRDSK; i++)
{
e = rdopen(makedev(i,0),0,S_SILENT);
if(e==0)
{
bp = read_mbr(i);
if(bp)
{
mbr = (struct mbr *)bp->b_addr;
for(j=0; j<4; j++)
{
if(mbr->partitions[j].type==RDISK_FS)
{
if(mbr->partitions[j].status & P_ACTIVE)
{
brelse(bp);
rdclose(makedev(i,0),0,0);
return makedev(i,j+1);
}
}
}
brelse(bp);
}
rdclose(makedev(i,0),0,0);
}
}
return bd;
#endif
}
dev_t get_swap_device()
{
// If a swap device has been specified, then we can short cut all this and just
// use that device.
#ifdef SWAP
return SWAP;
#else
dev_t bd = -1;
int i,j,e;
unsigned int max_size = 0;
struct buf *bp;
struct mbr *mbr;
// First we look for the first active swap device
for(i=0; i<NRDSK; i++)
{
e = rdopen(makedev(i,0),0,S_SILENT);
if(e==0)
{
bp = read_mbr(i);
if(bp)
{
mbr = (struct mbr *)bp->b_addr;
for(j=0; j<4; j++)
{
if(mbr->partitions[j].type==RDISK_SWAP)
{
// If this partition is the biggest so far
// then store it. We'll use this if
// there is no active partition.
if(mbr->partitions[j].lbalength>max_size)
{
max_size = mbr->partitions[j].lbalength;
bd = makedev(i,j+1);
}
// If it is active, then use it.
if(mbr->partitions[j].status & P_ACTIVE)
{
brelse(bp);
rdclose(makedev(i,0),0,0);
return makedev(i,j+1);
}
}
}
brelse(bp);
}
rdclose(makedev(i,0),0,0);
}
}
// There is no active partition, so we'll use the biggest one we found.
return bd;
#endif
}
unsigned char partition_type(dev_t dev)
{
struct buf *bp;
struct mbr *mbr;
unsigned char pt;
if(minor(dev)<1 || minor(dev)>4)
return 0;
if(rdopen(dev,0,S_SILENT)==0)
{
bp = read_mbr(major(dev));
rdclose(dev,0,0);
if(!bp)
{
brelse(bp);
return 0;
}
mbr = (struct mbr *)bp->b_addr;
pt = mbr->partitions[minor(dev)-1].type;
brelse(bp);
return pt;
}
return 0;
}
int atoi(char *s)
{
int i = 0;
char *q;
for(q=s; *q; q++)
{
if(*q < '0' || *q > '9')
{
return i;
}
i = i * 10;
i += *q - '0';
}
return i;
}
int strcmp(char *s1, char *s2)
{
char *p1,*p2;
p1 = s1;
p2 = s2;
while(*p1 && *p2)
{
if(*p1 < *p2) return -1;
if(*p1 > *p2) return 1;
p1++;
p2++;
}
if(*p1 < *p2) return -1;
if(*p1 > *p2) return 1;
return 0;
}
/*
Prepartition format:
mrams0:fs@1024,swap@2048,fs@1022 sdramp0:...
*/
struct buf *prepartition_device(char *devname)
{
#ifndef PARTITION
char *prepartition_schema = "";
#else
char *prepartition_schema = (char *)QUOTE(PARTITION);
#endif
char *p,*q;
struct buf *bp;
struct mbr *mbr;
int pnum = 0;
int start = 2;
char dev[9];
int size;
int devsize = 0;
char *ptdata = NULL;
char *ppstart = prepartition_schema;
while (*ppstart == '(') {
ppstart++;
}
printf("PP Schema: %s\n",prepartition_schema);
printf("Attempting partition of %s...\n", devname);
// Let's get the devname into the "dev" variable and append a ":" on the end of it.
q = dev;
for (p=devname; *p; p++) {
*q = *p;
q++;
devsize++;
}
*q++ = ':';
*q = 0;
devsize++;
printf("%%DBG-PPT: Device Name: %s (%d chars)\n", dev, devsize);
// Now we want to scan the string to find the device name. It has to either
// be at the start of the string or be prefixed by a ' '
for (p = ppstart; *(p+devsize); p++) {
if (strncmp(p, dev, devsize) == 0) {
printf("%%DBG-PPT: Device found.\n");
ptdata = p + devsize;
break;
}
}
if (ptdata == NULL) {
printf("%%DBG-PPT: Device not in partition schema\n");
return NULL;
}
// We must have a pointer to the start of the partition data in ptdata now.
// Now to scan through it and get the data into the structures.
printf("%%DBG-PPT: We now like this bit: %s\n", ptdata);
bp = getnewbuf();
if(!bp) {
printf("%%DBG-PPT: Unable to allocate buffer!\n");
return NULL;
}
mbr = (struct mbr *)bp->b_addr;
// Ok, let's scan through the data one character at a time until we hit either a
// space or a close-bracket (indicating the end of the data).
p = ptdata;
pnum = 0;
while ((*p != ' ') && (*p != ')')) {
// First let's look to see if we have a valid partition type - it's 2 characters
// followed by an '@'.
printf("%%DBG-PPT: Looking at: %s\n", p);
// Active swap space
if (strncmp(p, "sa@", 3) == 0) {
mbr->partitions[pnum].type=RDISK_SWAP;
mbr->partitions[pnum].status = 0x80;
} else
// Inactive swap space
if (strncmp(p, "sw@", 3) == 0) {
mbr->partitions[pnum].type=RDISK_SWAP;
} else
// General UFS filesystem
if (strncmp(p, "fs@", 3) == 0) {
mbr->partitions[pnum].type=RDISK_FS;
} else {
printf("%%DBG-PPT: Error parsing partition data: %s\n", p);
brelse(bp);
return NULL;
}
p+=3;
size = 0;
while ((*p >= '0') && (*p <= '9')) {
size *= 10;
size += *p - '0';
p++;
}
mbr->partitions[pnum].lbastart = start;
mbr->partitions[pnum].lbalength = size << 1;
printf("%%DBG-PPT: Added partition %d type %d size %d at offset %d\n",
pnum,
mbr->partitions[pnum].type,
mbr->partitions[pnum].lbalength,
mbr->partitions[pnum].lbastart
);
start += (size << 1);
pnum++;
if (*p == ',') {
p++;
}
}
if(pnum > 0)
{
mbr->bootsig = 0xAA55;
mbr->biosdrive = 0x80;
mbr->sig = 'R'<<24 | 'T'<<16 | 'E'<<8 | 'R';
return bp;
}
brelse(bp);
return NULL;
}