- removed (%d) Sleeping print from contended kernel mutexes.
- removed (%d) Waiting print from WAIT_EVENT used by the pager for suspending tasks.
- removed prints from the mutex_control syscall and user mutex test.
- Fixed a wrong instruction in mutex.S user library
- Added support for blocking lock/unlock
- Divided waiting into wait_on_prepare and wait_on_prepared_wait
so that mutex_control lock is released after getting in the waitqueue.
- Declaring waitqueue on the stack should be done outside wait_on_prepare
Issues:
- Tests can be simplified for atomic data access instead of producer/consumer.
- kmalloc variable sized memory caches are not freed properly. Currently only the
last slot can be freed, occupied correctly. it should be done in any slot, i.e.
1, 2, 3, 4 instead of just 5.
- Need to add a mutex to kmalloc.
- Mutex test added. Forked tasks demonstrate produce/consumer using a
shared mmap'ed page.
- Added l4lib assembler syscall
- Added forgotten SWI to mutex control offset in syscall page.
- Added mutex head initialization
- Contended child successfully sleeps in a waitqueue.
Issues:
- Somehow the child's produced page buffer is altered at about [4020] offset.
Parent fails to validate buffer therefore.
- Need to add syncing to test so that parent does not unlock and lock again
before child has a chance to lock buffer and produce.
- Compiles and Codezero runs as normal without touching mutex implementation
- Mutex implementation needs testing.
The mutex control syscall allows userspace programs to declare any virtual
address as a mutex lock and ask for help from the kernel syscall
for resolving locking contentions.
Previously during ipc copy, only the currently active task flags were
checked. This means the flags of whoever doing the actual copy was used
in the ipc. Now flags are stored in the ktcb and checked by the copy routine.
Current use of the flags is to determine short/full/extended ipc.
Benefits & Facts:
- Messages up to 2 kilobytes may be sent.
- Both parties may use non-disjoint user buffers. E.g. any userspace address.
- Userspace buffers can page fault.
- Page faults punish timeslice of only the faulting thread.
- Any number of extended ipcs can take place at any one time, since
only ktcbs of ipc parties are engaged. No global buffer is used.
- This also provides smp-safety benefit.
Disadvantages:
- There is triple copying penalty. This has to be done:
- Sender buffer to sender ktcb
- Sender ktcb to receiver ktcb
- Receiver ktcb to receiver buffer.
This is due to the fact that buffers can be on non-disjoint userspace addresses.
If you want to avoid disadvantages and lose some of the benefits,
(e.g. address freedom, shorter copy size) use FULL IPC.
- Added a full ipc send/recv test
- Removed non-zero value checking in r2 for ipc that was there
to catch inadvertent full ipc calls.
- Added correct hanlding for read/write mrs for current status of utcb.
TODO:
- Add mapping of every utcb to every task for privileged access so that
the kernel can access every utcb without switching spaces.
- Removal of same mappings
- Upon thread creation need to copy page tables accordingly i.e.
each task will have its own utcb mapped with USER access, but every
other utcb as kernel access only. Need to handle this case upon page
table copying.
- Added ARM register ipc usage explanation to glue/arm/message.h
- In the current design, the unused r2 register is a system register
that kernel checks for ipc flags such as:
- IPC type: e.g. full or extended.
- In extended IPC, MR index containing message buffer ptr.
- In extended IPC, message size
- Proper releasing of user pmd and pgds when a space is not used.
- Proper releasing of task, space ids.
- At occasions a starting thread gets bogus SPSR, this needs investigating.
- At a very rare occasion arch_setup_new_thread() had a kernel data abort during
register copying from one task to another. Needs investigating.
- Fixed potential concurrency bugs due to preemption being enabled.
- Introduced a new address space structure to better account for
address spaces and page tables.
- Currently executes fine up to forking. Will investigate.
- KIP's pointer to UTCB seems to work with existing l4lib ipc functions.
- Works up to clone()
- In clone we mmap() the same UTCB on each new thread - excessive.
- Generally during page fault handling, cloned threads may fault on the same page
multiple times even though a single handling would be enough for all of them.
Need to detect and handle this.
Added setting of utcb address to l4_thread_control.
This is going to be moved to exchange_registers() since we need to pass
both the utcb physical and virtual address and exregs fits such context
modification better than thread_control.
- Directory creation, file read/write is OK.
- Cannot reuse old task's fds. They are not recycled for some reason.
- Problems with fork/clone/exit. They fail for a reason.
It turned out we used one version of kmalloc for malloc() and another for kfree()!
Now fixed.
Added parent-child relationship to tasks. Need to polish handling CLONE_PARENT and THREAD.
l4_unmap now returns -1 if given range was only partially unmapped.
do_munmap() now only unmaps address ranges that have correspondence in
the unmapped vmas. Trying to unmap regions with no correspondent vmas
causes problems in corner cases, e.g. mm0 that tries to mmap its own
address space during initialisation would unmap its whole address space
and fail to execute.
Still testing sys_munmap(). It now correctly spots and unmaps the overlapping vma.
The issue now is that if a split occurs, we forgot to add same objects to new vma.
- Scheduler was increasing total priorities only when resuming tasks had 0 ticks.
This caused forked tasks that have parent's share of ticks to finish their jobs,
if these tasks exited quick enough, they would cause the total priorities to deduce
without increasing it in the first place. This is now fixed.
- Also strengthened rq locking, now both queues are locked before touching any.
- Also removed task suspends in irq, this would cause a race condition on ticks and
runqueues, since neither is protected against irqs.
- Implemented reasonable way to suspend task.
- A task that has a pending suspend would be interrupted
from its sleep via the suspender task.
- If suspend was raised and right after, task became about to sleep,
then scheduler wakes it up.
- If suspend was raised when task was in user mode, then an irq suspends it.
- Also suspends are checked at the end of a syscall so that if suspend was
raised because of a syscall from the task, the task is suspended before it
goes back to user mode.
- This mechanism is very similar to signals, and it may lead as a base for
implementing signal handling.
- Implemented common vma dropping for shadow vm object dropping and task exiting.
- Updated sleeping paths such that a task is atomically put into
a runqueue and made RUNNABLE, or removed from a runqueue and made SLEEPING.
- Modified vma dropping sources to handle both copy_on_write() and exit() cases
in a common function.
- Added the first infrastructure to have a pager to suspend a task and wait for
suspend completion from the scheduler.
A new scheduler replaces the old one.
- There are no sched_xxx_notify() calls that ask scheduler to change task state.
- Tasks now have priorities and different timeslices.
- One second interval is distributed among processes.
- There are just runnable and expired queues.
- SCHED_GRANULARITY determines a maximum running boundary for tasks.
- Scheduler can now detect a safe point and suspend a task.
Interruptible blocking is implemented.
- Mutexes, waitqueues and ipc are modified to have an interruptible nature.
- Sleep information is stored on the ktcb. (which waitqueue? etc.)
- test0 now forks 16 tasks that each modify a global variable.
- scheduler now gives 1/10th of a second per task. It also does not increase timeslice
of a task that has scheduled.
- When a memory is granted to the kernel, the distribution of this memory to memcaches
was calculated in a complicated way. This is now simplified.
- Fixed do_mmap() so that it returns mapped address, and various bugs.
- A child seems to fork with new setup, but with incorrect return value.
Need to use and test exregs() for fork + clone.
- Shmat searches an unmapped area if input arg is invalid, do_mmap()
should do this.
- Added mutex_trylock()
- Implemented most of exchange_registers()
- thread_control() now needs a lock for operations that can modify thread context.
- thread_start() does not initialise scheduler flags, now done in thread_create.
TODO:
- Fork/clone'ed threads should retain their context in tcb, not syscall stack.
- exchange_registers() calls in userspace need cleaning up.